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Abstract

This paper studies a DSGE model with endogenous financial asset supply and
ambiguity averse investors. An increase in uncertainty about financial conditions leads
firms to substitute away from debt and reduce shareholder payout in bad times when
measured risk premia are high. Regime shifts in volatility generate large low frequency
movements in asset prices due to uncertainty premia that are disconnected from the
business cycle.

1 Introduction

This paper studies a DSGE model with endogenous financial asset supply and ambiguity
averse investors. Firms face frictions in debt and equity markets and decide on capital struc-
ture and net payout. Investors perceive time varying uncertainty about real and financial
technology. Uncertainty shocks lead firms to reoptimize capital structure as relative asset
prices such as risk premia change. In an estimated model that allows for both smooth changes
in ambiguity and regime shifts in volatility, concerns about financial conditions generates low
frequency movements in asset prices that are disconnected from the business cycle.

We model ambiguity aversion by recursive multiple priors utility. When agents evaluate
an uncertain consumption plan, they use a worst case conditional probability drawn from
a set of beliefs. A larger set indicates higher uncertainty. In our DSGE context, beliefs
are parameterized by the conditional means of innovations to real or financial technology.
Conditional means are drawn from intervals centered around zero. The width of the interval
measures the amount of ambiguity. It can change either smoothly with the arrival of intan-
gible information or it can jump discretely across regimes with different stochastic volatility.
Both types of change in uncertainty work like a drop in the conditional mean and hence have
first order effects on decisions.

Time variation in ambiguity leads econometricians to measure time varying premia in
asset markets. Indeed, when investors evaluate an asset as if the mean payoff is low, then
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they are willing to pay only a low price for it. To an econometrician, the return on the asset
– actual payoff minus price – will then look unusually high. The more ambiguity investors
perceive, the lower is the price and the higher is the subsequent return. An econometrician
who runs a regression of return on price (normalized by dividends) will thus find a positive
coefficient. If interest rates are stable – say because bonds are less ambiguous than stocks –
then the price-dividend ratio helps forecast excess returns on stocks, that is, there are time
varying risk premia on stocks. A convenient feature of our model is that asset premia are
due to perceptions of low mean, and therefore appear in a standard loglinear approximation
to the equilibrium.

The real side of our model is that of an RBC model with adjustment costs and variable
capacity utilization. To focus on financial frictions, we abstract from nominal features and
labor market frictions. However, the supply of equity and corporate debt, and hence leverage,
is endogenously determined. Firms face an upward sloping marginal cost curve for debt: debt
is cheaper than equity at low levels of debt, but becomes eventually more expensive as debt
increases. Firms also have a preference for dividend smoothing. To maximize shareholder
value, they find interior optima for leverage and net shareholder payout. Firm decisions are
sensitive to ambiguity since shareholder value incorporates uncertainty premia. In particular,
an increase in ambiguity about real or financial technology leads firms to substitute away
from debt and reduce leverage.

We estimate the model with postwar US data on eight observables. The macro quantities
are GDP growth, investment growth and consumption growth. The financial quantities
are net nonfinancial corporate debt, net nonfinancial corporate payout and the value of
nonfinancial corporate equity, all measured as ratios relative to GDP. Including the latter
two variables implies that we match the corporate price/payout ratio, which behaves similarly
to the price-dividend ratio. Finally, we include measures of the real short term interest rate
and the slope of the yield curve. In sum, we ask our model to account for the price and
quantity dynamics of equity and debt, as well as standard macro aggregates.

Estimation delivers two main results. First, regime shifts in volatility help understand
jointly the heteroskedasticity of macro quantities and the low frequency movements in asset
prices. When we allow for two regimes for stochastic volatilities with symmetric priors,
we identify a low and a high volatility regime. The latter dominates a prolonged period
of time from the early ’70s to the second half of the ’80s, when quantities were volatile
and the price/payout ratio was low. A switch from the low volatility regime to the high
volatility regime determines a drop in stock prices of around 20% on impact that is followed
by a further drawn out decline that can last for decades. This is because higher volatility
increases ambiguity and generates a substantial price discount.1

The second result is that financial quantities depend relatively more on uncertainty shocks
than real variables. In particular, changes in uncertainty about future financing costs are
important for understanding the positive comovement of debt and net payout to shareholders.
Those changes also help our model account for the excess volatility of stock prices. Indeed,
since financing costs affect corporate cash flow relatively more than consumption, uncertainty
about financing costs moves stock prices more than bond prices. Moreover, the model can

1If the economy happens to revert to the low volatility regime, a symmetric pattern occurs, with a stock
market boom followed by a slow return to the low volatility conditional steady state.
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generate movements in stock prices that are somewhat decoupled from the business cycles.
Importantly, both dividends and prices are endogenously determined in our model as optimal
responses to uncertainty shocks.

Relative to the literature, the paper makes three contributions. First it introduces a
class of linear DSGE models that accommodate both endogenous asset supply and time
varying uncertainty premia. Second, it shows how to extend that class of models to allow
for first order effects of stochastic volatility. Finally, the results suggest a prominent role for
uncertainty shocks in driving jointly asset prices and firm financing decisions. [ details to be
written ]

The paper is structured as follows. Section 2 presents a simplified version of the model
with exogenous output and a simpler dividend smoothing motive. Since that model can be
worked out in closed form it serves to illustrate the mechanics of endogenous asset supply and
asset valuation with ambiguity aversion. Section 3 then describes the quantitative model,
our solution and estimation strategy, and then discusses the estimation results.

2 A simple model

In this section we consider a simple model of asset pricing with endogenous supply. The
key simplification relative to our estimated model below is that output is exogenous – firms’
only decisions are debt and net payout to shareholders. We also simplify the firms dividend
smoothing motive by assuming that payout has to be fixed one period in advance.

The section has two goals. The first is to illustrate the tradeoffs faced by the firm using
closed form solutions. The main point here is that if a firm optimizes payout and capital
structure in a world with uncertainty shocks, then uncertainty shocks tend to make net debt
and net payout go together. The second goal is to illustrate how asset pricing works in our
linearized multiple priors model. In particular, we derive unconditional asste premia, such
as the equity premium and the yield curve, from deterministic steady state conditions, and
we derive time varying premia from linearized first order conditions.

2.1 Setup

A representative household invests in equity and debt issues by financing constrained firms.
Technology: production and financing

Production is exogenous. It consists of a certain component L and a random component
Ft. Here L contains labor income as well as income generated by firms that are not publicly
traded, whereas Ft is the cash flow of publicly traded firms, net of fixed financing costs. In
the simple model of this section, this division is exogenous. In the richer model estimated
below, both components are variable and imperfectly correlated. An important feature of
both this simple model and our estimated model is that there are shocks to the profitability
of publicly traded firms that do not affect other components of GDP.

Publicly traded firms decide on net payout to shareholders Dt as well as the face value
of short term debt Bt. Payout to shareholders has to be chosen one period in advance. Debt
can be changed at short notice, but the marginal cost of debt slopes upward. The cost of
debt between t − 1 and t also depends on financial conditions, captured by a time varying
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parameter Ψt The firm budget constraint for date t is

Dt = Ft +QtBt −Bt−1 − κ (Bt−1; Ψt) (1)

where the cost function κ is convex in debt B and its derivatives satisfy κ1 (0; Ψ) < 0 and
κ12 (B,Ψ) > 0. The first condition says that the first dollar of debt is cheaper than outside
equity. The second condition says that Ψ determines the marginal cost of a dollar of debt.

The resource constraint is

Ct = L+ Ft − κ (Bt−1; Ψt) (2)

While consumption depends on the choice of debt and is thus endogenous, we will work
with a cost function that makes the effect of debt on total resources second order. To first
order, the model can be thought of as an endowment economy. Our assumption of a negative
marginal cost of debt at zero implies that the firm issues positive debt in steady state and
realizes a gain −κ. We view F as incorporating a fixed financing cost so the effective total
financing cost is positive.

Households own the equity of the firm which trades at a price Pt. The representative
household budget constraint is

Ct +QtBt + Ptθt = L+ (Pt +Dt)θt−1 +Bt−1

Households enter the period with equity – on which they receive net payout Dt – and debt.
They decide to consume or save in the form of debt and equity. While total savings in a
NIPA accounting sense are zero in this economy, firms leverage up and pay out cash flow in
form of dividends and interest. Household financial wealth consists of positive positions in
equity and debt.

Uncertainty
There are two sources of technological uncertainty in the economy: firm cash flow Ft

and the financing cost parameter Ψt. We define a vector τ̂t = (f̂t,−ψ̂t) to collect the log
deviations of technology from its steady state value. Our sign convention is that high τ
for both components means a “good” technology realization (in the sense that consumption
increases, as will become clear below). The data generating process for τ is

τ̂t+1 = φτ τ̂t + µ∗t + στεt+1 (3)

where ε is an iid vector of shocks and µ∗t is a deterministic sequence. The decomposition of
the innovation to τ into two components µ and σε serves to distinguish between ambiguity
and risk, respectively.

Consider the ambiguous component µ. We assume that agents know the long run prop-
erties of the sequence µ∗t . In particular, they know that the long run empirical distribution
of µ∗t is iid with mean zero and variance σ̃τ σ̃

′
τ−στσ′τ . However, agents do not know the exact

sequence µ∗ and are thus uncertain about the conditional mean relevant for forecasting tech-
nology one period ahead. They receive intangible information about the mean next period,
which allows them to narrow down their range of forecasts. For example, they reduce the
range of forecasts about f̂t+1 to a range [−at,f , at,f ] centered around zero, and similarly for
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−ψ̂t+1. Agents are not confident enough to further integrate over alternative forecasts (and
so in particular they do not use a single forecast).

The vector at = (at,f , at,ψ)′ summarizes the ambiguity agents perceive about the different
components of technology. We think of −at,i as an indicator of information quality about
technology component i: if at,i is low, then agents find it relatively easy to forecast τ̂t,i and
and their behavior will be relatively close to that of expected utility maximizers (who use a
single probability when making decisions). In contrast, when at,i is high, then agents do not
feel confident about forecasting. Information quality itself evolves as an AR(1)

at+1 − ā = φa(at − ā) + σaεt+1

This specification allows for persistence in the quality of information. It also allows for
correlation between innovations in τ and the quality of information about τ . In the richer
model below, ambiguity a is also allowed to depend on the volatility of τ.

Preferences
The representative household has recursive multiple priors utility. Every period house-

holds observe a vector of shocks εt. Let εt denote the history of shocks up to date t. A
consumption plan is a family of functions ct (εt). Conditional utilities from some consump-
tion plan c are defined recursively by

U
(
c; εt

)
= log ct

(
εt
)

+ β min
µt,i∈×i[−at,i,at,i]

Eµ
[
U
(
c; εt, εt+1

)]
, (4)

where the conditional distribution over εt+1 uses the means µt,i that minimize expected
continuation utility. If at = 0, we obtain have standard separable log utility with those
conditional beliefs. If at > 0, then lack of information prevents agents from narrowing down
their belief set to a singleton. In response, households take a cautious approach to decision
making – they act as if the worst case mean is relevant.2

In what follows, we consider equilibria with positive debt. It is then easy to solve the
minimization step in (4) at the equilibrium consumption plan: the worst case expected cash
flow is low and the worst case expected marginal financing cost is high. Indeed, consumption
depends positively on cash flow and, since debt is positive, it depends negatively on the
marginal financing cost. It follows that agents act throughout as if forecasting under the
worst case mean µt = −at. This property pins down the representative household’s worst
case belief after every history and thereby a worst case belief over entire sequences of data.
We can thus also compute worst case expectations many periods ahead, which we denote by
stars. For example E∗Dt+k is the worst case expected dividend k periods in the future.

2In the expected utility case, time t conditional utility can be represented as as Et [
∑∞
τ=0 log ct+τ ] where

the expectation is taken under a conditional probability measure over sequences that is updated by Bayes’
rule from a measure that describes time zero beliefs. An analogous representation exists under ambiguity:
time t utility can be written as minπ∈P E

π
t [
∑∞
τ=0 log ct+τ ] . The time zero set of beliefs P can be derived

from the one step ahead conditionals Pt as in the Bayesian case, see Epstein and Schneider (2003) for details.
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2.2 Characterizing equilibrium

To describe t-period ahead contingent claims prices, we define random variables M t
0 that

represent prices normalized by conditional worst case probabilities. This particular nor-
malization is convenient for summarizing the properties of prices, which are derived from
households’ and firms’ first order conditions. We also define a one-period-ahead pricing
kernel as Mt+1 = M t+1

0 /M t
0. From household utility maximization, we have the familiar

equations

Mt+1 = βCt/Ct+1

Qt = E∗t [Mt+1]

Pt = E∗t [Mt+1 (Pt+1 +Dt+1)]

The only difference to a standard model is that expectations are taken under the worst case
belief, indicated by a star.

The firm maximizes shareholder value

E∗0
∑

M t
0Dt

Shareholder value depends on worst case expectations. This is because state prices deter-
mined in financial markets reflect households’ attitudes to uncertainty, as illustrated by the
household Euler equations above.

Let λt denote the shadow value of funds inside the firm at date t, normalized by the con-
tingent claims price M t

0. The firm’s first order equations for debt and dividends, respectively,
are

λtQt = E∗t [λt+1Mt+1 (1 + κ1 (Bt; Ψt+1))]

E∗tMt+1 = E∗t [λt+1Mt+1] ,

When choosing debt, the firm equates the marginal benefit of a bond issued (which con-
tributes Q dollars, or Qλ dollars within the firm) to the marginal cost of repaying the debt.
The latter consists of the value of debt next period (at the firm’s own shadow prices) and the
financing cost. When choosing net shareholder payout one period ahead, the firm equates
the expected shadow value of a dollar to the expected value of a dollar outside the firm.
It follows that the shadow value of funds within the firm will typically be different from
one. Indeed, since short run adjustment is costly for debt and impossible for equity, a dollar
within the firm differs in value from a dollar outside.

An equilibrium is characterized by (1), (2), the household and firm Euler equations, as
well as the dynamics of the exogenous variables. We compute an approximate solution in
three steps. First, we find the “worst case steady state”, that is, the state to which the
model were to converge if the data were generated by the worst case probability belief. The
worst case steady state used in steps 1 and 2 should be viewed a computational tool that
helps describe agents’ optimal choices. Agents choose conservative policies in the face of
uncertainty, and this looks as if the economy were converging to the worst case steady
state.Second, we linearize the model around the worst case steady state. Finally, we derive
the true dynamics of the system, taking into account that the exogenous variables follow the
true data generating process.
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In the third step, we make use of the fact that the true deterministic sequence µ∗t behaves
like a realization of an iid normal stochastic process. This means that we can compute model
implied moments using the moments of the iid normal process. By construction, those
moments do not depend on the particular sequence µ∗t , only on its long run properties. We
think of the combined variance of the risky and ambiguous component – introduced above
as σ̃τ σ̃

′
τ – as the model moment that is to be matched to the variance of τ in the data. An

explicit decomposition into a true µ∗t and risky shocks is thus not needed for the quantitative
assessment of the model. The point of the decomposition is to clarify that agents cannot
learn certain aspects of the data even in a stationary environment, and are thus fruitfully
modeled as perceiving ambiguity.

Worst case steady state
Denote the steady values of cash flow and the financing cost parameter by (F,Ψ). House-

holds faced with ambiguity act as if the economy converges to a state with worse technology.
This induces cautious behavior and asset premia. At the worst case steady state, conditional
forecasts of technology τ̂t = (f̂t,−ψ̂t) are constant at −ā = (−āf ,−āψ). In other words,
households behave as if long cash flow is lower by āf percent, at F ∗ = F exp (−āf ) and
the long run financing cost is higher by āψ percent, at Ψ∗ = Ψ exp (āψ). We work with the
cost function κ (B,Ψ) = −ψB + 1

2
ΨB2, with ψ > 0. While a quadratic cost function is

not globally sensible because it penalizes positive bond holdings, it works well for a local
approximation around a steady state with positive debt. We further choose parameters so
that D > 0 in steady state, that is, the firm makes a positive net payout.

In the worst case steady state, the pricing kernel and the riskless bond price are simply
the household’s discount factor: M∗ = Q∗ = β. Interest rates do not depend on ā and are
thus the same in the worst case steady state and in a steady state with rational expectations.
However, the long run debt, dividend and consumption levels all depend on the amount of
ambiguity:

B∗ = (ψ/Ψ) exp (−āψ)

D∗ = F exp (−āf )− (1− β)B∗ + ψB − 1

2
Ψ exp (āψ)B∗2

C∗ = L+ F exp (−āf ) +
1

2
(ψ2/Ψ) exp (−āψ) (5)

Here the last term in the consumption equation reflects the gain from debt financing realized
in steady state. More ambiguity about financing conditions (higher āψ) shrinks this gain and
leads firms to behave as if debt needs to be lower in the long run. Moreover agents act as
if cash flow and consumption are lower. The rational expectations steady state levels are
obtained by setting ā = 0.

Loglinear approximation
We now loglinearize the model around the worst case steady state. We use hats to indicate

log deviations and stars to signal that we are expanding around the worst case steady state.
We start with the resource constraint:

ĉ∗t = ωτ τ̂
∗
t , (6)
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where the vector ωτ = (ωf , ωψ) = (F ∗/C∗, ψ
2
B∗/C∗) collects the steady state GDP shares

of cash flow and financing costs. Variations in debt have only a second order effect on
consumption and do not appear in a first order approximation. To first order, the model
is thus an endowment economy in which technology alone determines consumption. In a
sensibly quantified model, the coefficient on ψ̂ is an order of magnitude smaller than the
coefficient on f̂ .3 In what follows, it is thus helpful to think about changes in technology
ωτ τ̂t as mostly driven by changes in cash flow. The main effect of financing costs will come
through the firm’s marginal cost of debt, rather than through the actual resource cost spent..

The loglinearized pricing kernel and the household Euler equation for debt are

m̂∗t+1 = ĉ∗t − ĉ∗t+1

q̂∗t = E∗t [m̂t+1]

State prices vary across states of nature with both firm cash flow f and financing cost
ψ. However, in our loglinear framework this variation is not important for pricing – what
matters are conditional means under the worst case belief. The short term interest rate is
r̂∗t = −q̂∗t = −E∗t m̂∗t+1.

The firm’s problem can be written using a single endogenous state variable, namely the
funds the firm plans to pay to outsiders – shareholders or bondholders – in the next period.
We write the log deviation from steady state of “planned payout” as

ŵ∗t =: (ωd/ωb)d̂
∗
t+1 + β−1b̂∗t .

Here ωb = Q∗B∗/C∗ is the GDP share of (the market value of) corporate debt and ωd =
D∗/C∗ is the GDP share of dividends. Both components of planned payout ŵt are selected
at date t but the actual payments – redemption of debt and payout to shareholders – are
made at date t+ 1.

The loglinearized budget constraint of the firm is

b̂∗t = −(ωτ/ωb)τ̂
∗
t − q̂∗t + ŵt−1,

The firms issues debt in response to current technology and bond prices so as to satisfy the
firm budget constraint. At the same time, it must respect the planned payout ŵt−1 from the
previous period. The presence of ŵt−1 indicates that there is some (short run) propagation
in the model. Indeed, if a shock prompted the firm to increase planned payout at date t− 1,
then it also issues more debt at date t.

From the Euler equation for shareholder payout D, the firm wants to keep the shadow
value of funds at its steady state level in expectation, or E∗t [λ̂

∗
t+1] = 0. This is accomplished

by setting planned payout as a function of expected future technology and interest rates.
Combining household and firm Euler equations, equilibrium planned payout is 4

ŵ∗t = E∗t

[
(ωτ/ωb) τ̂

∗
t+1 + q̂∗t+1 − ψ̂∗t+2

]
(7)

3The coefficient ωψ is the corporate debt/GDP ratio multiplied by the parameter ψ which determines the
subsidy, per dollar of debt for issuing debt. We think of ψ as a few percentage points at most – for example,
if the subsidy is the tax advantage of debt, then it corresponds to a tax rate multiplied by an interest rate.

4Loglinearizing the firm’s first order condition for debt delivers

λ̂t + q̂t = E∗t

[
λ̂t+1 + m̂t+1

]
+ ψ

(
E∗t ψ̂t+1 + b̂t

)
.
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Under the worst case belief, firms plan to pay out more if cash flow is higher, interest rates
are lower (that is, bond prices are higher) or the marginal cost of debt is lower.

The firm’s decision rules for debt and dividends now follow from the budget constraint
and the definition of ŵ :

b̂∗t = − (ωτ/ωb) (τ̂ ∗t − E∗t−1τ̂
∗
t )− (q̂∗t − E∗t−1q̂t)− E∗t−1ψ̂

∗
t+1

d̂∗t+1 = (ωb/ωd)
(
ŵt − β−1b̂t

)
The firm can immediately react to shocks only by adjusting debt. This adjustment corrects
”forecast errors” about technology or interest rates that were not taken into account when
planning payout the period before. In addition, the firm wants to stabilize the shadow value
of funds. As a result, debt on average reflects expected financing costs, that is, E∗t b̂t+1 =
−E∗t ψt+2.

Dividends are then set to implement the forward looking payout rule, taking into account
the adjustment of debt. Dividends thus make the connection between the forward looking
choice of planned payout ŵt and the adjustment of debt, which is mostly backward looking
(although it also responds to the bond price, itself a forward looking variable). A key
implication is that current shocks to technology will have opposite effects on new debt and
planned dividends: if the firm has more internal funds today because of higher cash flow or
lower financing costs, then it will reduce debt and plan to pay out more dividends.

Closed form solution
We now derive the equilibrium law of motion for all relevant variables. This solution

describes how the model responds to shocks. Indeed, while we have linearized around the
worst case, we can approximate the dynamics of the model around its actual “zero risk”
steady state using the same coefficients. As we have seen above, ambiguity ā affects levels,
while the coefficients that depend on ā involve ratios such as ωd/ωb. As a result, as long as
ā is not too large, it has a minor effect on the coefficients in the loglinearized system.

The solution for the bond price is

q̂t = ηqτ τ̂
∗
t + ηqaâ

∗
t ; ηqτ = ωτ (I − φτ ) , ηqa = ωτ

An increase in technology increases the bond price if it lowers expected consumption growth.
This is the relevant case – it obtains for example if cash flow and financing costs are persistent
and do not help forecast each other (φτ diagonal with positive elements). An increase in
ambiguity always increases bond prices – a precautionary savings effect.

Planned payout can also be written as a function of current technology and ambiguity
only. Let eψ denote a unit vector that selects financial technology −ψ out of the technology
vector τ . We can then write

ŵ∗t = (ωτ/ωb + ηqτ ) (φτ τ̂
∗
t − â∗t ) + eψφτ (φτ τ̂

∗
t − â∗t ) + (ηqa − eψ)φaâ

∗
t (8)

Using the equation for the price of bonds and the fact that the expected shadow value of the firm is zero,
we obtain

λ̂t = ψ
(
E∗t ψ̂t+1 + b̂t

)
Internal funds are more valuable for the firm in periods when debt is high and it is costly to borrow.
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Since planned payout is a purely forward looking variable, it is affected by technology shocks
only if technology is persistent (φτ 6= 0). With iid technology, ambiguity alone drives planned
payout. The precise effects reflect forecasts and uncertainty about future internal funds,
prices and financing costs.

The first term summarizes the effect of technology shocks on the firm’s internal funds.
The firm gains if technology is better or bond prices are higher – here the direct and the
price effect go in the same direction. The anticipation of changes in internal funds translates
into two responses to current shocks. On the one hand, if there is a positive technology
shock, then planned payout is increased if (and only if) technology is persistent (φτ 6= 0).
On the other hand, if there is an increase in ambiguity, then firms are concerned about
future internal funds and cautiously reduce planned payout. The second term describes the
firm’s response to changes in expected financing costs two periods ahead – again there is
an expectations and ambiguity effect. Finally, an ambiguity shock has a knock-on effect
if ambiguity is persistent (φa 6= 0): firms then anticipate higher bond prices and possibly
higher borrowing costs next period.

Debt and dividends can be written as a function of current shocks as well as the endoge-
nous state variable ŵ∗t−1:

b̂∗t = ŵt−1 − (ωτ/ωb + ηqτ ) τ̂
∗
t − ηqaâ∗t

d̂∗t+1 = − (ωb/ωd) β
−1ŵt−1 + ηdτ τ̂

∗
t + ηdaâ

∗
t

ηdτ = (ωτ/ωd + (ωb/ωd)ηqτ ) (β−1I + φτ ) + (ωb/ωd) eψφ
2
τ

ηda = − (ωτ/ωd + (ωb/ωd)ηqτ )− (ωb/ωd) eψ(φτ + φa) + ηqa
(
φa + β−1I

)
The solution reflects the backward and forward looking effects discussed above. If the firm
inherits large payment obligations, it rolls them over by issuing debt and then pays them
off by lowering dividends next period. Similarly, a bad technology shock is addressed first
by borrowing, followed by lower dividends. Technology shocks thus move debt and net
shareholder payout in opposite directions. Ambiguity shocks lower debt. They also lower
planned dividends provided that the price effect of ambiguity (the last term in ηda) is small
enough. This will be true as long as steady state debt is sufficiently large. Ambiguity shocks
then generate positive comovement between debt and net shareholder payout.

The detailed formulas again reflect the internal funds, prices and financing cost channels.
The first term in the elasticity ηdτ shows how technology shocks affect dividends both through
the budget constraint and through expectations. Better technology means more internal
funds, which the firm uses immediately to pay down debt (cf. the first equation). The firm
then plans to pay out the resulting savings to shareholders one period later – the coefficient
β−1 enters because of saved interest on the debt. If technology is persistent, then dividends
are increased even further in anticipation of higher internal funds next period as well as
possibly lower financing costs two periods ahead. The first two terms in ηda show how an
increase in ambiguity affects dividends as firms become uncertain about internal funds next
period as well as financing costs two period ahead, respectively. There is a counteracting
effect as ambiguity increases bond prices which leads firms to increase dividends.
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2.3 Steady state and unconditional asset premia

Suppose all shocks are equal to zero, but agents use decision rules that reflect their aversion
to ambiguity. In particular, agents perceive constant ambiguity, as in the worst case steady
state. We study the zero risk steady state using the decision rules derived above by lin-
earization around the worst case steady state. From this perspective, the true steady state
cash flow (F,−Ψ) looks like a positive deviation summarized by the vector ā. Mechanically,
we now need to find the steady state of a system in which technology is always at ā, but in
which agents act as if the economy is on an impulse response towards the worst case steady
state. The latter impulse response can be computed from the closed form solution for the
equilibrium derived above.

Consumption and short term interest rate
The zero risk steady state captures the effect of the average amount of ambiguity on

decisions and prices, as well as unconditional asset premia. Under the worst case belief,
agents expect consumption to revert from its temporarily high level towards the worst case
steady state according to ĉ∗t = ωτφ

t
τ ā. Asset prices follow from the anticipated sequence of

pricing kernels ĉ∗t − ĉ∗t+1. As we have seen above, the worst case steady state bond price is
the same as the bond price in the absence of ambiguity. The average log price of a short
bond predicted by the model is therefore

q̄ = log β + ωτ (I − φτ ) ā

Ambiguity unconditionally increases bond prices and lowers interest rates, due to precaution-
ary savings. The uncertainty premium is smaller if technology is more persistent. Intuitively,
agents worry about bad technology, but they also observe current technology. If technology
is more persistent, then agents also know this and hence worry less about what happens
in the near term. As a result, they demand less compensation on short term bonds. As
we will see below, more persistent technology implies that agents demand relatively more
compensation on long term assets.

Payout and capital structure
Consider the firm’s planned payout, expressed as a deviation from the worst case steady

state. It follows from substituting τ̂ ∗t = ā and â∗t = 0 in the decision rule (8):

ŵ∗ = (ωτ/ωb + ηqτ + eψφτ )φτ ā

If technology is serially independent (φτ = 0), then the firm always keeps planned payout at
its worst case steady state level. With persistent technology, shareholders worry less about
the near term and commits to more payout. Mechanically, the firm acts as if the current
unusually high cash flow or low financing cost spills over to next period. It also expects low
interest rates to continue next period, which further increases planned payout.

We can now compute firms’ steady state capital structure and shareholder payout. Denote
log debt and shareholder payout in the rational expectations steady state by b̄RE and d̄RE,
respectively. With ambiguity, steady state debt and shareholder payout are5

5From (5) we have b̄RE = log(ψ/Ψ) and d̄RE = log(F − (1 − β)ψ/Ψ + 1
2ψ

2/Ψ). We can write both in
terms of percentage deviations from the worst case steady state and substituting ŵ∗t−1 = ŵ∗, τ̂∗t = ā and
â∗t = 0 into the decision rules for debt and dividends.
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b̄ = b̄REE − ωτ/ωb (I − φτ ) ā− ηqτ (I − φτ ) ā− eψ
(
I − φ2

τ

)
ā

d̄ = d̄REE +
(
β−1 − 1

) (
b̄REE − b̄

)
+ (ωb/ωd)ηqτ ā

The first line says that ambiguity lowers the average level of debt – when firms are uncertain
about the future, they cautiously plan lower borrowing. The second line says that ambiguity
increases average shareholder payout. Indeed, lower debt means lower interest cost, which
is directly paid out to shareholders. This effect would be there even if the interest rate was
unchanged at β−1 – the first term in the second line. There is an additional effect since
interest rates decline with higher ambiguity.

The formula shows three separate channels at work. First, firms worry about future
internal funds which depend on both cash flow and financing costs. Here the effect of
financing costs scales with the second entry in ωτ/ωb, namely ψ/2β and is large only if ψ
is sufficiently large. Second, firms worry about bond prices. Finally, firms worry about
financing costs directly. All channels are weaker if technology is more persistent. Intuitively,
with persistent technology firms worry less about near term cash flow and financing costs
and hence leverage and pay out more.

Stock price discount and equity premium
The loglinearized household Euler equation for stocks can be written as

p̂∗t − d̂∗t = E∗t

[
β(p̂∗t+1 − d̂∗t+1) + (d̂∗t+1 − ĉ∗t+1)−

(
d̂∗t − ĉ∗t

)]
(9)

Here the left hand side is the log price dividend ratio, or more precisely the price payout
ratio. Its worst case steady state value is equal to β/ (1− β), the same as in the rational
expectations steady state. A key property of stock market data is that prices are much more
volatile than scaled measures of payout. In other words, the log price dividend ratio moves
around over time.

We can solve forward to express the price dividend ratio as the present value of future
growth rates in the dividend-consumption ratio

p̂∗0 − d̂∗0 = E∗t

∞∑
t=0

βt
(

(d̂∗t+1 − ĉ∗t+1)−
(
d̂∗t − ĉ∗t

))
(10)

As is familiar from asset pricing with separable utility under risk, the price dividend ratio
is driven by counteracting cash flow and interest rate effects. For example, bad news about
dividends decrease expected dividend stream and thereby the present value of dividends. At
the same time, since dividends are part of consumption, bad news decreases interest rates,
thus lowering the present value of dividends. If dividends are equal to consumption, then the
price dividend ratio is constant – with log utility, income and substitution effects cancel. Inη
contrast, if dividends are a small share of consumption (as in the data), then the cash flow
effect dominates and bad news decrease the price dividend ratio. In our model, changes in
uncertainty work like changes in means and so this intuition carries over directly. Ambiguity
about dividends that does not affect consumption much can generate excess volatility of
stock prices.
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At the zero risk steady state, stocks are priced according to (10) with expectations
reflecting the impulse response from the zero risk steady state to the worst case steady state.
In the first period, this impulse response reflects only the adjustment of consumption, since
shareholder payout is predetermined:

d̂∗0 − ĉ∗0 = −ωb
ωd
β−1ŵ∗ + (ηdτ − ωτ ) ā

d̂∗1 − ĉ∗1 = −ωb
ωd
β−1ŵ∗ + (ηdτ − ωτφτ ) ā

The first element in the sum (10) is therefore the ambiguity premium in the short term bond
price q̄ − log β

Along the impulse response for t > 1, the dividend consumption ratio evolves as

d̂∗t − ĉ∗t = − (ωb/ωd) β
−1ŵ∗t−2 + ηdττ

∗
t−1 − ωττ ∗τ

= ((ωτ/ωd)(1− ωd) + (ωb/ωd)ηqτ )φ
t
τ ā− (ωb/ωd) eψ

(
β−1I − φτ

)
φtτ ā

Consider first ambiguity about cash flow only. When firms worry about cash flow, they
cautiously act as if cash flow declines towards the worst case steady state. Lower cash flow
leads endogenously to lower dividends. Investors thus price stocks as if there is a declining
path of dividends. Indeed, with ambiguity about cash flow only, the last term vanishes and
the dividend consumption ratio declines geometrically to the worst case steady state from
above. Since ωd < 1, ambiguity about cash flow is not offset by the effect of ambiguity
on interest rates (cf the first term). Comparing coefficients, it follows that the sum over
growth rates in (10) is negative and the steady state price dividend ratio p̄ − d̄ is below
the rational expectations steady state (which coincides with the worst case steady state).
Ambiguity about cash flow thus leads to a steady state price discount, works because cash
flow uncertainty makes investors fear low a payoff of stocks relative to bonds.

Consider now ambiguity about financing costs and focus first on the case where the
resource cost effect is negligible (ωψ small). The effect is then described only by the last
term. When firms worry about the marginal cost of debt, they act cautiously as if costs will
increase towards the worst case steady state. Higher financing costs leads endogenously to
lower debt and higher payout to shareholders. Investors thus price stocks as if there is an
increasing path of dividends. This creates a force that makes the price dividend ratio higher
in steady state. Since the resource cost effect works like a decrease in cash flow, there is also
an offsetting force, but we would expect its effect to be quantitatively small. The discussion
here this illustrates the importance of taking firm decisions into account.

The equity premium at the zero risk steady state is6

log
(
p̄+ d̄

)
− log p̄+ q̄ = (1− β)

(
d̄− p̄

)
+ ωτ (I − φτ ) ā

Ambiguity can make the steady state equity premium positive for two reasons. First, the
average stock return is higher than under RE if the price dividend ratio is lower. This is

6The log stock return at the zero risk steady state is

log
(
p̄+ d̄

)
− log p̄ ≈ (1− β)

(
d̄− p̄

)
− log β

where we are using the fact that all asset returns are equal to − log β at the worst case steady state.
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the first term. Second, the interest rate is lower. The second effect is small if dividends
are a small share of consumption, that is, both components of ωτ are relatively small. We
emphasize the role of the first effect: it says that average equity returns themselves are higher
than in the rational expectations steady state. Ambiguity does not simply work through low
real interest rates.

Term structure of interest rates
From the household Euler equations, we can compute the price of any asset, including

long term bonds that are in zero net supply. Let q̂
∗(n)
t denote the log deviation from the

worst case steady state for an n period zero coupon bond. The linearized Euler equation for
that bond is

q̂
∗(n)
t = E∗t

[
m̂∗t+1 + q̂

∗(n−1)
t+1

]
= E∗t

[
ĉ∗t − ĉ∗t+n

]
This Euler equation must hold also for every n along the impulse response from the zero risk
steady state, under the deterministic belief that ct = ωτφ

t
τ ā.

The steady state n period interest rate (quoted as a continuously compounded yield to
maturity) is therefore

ı̄(n) = − log q̄(n)/n = − log β − 1

n
ωτ (I − φnτ ) ā

For persistent technology, consumption slopes down away from the zero risk steady state
towards the worst case steady state. This implies that short rates will be lower than long
rates. In particular the short rate log δ − ωτ (I − φτ ) is smaller then the infinite maturity
rate limn→∞ i

∗n = − log β. With a geometrically declining impulse response we expect a
geometrically upward sloping average yield curve. The slope depends on the persistence of
technology.

2.4 Predictability of excess returns

A standard measure of uncertainty premia in asset markets is the expected excess return on
an asset computed from a regression on a set of predictor variables. The log excess stock
return implied by our model can be approximated as

xet+1 = log(pt+1 + dt+1)− log pt − log(it)

≈ βp̂∗t+1 + (1− β) d̂∗t+1 − p̂∗t + q̂∗t

= β
(
p̂∗t+1 − d̂∗t+1 − E∗t [p̂∗t+1 − d̂∗t+1]

)
+ d̂∗t+1 − E∗t d̂t+1

Here the second line is due to loglinearization of the return around the worst case steady
state. The third line follows from the household Euler equation for stocks.

Consider now an econometrician who attempts to predict excess stock returns in the
model economy. Suppose for concreteness that he has enough predictor variables to actually
recover theoretical conditional expectation of payoff next period given the state variables
of the model. With a large enough sample, he will measure the expected excess return
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Etx
e
t+1, where the expectation is taken with the conditional mean µ∗t = 0.7 Using the above

expression, we can write the measured risk premium as

Etx
e
t+1 = β(Et − E∗t )[p̂∗t+1 − d̂∗t+1] + (Et − E∗t )[d̂∗t+1 − E∗t d̂t+1],

where (Et − E∗t ) represents the difference between the expectation under µ∗t = 0 and the
worst case expectation. This is a term that is proportional to ambiguity at. This expression
suggests an interesting approach to quantify ambiguity in a linear model. Since risk premia
must be due to ambiguity, it is possible to learn about ambiguity parameters up front from
simple linear regressions without solving the DSGE model fully.

3 An estimated model

This section describes the model that we use to quantify the role of uncertainty in driving US
business cycles and asset prices. The basic structure is the same as in the previous section –
a representative household invests in debt and equity issued by a financing constrained firm.
However, there are three key changes.

First, on the real side, there is endogenous production and capital accumulation. The
production technology resembles that in many recent DSGE models; in particular, we allow
for investment rate adjustment costs and endogenous capacity utilization. Labor supply is
endogenous and the labor market is competitive. Technology shocks affect firm profits and
household wages. We also introduce a government subject to spending shocks.

Second, on the financial side, we make more explicit the sources of shocks. In particular,
there is a fixed cost of accessing credit markets, in additional to a marginal cost shock. In a
model with exogenous cash flow, the fixed cost is simply a negative cash flow shock. However,
firm cash flow is now endogenous and affected by all shocks. In particular, it depends on
technology shocks that also move around labor income. A fixed cost shock is then special
because it is a shock to profits that does not affect labor income at the same time. As a
result, ambiguity about the fixed cost makes investors worry about stocks more than about
bonds.

Third we now allow ambiguity to be affected by regime switching volatility. This not
only allows for an explicit connection between ambiguity and volatility and for first order
effects of volatility, but it also introduce correlation across fundamental shocks.

3.1 Model

3.1.1 Uncertainty

The ”fundamental” shocks of the economy consist of real and financial technology – as
in section 2 – as well as government spending shocks. The real shock is the stochastic
growth rate of labor augmenting technical process ξt. The financial shocks are a fixed cost

7Indeed, since all unconditional empirical moments converge to those of a process with µ∗t = 0 by con-
struction, the same is true for conditional moments
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of accessing debt market ft and a marginal cost shifter Ψt. For simplicity, we assume that
these shocks are orthogonal. We follow the notation of section 2 and denote by τt the log
deviations of the shocks [ξt, − ft,−Ψt,−gt]′ from their corresponding steady state values
[ξ,−f,−Ψ,−g]′ . The last three shocks – including government spending gt− have a negative
sign to facilitate the interpretation of positive innovations to τt as ‘good’ realizations, in the
sense of increasing equilibrium consumption.

In contrast to section 2, we now allow for heteroskedasticity. To describe the true data
generating process for τt, we modify (3) to get

τt+1 = Pτt + µ∗t + Σtεt+1 (11)

where P is a diagonal matrix with entries ρξ, ρf , ρΨ, ρg and the rest of the elements equal to
zero. The vector εt ∼ N (0, I) contains the exogenous Gaussian shocks, and the matrix Σt

contains the stochastic volatilities, with elements denoted by σξ, σf , σΨ, σg.
Volatility Σt is known one period in advance and follows a regime-switching process. We

work with a two-state Markov chain that we write as a VAR[
e1,t

e2,t

]
= Hvo

[
e1,t−1

e2,t−1

]
+

[
v1,t

v2,t

]
(12)

Here ej,t = 1st=j is an indicator operator if the volatility regime st is in place, and the shock
vt is defined such that Et−1 [vt] = 0. This representation is useful to derive a loglinear ap-
proximation to equilibrium in the presence of stochastic volatility. We denote the transition
matrix of the Markov chain by Hvo.

The decomposition of the innovation to τ into two components µ∗ and Σε again serves
to distinguish between ambiguity and risk, respectively. Agents know all long run empirical
moments of the sequence µ∗, but they do not know the number µ∗t when they make decisions
at date t. Based on date t information, the agent contemplates an interval of conditional
means µt,i ∈ [−at,i, at,i] for each component τi. The vector at summarizes ambiguity perceived
about fundamentals and can be thought of as an inverse measure of confidence.

A key new element in this section is that ambiguity at depends on volatility Σt. The
idea is that agents are less confident about the future when there is more ”turbulence” in
fundamentals in the sense of larger realized shocks. Formally, we assume

at,i = ηt,iΣt,i (13)

ηt,i = ρη,iηi + (1− ρη,i)ηt−1,i + ση,iεt (14)

There are now two sources of variation in ambiguity. Within a regime, volatility is fixed and
ambiguity changes linearly with the arrival of intangible information about fundamentals, as
in section 2. This within regime dynamics are described by the process ηt which we specify
below such that it is negative only with negligible probability. In addition, volatility changes
across regimes also affect ambiguity.

We can interpret η as an inverse measure of information quality conditional on the regime.
Indeed we have that µt,i ∈ [−at,i, at,i] if and only if

µ2
t,i

2Σ2
t,i

≤ 1

2
η2
t,i
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The left hand side is the relative entropy between two normal distributions that share the
same standard deviation Σt,i but have different means µt,i and zero, respectively. The agent
thus contemplates only those conditional means that are sufficiently close to the long run
average of zero in the sense of conditional relative entropy. The relative entropy distance
captures that intuition through the fact that when Σt,i increases it is harder to distinguish
different models.

3.1.2 Production

Firms can produce numeraire goods using capital services Kt and labor Lt−1 and they can
invest in trade physical capital Kt.subject to adjustment costs

Yt = K
α

t (εtLt−1)1−α

Kt = (1− δ)Kt−1 +

[
1− S

′′

2

(
It
It−1

− ξ
)2
]
It, (15)

Numeraire production depends on the technology shock εt, whose growth rate ξt ≡ ∆ log εt
is stochastic. The process for ξt is described in (11), such that ξ and ξ are the steady states
under the true DGP and the worst-case belief, respectively.8 Physical capital depreciates and
is produced from numeraire. Adjustment costs are convex in the growth rate of investment.
As detailed in section 3.1.6 below, we solve the model by loglinearizing around the worst-case
steady state. It is then helpful to define the adjustment costs in (15) so that the level and the
marginal adjustment cost are zero along the balanced growth path of the worst-case steady
state. Thus, in the loglinear approximation to equilibrium, only S

′′
matters for dynamics.

Production of capital services from capital is subcontracted to short-lived firms who rent
capital and select a capital utilization rate ut that applies to the beginning of period t stock
of physical capital Kt−1 = K̄t/ut. Increased utilization requires increased maintenance costs
in terms of investment goods per unit of physical capital measured by

a(ut) =
1

2
rkϑu2

t + rk(1− ϑ)ut + rk
(

1

2
ϑ− 1

)
.

The function a(.) is increasing and convex with a (1) = 0. It is normalized such that, in the
nonstochastic steady state, u = 1 and a′′ (u) = ϑrk, where rk is the steady state rental price
of capital. As a result, a′′ (u) /a′ (u) = ϑ > 0 is a parameter that controls the degree of
convexity of utilization costs. In the loglinear approximation to equilibrium, only ϑ matters
for dynamics.

3.1.3 Financing

As in section 2, the firm maximizes shareholder value evaluated under the worst-case belief.
We model the benefit of debt explicitly as a tax advantage. Let τk denote the corporate
income tax rate. The firm’s budget constraint is

8We further discuss the stochastic properties of the shocks in section 3.1.6 below. The worst-case belief

here is that productivity is low. Thus, as detailed in the appendix 4.1 and formula (20), ξ = ξ− ηξσξ

1−ρξ , where

σξ is the ergodic mean of the volatility of the growth rate shock that evolves as in (12).
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Dt = (1− τk)
[
Yt −WtLt −Kt−1a(ut)−Bf

t−1

(
1−Qb

t−1

)
− φ (Dt)− δQk

t−1Kt−1

]
−

− κ
(
Bf
t−1

)
+ δQk

t−1Kt−1 − It −Bf
t−1Qt−1 +Bf

t Qt,

where Wt denotes wages, Bf
t−1 represents the face value of the debt that the firm enters

period t, Qk
t is the price of capital, It is investment, and δ is the capital depreciation rate.

Dividends Dt are chosen in the current period and are subject to an adjustment cost

φ (Dt) =
φ′′

2

1

εt
(Dt −D)2

This specification, which appears also in Jermann and Quadrini (2012), penalizes deviations
of dividends from some long-run payout target D. We assume that D equals the steady state
dividends under the worst-case belief. The function φ is convex with steady state values of
φ = φ′ = 0 and φ′′ > 0. At the balanced growth path, this means that the level and the
marginal adjustment cost are zero. In the short run, the effects are similar as when dividends
must be set one period in advance, as in the previous section.

When issuing debt the firm has to pay a fixed cost as well as a marginal cost that slopes
upward. Given the debt Bf

t−1, the time t costs associated with debt are

κ
(
Bf
t−1

)
= ftεt +

Ψt

2

1

εt

(
Bf
t−1

)2

where ft and Ψt are shocks to the two components of the costs.9

3.1.4 Households

Utility is now defined over uncertain streams of consumption bundles
−→
C =

(−→
C t

)∞
t=0

. The

date t consumption bundle
−→
C t (εt, vt) contains consumption and leisure. It depends on

histories of both the normal shocks εt and the innovations to the Markov chain vt. The
agent’s felicity function is:

u
(−→
C t

)
= logCt −

χL
1 + σL

L1+σL
t , (16)

where Ct denotes consumption of the final good, Lt denotes working hours supplied by the
household, χL is a labor disutility parameter and σ−1

L is the Frisch elasticity of labor supply.
The household budget constraint is:

(1 + τc)Ct +Qe
tθt = (1− τl)

[
WtLt + Πt +Dtθt−1 −Bh

t−1

(
1−Qb

t−1

)]
+

+Qe
tθt−1 −Bh

t−1Q
b
t−1 +Bh

t Q
b
t + Tt

9Technically we assume that the fixed cost has a shochastic short-run component and a deterministic
long-run component. Ambiguity is over the former since it is the only one uncertain. Appendix 4.2.1 details
this decomposition.
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where Ct is consumption, τc is the consumption tax rate, θt are shares of the firm, Πt is an
endowment (from sources not showing up in the production function of the firms), Qe

t is the
price of a share, Bh

t−1 represents the face value of the debt that the household enters period
t, Wt is wages and Tt are government lump sum transfers. We assume that the endowment
Πt = πεt, where π is a parameter.

State prices can again be read off household first order conditions. Let stars indicate
worst case conditional beliefs that support household choices. The only difference to the
simple model above is that the pricing kernel must take into account taxation. To simplify
this adjustment, we assume that capital gains are taxed immediately when they occur and
that the capital gains tax rate is the same as the labor income tax rate τl. We then obtain

Mt+1 = β
Ct
Ct+1

1− τl
1− τlβE∗t [Ct/Ct+1]

,

where Ct is the representative agent’s consumption of the final good.

3.1.5 Government

Government is subject to exogenous spending Gt, financed by debt Bg
t and distortionary

taxes τl, τc, τk so that the budget constraint holds as:

Gt = τl
[
WtLt + Πt +Dtθt−1 −Bh

t−1

(
1−Qb

t−1

)]
+

+ τk

[
Yt −WtLt −Kt−1a(ut)−Bf

t−1

(
1−Qb

t−1

)
− φ (Dt)− δQk

t−1Kt−1

]
+

+ τcCt − Tt −Bg
t−1 +Bg

tQ
b
t .

Lump sump transfers Tt follow the process:

Tt = To − κ
(
Bg
t−1 −Bg

)
where To, B

g are the steady states of transfers and government debt and κ is a parameter
such to insure that we have stability of the government debt, i.e. κ > 1 − β. We model
government expenditures as Gt = gtεt, where gt is a stochastic process.

3.1.6 Solution strategy, worst case belief and pricing

In the richer model of this section, it is less obvious what the worst case belief is. To solve
the model, we extend the guess and verify procedure in Ilut and Schneider (2011). The idea
there is to first guess a worst case belief. A natural candidate here is that the conditional
means of the technology shocks are always at their lower bounds while those of the financing
costs and government spending are at their upper bounds. Given a guess, we can solve the
model as in section 2 by linearizing around the worst case steady state. Given a solution
of the model, we can evaluate the value function (using a second order approximation) and
verify the guess. The above candidate “works” because the value function ends up being
monotonic in all components of the fundamentals vector τ .

A key detail is how we deal with volatility. The volatility chain is stationary and ergodic
and its dynamics are the same under the true and worst case dynamics. One component
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of the worst case steady state is thus the matrix Σ that contains the ergodic volatilities.
The fact that volatility is in fact changing with respect to this ergodic value will imply
”shocks” to volatility and therefore shifts in the constant with respect to the worst case
steady state. Given the VAR representation of the Markov chain (12), let Σj denote the

matrix of values of Σt if ej,t = 1. For each element Σt,i we can define Σ̂t,i = Σt,i − Σi, where
Σi is the corresponding ergodic volatility. This means that if we augment our DSGE state
vector with the vector et we can control for the first order effects of the shifts in volatility.
For example, when the volatility regime 1 is in place, e1,t = 1, e2,t = 0 and our system of
equations will load Σ1 and put zero zero weight on Σ2. The volatility regimes imply that
a shift in regime simultaneously changes all values of the standard deviations in Σ, thereby
implying correlated ambiguity shocks.

Choosing ambiguity parameters
Time variation in ambiguity is governed by equation (13). The entropy bound ηt,i evolves

linearly according to (14) and its process is a function of three parameters ηi, ρηi and σηi .
Two considerations matter for selecting a prior over these parameters. The first is technical:
we would like the interval for µt,i to remain centered around zero which is true only if
ηt,i remains nonnegative. Unfortunately, nonnegativity is incompatible with a linear law of
motion for ηi. We thus require parameters such that the unconditional mean ηi is more than
three unconditional standard deviations away from zero:

ηi ≥ 3
σηi√

1− ρ2
ηi

. (17)

As a result, the probability that ηt,i becomes negative is .13%, and any negative ηt,i will be
small. Any ηt,i close to zero will thus represent a small set of belief that is close to having a
single mean close to zero - a very confident agent.

The second consideration is that we want to bound the lack of confidence by the measured
variance of the shock that agents perceive as ambiguous. As detailed in Ilut and Schneider
(2011), we argue that a reasonable upper bound for a is given by 2

√
ρΣi, where ρ ∈ [0, 1] is

the share of the variability in the data that agents attribute to ambiguity. This means that
the bound on ηi is given by 2

√
ρ. When ρ = 1, which means that agents attribute all the

observed variation in the shock to the ambiguous component, we obtain the largest upper
bound, i.e. ηt,i ≤ 2. Again we cannot enforce the bound exactly, but assume that it is
violated with probability .13%:

ηi + 3
σηi√

1− ρ2
ηi

≤ 2. (18)

In preliminary estimations of the model, we find that when the three ambiguity param-
eters ηi, ρηi and σηi are separately estimated the implied unconditional volatility of the ηt,i
process is so large that it implies very frequent negative realizations of ηt,i. We thus restrict
attention to the subset of the parameter space in which (17) is binding. It then implies that
ηi ∈ [0, 1] because of (18). We then estimate two ambiguity parameters ηi and ρηi for each
shock i, together with the other parameters of the model. We can then infer σηi from (17).
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3.2 Estimates

We include eight observables based on US data: GDP growth, investment growth, consump-
tion growth, dividend to GDP ratio, equity price to GDP ratio, real interest rate, 10 year
spread, and firm debt to GDP ratio. The time period is 1959Q2 to 2011Q3. The variables
are reported in Figure 1. We estimate the model using Bayesian methods. Specifically,
we first compute the posterior mode and then we make 500,000 draws from the posterior
using a Metropolis-Hastings algorithm. Please refer to Bianchi (2012) for details about the
estimation strategy.

3.2.1 Parameter estimates and regime probabilities

Table 1 contains the parameter estimates Regime 2 is associated with higher volatility for all
shocks. We will label this regime the High Volatility regime. Figure 2 reports the smoothed
probabilities of the High Volatility regime. The regime turns out to dominate a prolonged
period of time starting from the early ’70s until 1987. After that, we observe only a brief
spike around 1992.

3.3 Stock prices and ambiguity

The top panel of Figure 3 reports the evolution of the price-to-GDP ratio and a counterfactual
series constructed setting all shocks to zero, but the ambiguity shock about fixed costs. The
lower panel contains the smoothed series for ambiguity about fixed costs at the posterior
mode. The figure provides a visual characterization of the importance of ambiguity about
fixed costs in determining fluctuations in the price-to-GDP ratio.

3.4 Financial variables and fixed costs

Figure 4 reports impulse responses to shocks to fixed costs and ambiguity about fixed costs
for the dividend-to-GDP and the price-to-GDP ratios. We assume that the low volatility
regime has been in place for a prolonged period of time, implying that the starting point is
given by its conditional steady state. Furthermore, the low volatility regime is assumed to
be in place over the relevant horizon of ten years. Notice that the dynamics under the high
volatility regime are identical, but shifted because of the different conditional steady state.

An increase in the fixed cost or an increase in ambiguity about fixed costs determine a fall
in both the dividend-to-GDP ratio and in the price-to-GDP ratio. The drop following the
increase in ambiguity is more pronounced, but it lasts substantially less. Instead, following
an increase in fixed costs we observe a prolonged decline in both variables that even after
ten years is far from being re-absorbed. These results are in line with what shown for the
simple model of Section 2, but with a hump shape since the dividend adjustment cost draws
out the response longer than when keeping dividends fixed one period ahead.

3.5 Asset Prices and Risk

Figure 5 reports the evolution of the price-to-GDP ratio induced by the typical path for the
regimes as implied by the posterior mode. We assume that the economy starts from the
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low volatility regime conditional steady state. The first switch to the high volatility regime
determines a large drop in the price-to-GDP ratio and then a further decline, as the economy
moves closer to the High volatility conditional steady state. In a similar way, the return to
the low volatility regime generates an initial boom in the stock price, followed by a prolonged
and slow moving increase as the variable keeps moving closer to the conditional steady state
associated with the low volatility regime.

It is interesting to compare Figure 5 with the impulse responses reported in Figure 4. It
is immediate to see that a change in volatility determines a more pronounced swing in the
dynamics of the price-to-GDP ratio than an increase in fixed costs. The order of magnitude
is very different: Following an increase in volatility, the price-to-GDP ratio falls by a value
around .2, i.e. around 20%, while following an increase in the fixed cost the fall is .015
(∼= 1.5%). An increase in ambiguity about fixed costs determines a fall of around 11% on
impact and it is therefore closer to what implied by the increase in volatility. However, this
drop is short lasting, while the increase in volatility is followed by further declines in the
price-to-GDP ratio as the economy gets closer to the High Volatility conditional steady state.

3.6 Spectral decomposition

Figure 6 reports the normalized spectrum conditioning on the two regimes. The red vertical
bars mark the business cycle frequencies (from 6 quarters to 32 quarters). It is immediate
to see that while the macroeconomic variables present a variability concentrated at busi-
ness cycle and high frequencies, financial variables turn out to be very persistent, i.e., the
largest fraction of their variability is associated with low frequencies. Furthermore, we notice
important differences between the two regimes for the macroeconomic variables, while the
spectrum for the financial variables appears much more similar.

Figures 7 and 8 report the spectral decomposition conditioning on each of the two regimes.
Two aspects are worth pointing out. First, the shocks to the cost of financing and to
ambiguity to the costs of financing are important for the financial variables at all frequencies,
but they do not substantially affect consumption growth. Instead, shocks to technology and
to ambiguity about the growth rate combined explain more than 50% of the variability at
all frequencies. Second, across the two regimes, the spectral decomposition is similar for the
financial variables, while it is somehow different for consumption growth. Specifically, shocks
to the growth rate of technology explain a larger fraction of uncertainty at business cycle
frequencies when under the high volatility regime, while at low frequencies the decomposition
is substantially unaffected.
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Figure 1: Variables used for the estimation of the model.

4 Appendix

4.1 Solution method for a model with ambiguity and MS volatility

Here we describe our approach to solve a general model with ambiguity and Markov switching
volatility. The steps of the solution are the following:

1. Describe the law of motion for the shocks

(a) Write the perceived law of motion for the continuous shocks as in (11):

τt+1 = Pτt + µt + Σtεt+1

where by formula (13) each element i in the vector µt belongs to a set

µt,i ∈ [−
√

2ψt,iΣt,i,
√

2ψt,iΣt,i] (19)

(b) Suppose there are two Markov-switching regimes in Σt. Write the MS process as
in (12)

(c) Suppose the relative entropy bound evolves linearly as in (14).

2. Guess and verify the worst-case scenario. As discussed in section 2 and in detail in
Ilut and Schneider (2011), the solution to the equilibrium dynamics of the model can
be found through a guess-and-verify approach. To solve for the worst-case belief that
minimizes expected continuation utility over the i sets in (19), we propose the following
procedure:
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Figure 2: Smoothed probability of Regime 2, the high volatility regime, at the posterior
mode.

(a) guess the worst case belief p0

(b) solve the model assuming that agents have expected utility and beliefs p0.

(c) compute the agent’s value function V

(d) verify that the guess p0 indeed achieves the minima.

The following steps detail the point 2.b) above. Here we use an observational equiva-
lence result saying that our economy can be solved as if the agent maximizes expected
utility under the belief p0. Given this equivalence, we can use standard perturba-
tion techniques that are a good approximation of the nonlinear decision rules under
expected utility. In particular, we will use linearization.

3. Compute worst-case steady states

(a) Compute the ergodic mean Σi for the stochastic volatility based on (12).

(b) Suppose that the shocks are normalized so that the guess above involves setting
µ∗t,i = −at,i for each shock i. Then, denoting by τi the mean of the shock of the
true DGP process in (11), the worst-case steady state is

τ i = τi −
ηiΣi

1− ρi
, (20)

where ρi is the AR(1) coefficient in the P matrix corresponding to shock i.
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Figure 3: Stock prices and ambiguity. The first panel reports the evolution of the Price-to-
GDP ratio (red sahed line) and a counterfactual series obtained setting all shocks to zero,
but the shocks to ambiguity about the fixed costs of financing. The lower panel reports the
smoothed series for ambiguity about the fixed costs of financing.

(c) Compute the worst-case steady state Y of the endogenous variables. For this, use
the FOCs of the economy based on their deterministic version in which the one
step ahead expectations are computed under µ∗i = −ai. Denote the solution as
Y = f(τ).

4. Dynamics:

(a) Linearize around Y , τ , η,Σ :

Ỹt ≡ Yt − Y , τ̃t,i ≡ τt,i − τ i
η̃t,i ≡ ηt,i − ηi , Σ̃t,i = Σt,i − Σi.

by finding the coefficient matrices from linearizing the FOCs. The linearized FOCs
can be written in the canonical form of solving rational expectations models as:

Γ̃0S̃t = Γ̃1S̃t−1 + Ψ̃Σ̃t [ε′t, v
′
t]
′
+ Πηt

where St is the DSGE state.

(b) Given that the shock vt is defined such that Et−1 [vt] = 0, a standard solution
method to solve rational expectations general equilibrium models can be em-
ployed. The solution can then be rewritten as a MS-VAR in which the constant
is also time-varying:

S̃t = Ct + T S̃t−1 +RΣt−1εt (21)
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Figure 4: Impulse responses to shocks to fixed costs and ambiguity about fixed costs for the
dividend-to-GDP and the price-to-GDP rations

The changes in the constant control the first order effects of stochastic volatility
that arise because of ambiguity. Notice that the solution is expressed in terms of
the original DSGE state variables as the variables e1,t and e2,t have been replaced
with the MS constant C.

(c) Verify that the guess p0 indeed achieves the minima of the time t expected con-
tinuation utility over the sets (19).

5. Equilibrium dynamics under the true DGP. The above equilibrium was derived under
the worst-case beliefs. We need to characterize the economy under the econometrician’s
law of motion. There are two objects of interest: the zero-risk steady state of our
economy and the dynamics around that steady state.

(a) The zero-risk steady state, denoted by Y ∗. This is characterized by shocks, in-
cluding the volatility regimes, being set to their ergodic values under the true
DGP. Y ∗ can then be found by looking directly at the linearized solution and
adding RηΣ:

Y ∗ − Y = T
(
Y ∗ − Y

)
+RηΣ (22)

where the latter uses that the worst-case scenario is the minus of at.

(b) Dynamics. The law of motion in (21) needs to take into account that expectations
are under the worst-case beliefs which differ from the true DGP. Then, defining
Ŝt ≡ St − S∗ and using (21) together with (22) we have:

Ŝt = Ct + T Ŝt−1 +RΣt−1εt +R
(
ηΣ̃t−1 + Ση̃t−1

)
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4.2 Equilibrium conditions for the estimated model

Here we describe the equations that characterize the equilibrium of the estimated model in
Section 3. To solve the model, we first scale the variables in order to induce stationarity.
The variables are scaled as follows:

ct =
Ct
εt
, yt =

Yt
εt

; gt =
Gt

εt
; tt =

Tt
εt

; kt =
Kt

εt
, it =

It
εt

Prices:

wt =
Wt

εt
; qet =

Qe
t

εt

Financial variables:

dt =
Dt

εt
, bit =

Bi
t

εt
; i = f, h, g;

The borrowing costs:

κ
(
Bf
t−1

)
εt

= ft +
Ψt

2

(
bft−1

ξt

)2

; φ (Dt)
1

εt
=
φ′′

2

(
dt − d

)2

We now present the nonlinear equilibrium conditions characterizing the model, in scaled
form. The expectation operator in these equations, denoted by E∗t , is the one-step ahead
conditional expectation under the worst case belief p0. According to our model, the worst
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Figure 6: Normalized spectrum as implied by the posterior mode estimates.

case is that future productivity is low, and that financing costs and government spending
are high. Thus, according to p0 τt+1 evolves as

τt+1 = Pτt − at + Σtεt+1 (23)

where at is the corresponding vector of at,i that evolve as in (13).
The firm problem is

maxE∗0
∑

M f
0.tDt

subject to the budget constraint

dt = (1− τk)

[
yt − wtLt − kt−1

a(ut)

ξt
−
bft−1

ξt

(
1−Qb

t−1

)
− φ′′

2

(
dt − d

)2

]
− (24)

− ft −
Ψt

2

(
bft−1

ξt

)2

+ δτkq
k
t−1

kt−1

ξt
− it −

bft−1

ξt
Qb
t−1 + bftQ

b
t

and the capital accumulation equation

kt =
(1− δ)kt−1

ξt
+

[
1−

(
S

′′

2

itξt
it−1

− ξ
)2
]
it (25)

Let the LM on the budget constraint be λtM
f
0.tε
∗
t and on the capital accumulation be

µtM
f
0.tε
∗
t . Then the scaled pricing kernel is

mf
t+1 ≡Mt+1

ε∗t+1

ε∗t
= β

ct
ct+1

1− τl
1− τlβE∗t [ct/ξt+1ct+1]

(26)
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Figure 7: Spectral decomposition conditioning on Regime 1 for consumption growth,
dividend-to-GDP ratio, price-to-GDP ratio, and debt-to-GDP ratio. The vertical bars mark
business cycle frequencies. The shocks in the legend, from top to bottom are: growth rate,
marginal cost, fixed cost, government spending and ambiguity about them

The FOCs associated with the firm problem are then:
1. Labor demand:

wt = (1− α)E∗t

(
ut+1kt
ξt+1

)α
L−αt (27)

2. Dividends:
1 = λt

[
1 + (1− τk)φ′′

(
dt − d

)]
(28)

3. Bonds:

Qb
tλt = E∗tm

f
t+1λt+1

1

ξt+1

[
1− τk

(
1−Qb

t

)
+ Ψt+1

(
bft
ξt+1

)]
(29)

4. Investment:

1 = qkt

[
1− S

′′

2

(
itξt
it−1

− ξ
)2

− S ′′
(
itξt
it−1

− ξ
)

ξt
it−1

]
+ (30)

+ E∗tm
f
t+1

λt+1

λt
qkt+1S

′′ i2t+1ξt+1

i2t

(
it+1ξt+1

it
− ξ
)

where
qkt ≡

µt
λt
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Figure 8: Spectral decomposition conditioning on Regime 2 for consumption growth,
dividend-to-GDP ratio, price-to-GDP ratio, and debt-to-GDP ratio. The vertical bars mark
business cycle frequencies. The shocks in the legend, from top to bottom are: growth rate,
marginal cost, fixed cost, government spending and ambiguity about them

5. Capital:

1 = E∗tm
f
t+1

λt+1

λt

RK
t+1

ξt+1

(31)

Rk
t+1 ≡

(1− τk)
[
αuαt+1

(
kt
ξt+1

)α−1

L1−α
t − a(ut+1)

]
+ (1− δ)qkt+1

qkt
+ δτk

6. Utilization rate:

α

(
utkt−1

ξt

)α−1

L1−α
t−1 = rkϑut + rk(1− ϑ) (32)

The household problem is as follows:

maxE∗0
∑

βt
[
logCt −

χL
1 + σL

L1+σL
t

]
(1 + τc)ct + qet θt = (1− τl)

[
wtLt + π + dtθt−1 −

bht−1

ξt

(
1−Qb

t−1

)]
+ (33)

+ qet θt−1 −
bht−1

ξt+1

Qb
t−1 + bhtQ

b
t + tt

Thus, the FOCs associated to the household problem are:
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1. Labor supply
(1− τl)wt
(1 + τc)ct

= χLL
σL
t (34)

2. Bond demand:

Qb
t = βE∗t

ct
ct+1

1

ξt+1

[
1− τl

(
1−Qb

t

)]
(35)

3. Equity holding:

qet = βE∗t
ct
ct+1

(
qet+1 + (1− τl)dt+1

)
(36)

The market clearing conditions characterizing this economy are:

bht + bft + bgt = 0 (37)

ct + it + gt +
φ′′

2

(
dt − d

)2
+ ft +

Ψt

2

(
bft−1

ξt

)2

= yt + π (38)

θt = 1

corresponding to the market for bonds, goods and equity shares, respectively.
The government budget constraint is:

gt + tt = τk

[
yt − wtLt − kt−1

a(ut)

ξt
−
bft−1

ξt

(
1−Qb

t−1

)
− φ′′

2

(
dt − d

)2 − δqkt−1

kt−1

ξt

]
+ (39)

+ τl(wtLt + π + dtθt−1) + τcct −
bgt−1

ξt
+ bgtQ

b
t

and the lump sump transfers follow the process:

tt = to − κ
(
bgt−1

1

ξt
− bg 1

ξ

)
(40)

Thus, we have the following 16 unknowns:

kt, ut,it, Lt, wt, b
f
t , b

h
t , b

g
t , Q

b
t , q

e
t , ct, dt, q

k
t , tt, λt,m

f
t

The equations (25), (26), (27), (28), (29), (30), (31), (32), (34), (35), (36), (37), (38) and
(40) give us 14 equations. By Walras’ law, we can then use two out of the three budget
constraints in (24), (33) (using θt = 1) and (39). This gives us a total of 16 equations.

4.2.1 Parametrization

Short and long run fixed cost

Motivated by the observed firm debt to GDP ratio evolution that trends upward, we
allow for the possibility that the financing fixed cost ft has a deterministic trend. To model
this, consider the following separation of the shock into a short run and long run component:

log (ft/f) = log

(
ft
fLt

)
+ log

(
fLt
f

)
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Then defining the deviation f st ≡ ft/f
L
t and assuming a deterministic trend, we have

log (f st ) = ρf log
(
f st−1

)
+ σfεf,t

log
(
fLt /f

)
= ρfL log

(
fLt−1/f

)
The filtering algorithm would then determine the initial long run distance from the steady

state and all the remaining fluctuations would be explained by the short run component.
Since we assume a deterministic trend, then ambiguity is only over the short run component.

Rescaling and calibrating parameters
For the steady state calculation of the model it is helpful to rescale some parameters.

Specifically, denote by ygdp the worst-case steady state measured GDP, i.e. total goods y+π
minus financing costs. Then, define the following ratios:

fy =
f

ygdp
; Ψy =

Ψ

ygdp
; πy =

π

ygdp
, to,y =

to
ygdp

The results reported in section 3.2 are based on some parameters that are estimated,
with values reported in Table 1, and some that are calibrated. The latter are reported in
Table 2.

The Frisch labor elasticity is set to a relatively standard value in the literature, while the
disutility parameter χL only scales the economy. The government transfer parameter κ is
set to a reasonably high value to guarantee stability.

The other parameters are calibrated to match some key ratios from the NIPA accounts.
First, total measured GDP in our model, denoted here by ygdp, corresponds to the non-
financial corporate sector (NFB) output plus goods produced by the other productive sectors-
financial, non-corporate and household. We associate the firm in our model with the NFB
sector and thus πy equals goods produced by other productive sectors divided by ygdp. The
tax parameters are computed as follows: τl equals total personal taxes and social security
contributions divided by total income, where the latter is defined as total wages plus divi-
dends. τk equals NFB taxes divided by NFB profits and τc equals NFB sales taxes divided
by NFB output. The government spending ratio g equals government net purchases from
other sectors plus net exports divided by ygdp. The ratio to,y equals government transfers
(including social security and medicare) plus after-tax government wages divided by ygdp.
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Mode Mean 5% 95% Type Mean Std
ρξ 0.0068 0.0064 0.0057 0.0069 B 0.50 0.15
ρψ 0.8039 0.8056 0.7743 0.8420 B 0.50 0.15
ρf 0.7726 0.7586 0.7331 0.7922 B 0.50 0.15
ρg 0.8857 0.8856 0.8653 0.9049 B 0.50 0.15
ρfL 0.9841 0.9778 0.9636 0.9880 B 0.95 0.025

100fy 0.0208 0.0208 0.0201 0.0216 B 0.30 0.20
φ′′ 9.1411 8.5334 7.9619 8.9935 G 60.00 30.00
Ψy 0.0022 0.0023 0.0022 0.0025 G 0.005 0.001

100(ξ − 1) 1.4180 1.4210 1.3773 1.4927 G 0.30 0.05
δ 0.0381 0.0382 0.0368 0.0398 B 0.0250 0.0030
α 0.2215 0.2199 0.2132 0.2255 B 0.35 0.05
S” 0.0002 0.0002 0.0001 0.0002 G 10.00 5.00
ϑ 3.1488 3.2347 3.1302 3.3804 G 4.00 2.00

100(β−1 − 1) 0.5001 0.5242 0.5045 0.5501 G 0.30 0.10
ηξ 0.1923 0.1965 0.1861 0.2058 B 0.50 0.25
ηψ 0.3142 0.2712 0.2335 0.3158 B 0.50 0.25
ηf 0.6906 0.6492 0.5575 0.7281 B 0.50 0.25
ηg 0.9884 0.9619 0.9265 0.9878 B 0.50 0.25
ρηξ 0.9494 0.9482 0.9358 0.9599 B 0.50 0.25
ρηψ 0.9900 0.9880 0.9823 0.9925 B 0.50 0.25
ρηf 0.7981 0.8047 0.7625 0.8273 B 0.50 0.25
ρηg 0.8769 0.8770 0.8570 0.8995 B 0.50 0.25
σξ (1) 0.0355 0.0357 0.0325 0.0394 IG 0.05 0.05
σψ (1) 1.4563 1.4214 1.2892 1.5785 IG 0.05 0.05
σf (1) 4.6368 4.7600 4.3803 5.1324 IG 0.05 0.05
σg (1) 0.0705 0.0707 0.0631 0.0790 IG 0.05 0.05
σξ (2) 0.0658 0.0657 0.0591 0.0740 IG 0.05 0.05
σψ (2) 4.0379 4.3355 3.5977 5.1608 IG 0.05 0.05
σf (2) 8.0898 9.0933 8.0466 10.0037 IG 0.05 0.05
σg (2) 0.1981 0.2092 0.1835 0.2421 IG 0.05 0.05
H11 0.9340 0.9300 0.9088 0.9511 D 0.9048 0.0626
H22 0.9869 0.9808 0.9597 0.9941 D 0.9048 0.0626

Table 1: Parameter estimates. Left hand side: Mode, mean, and 90% error bands. Right
hand side: Priors.

τl τk τc πy to,y σL χL g κ
0.189 0.193 0.09 0.3 0.21 1 1 0.05 0.03

Table 2: Calibrated parameters
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