External Equity Financing Shocks, Financial Flows, and Asset Prices

Frederico Belo⁽¹⁾ Xiaoji Lin⁽²⁾ Fan Yang⁽³⁾

⁽¹⁾University of Minnesota and NBER
 ⁽²⁾The Ohio State University
 ⁽³⁾ University of Hong Kong

Macro Finance Society Workshop

May 31, 2014

Overview

Study the impact of aggregate financial shocks on asset prices and financing flows in the cross section

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Motivation

Firms' ability to raise equity varies over time

- Issuing equity is costly, e.g., asymmetric information, agency frictions, etc. (Myers and Majluf 1984; Jensen and Meckling 1976)
- These costs are *time-varying*: higher in contractions and lower in expansions (Choe, Masulis, and Nanda 1993; Bolton, Chen, and Wang 2011,2013; Eisfeldt and Muir 2013; Mclean and Zhao 2013)
- ► Times of unusually high marginal issuance cost ⇔ negative (financial) shocks to the availability of external equity
- Question: What's the impact of this shock on the cross sectional risk premiums?

Main findings

Empirical:

- Measure aggregate equity issuance cost shocks (ICS) using XS data
- ICS is a source of systematic risk
 - Exposure to ICS helps price the cross sectional returns (BM, IK, Size, Issuance)

Theoretical:

- Corporate finance meets asset pricing
- Incorporate ICS into an investment-based asset pricing model with costly external equity finance and collateral constraint on debt
- ► Mechanism: Inflexible substitution between two marginal sources of external financing ⇒ risk dispersion

 \Rightarrow Time variation in the availability of external funds can have a significant impact on risk premiums in the cross section

Outline

- 1. Empirical evidence
- 2. Model setup/results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 3. Model mechanism
- 4. Conclusion

Outline

1. Empirical evidence

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Empirical: proxy for equity issuance cost shocks

- Equity issuance costs include direct and indirect costs
 - Direct costs are observable but relatively small (Altinkilic and Hansen 2000)
- Indirect costs are unobservable, but can be substantial, and vary over time (Choe et al 1993; Hennessy and Whited 2007; Bolton, Chen, and Wang 2013; Bustamante 2013)

Our approach:

 Construct an empirical proxy of equity issuance cost shocks (ICS) by exploring cross sectional data

Basic idea:

 Controlling for aggregate investment opportunities, e.g., aggregate TFP, when relatively more firms are issuing equity in the cross section, that signals lower (aggregate) marginal cost of issuance Empirical: proxy for equity issuance cost shocks

Data: CRSP/Compustat annual industry files (1971-2011)

Firm *i* is a (net) equity issuer if (Eisfeldt and Muir 2013):

 $\overbrace{\mathsf{Net equity issuance}_{i,t}}^{(\mathsf{SSTK}_{it}\mathsf{-}\mathsf{PRSTKC}_{it}\mathsf{-}\mathsf{DV}_{it})} > 0$

Construct time series of the fraction of firms issuing equity in the cross section:

$$\mathsf{Fraction}_t = \frac{\sum_{i=1}^{N_t} \mathbf{1}_i (\mathsf{Net issuance} > 0)}{N_t}$$

Extract ICS from this fraction

Note: Captures extensive not the intensive margin (\$ amount of aggregate issuance) Why? Covas and Den Haan 2013, AER.

Empirical: proxy for equity issuance cost shocks

Extract equity issuance cost shock (ICS) using a rolling VAR

Apply one-sided HP filter to TFP (x_{t+1}) and issuance fraction (s_{t+1}).
 Estimate:

$$\begin{pmatrix} x_{t+1} \\ s_{t+1} \end{pmatrix} = A \begin{pmatrix} x_t \\ s_t \end{pmatrix} + \begin{pmatrix} u_{t+1} \\ v_{t+1} \end{pmatrix},$$

 \Rightarrow Interpret v_{t+1} as an aggregate shock to the cost of issuing equity

 \Rightarrow When v_{t+1} positive, fraction unusually high, marginal issuing cost low

 \Rightarrow Broadly, v_{t+1} captures the time-varying *wedge* between the valuations of managers and investors

Robustness checks

Simple approach but robust to alternative procedures

Measurement							
Gross issuance	Compustat						
Net issuance w/ alternative cutoffs	Compustat						
the chg. in log split-adj. shares	Fama and French (2008)						
Monthly adjusted CRSP shares	Boudoukh et al (2007)						
Number of SEOs	Loughran and Ritter (1995)						
Number of IPOs	lbbotson et al (1994)						
Controls							
Investment shocks	Papanikolaou (2011)						
Liquidity shocks	Pastor and Stambaugh (2003)						
Collateral constraint shocks	Jermann and Quadrini (2012)						
Uncertainty shocks	Bansal et al (2013)						
Leverage ratio of securities broker-dealers	Adrian, Etula, and Muir (2013)						
Market returns	CRSP						
Price to dividend ratio	CRSP						
Chg. in aggregate cash holding	Compustat						
Size, age, industry	Compustat						

Empirical: properties of ICS

- ICS shocks more volatile than TFP shocks.
- Low correlation between ICS and TFP shocks (\approx 0).

Empirical: properties of ICS

	Δ GDP	ΔC	ISTS	ICS
ΔC	0.75			
ISTS	0.44	0.14		
ICS	0.08	0.17	0.06	
TFP	0.25	0.37	0.18	-0.14

 ICS positively correlated with GDP and consumption (marginal equity issuance costs countercyclical)

Weak correlation with investment-specific shocks.

Empirical: ICS and systematic risk

Question: does exposure to ICS helps understand cross sectional expected returns?

Standard time series and cross sectional regressions:

$$\mathbf{r}_{it}^{\mathbf{e}} = \mathbf{a}_i + \beta_i^{\mathsf{M}} \times \mathsf{MKT}_t + \beta_i^{\mathsf{ICS}} \times \mathsf{ICS}_t + \mathbf{e}_{it},$$

$$E_T\left[r_{it}^{e}\left(1-b_{\mathsf{M}}\times\mathsf{MKT}_t-b_{\mathsf{ICS}}\times\mathsf{ICS}_t\right)\right]=0.$$

Test assets: 10 investment rate, 10 book-to-market, 10 size, 10 debt growth, and 6 equity issuance portfolios.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Empirical: pricing performance of ICS

Predicted vs realized average returns: CAPM vs MKT + ICS two-factor model

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Empirical: ICS and investment portfolios

	Low IK	High IK	L-H
$E(r^e)$	7.99	2.79	5.20
[t]	3.40	0.87	1.88
α	1.17	-8.17	9.34
[t]	0.57	-2.62	2.48
MKT	0.94	1.52	-0.57
[t]	9.59	4.96	-1.67
R^2	0.68	0.61	0.15
MKT	0.87	1.54	-0.67
[t]	13.78	4.76	-1.98
ICS	1.30	-0.36	1.67
[t]	4.37	-0.75	3.14
R^2	0.78	0.61	0.25

- Low investment firms have high exposure to ICS.
- Do poorly when it is more costly to issue equity

Empirical: ICS and book-to-market portfolios

	Growth	Value	V-G
E(r ^e)	5.76	12.85	7.09
[t]	1.89	4.98	2.05
α .	-2.49	4.94	7.43
[t]	-1.63	2.05	1.97
MKT	1.14	1.09	-0.05
[t]	17.79	6.22	-0.22
R^2	0.81	0.58	0.00
MKT	1.18	1.01	-0.17
[t]	17.70	9.33	-1.13
ICS	<mark>-0.67</mark>	1.34	2.01
[t]	-1.97	2.12	2.17
R^2	0.83	0.65	0.17

- Value firms have high exposure to ICS
- Do poorly when it is more costly to issue equity

Empirical: price of risk of ICS in XS regressions

	All portfolios					
	CAPM 2F					
b_M	2.83	1.12				
[t]	1.04	0.55				
b ICS		19.18				
[t]		2.70				
MAE	2.24	1.27				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Empirical: ICS and aggregate economic activity

Plausible source of systematic risk? High ICS forecasts high consumption growth

$$\Delta C_{t+1} = a + 0.07 \times ICS_t + 0.87 \times TFPS_t + e_{it}, \ R^2 = 30.1\%$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

2. Model setup/results

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Model

A dynamic capital structure model with

- 1. A large cross section of heterogenous, but ex ante identical, firms
- 2. Firms choose investment (equity) and debt to maximize firm value
- 3. Equity issuing cost is time-varying due to an *aggregate* shock (ICS).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 4. Collateral constraint on debt
- 5. Exogenous SDF with two aggregate shocks

Technology

Output

$$Y_t = Z_t X_t^{1-\theta} K_t^{\theta}$$

Aggregate productivity $\log X_t$

$$\Delta x_{t+1} = \mu_x + \sigma_x \varepsilon_{t+1}^x$$

Firm-specific productivity $\log Z_t$ (source of heterogeneity)

$$z_{t+1} = \bar{z}(1-\rho_z) + \rho_z z_t + \sigma_z \varepsilon_{t+1}^z$$

Capital accumulation

$$K_{t+1} = (1-\delta)K_t + I_t$$

Capital adjustment costs

$$G_{t} = \begin{cases} \frac{c_{k}^{+}}{2} \left(\frac{I_{t}}{K_{t}}\right)^{2} K_{t}, & I_{t} \geq 0\\ \frac{c_{k}^{-}}{2} \left(\frac{I_{t}}{K_{t}}\right)^{2} K_{t}, & I_{t} < 0 \end{cases}$$

・ロト・日本・モート モー うへぐ

Debt financing

Debt collateral constraint (debt payment ≤ liquidation value of capital)

$$B_{t+1} \leq \varphi K_{t+1}$$

 $\varphi < 1$ controls tightness of the collateral constraint (hence, borrowing capacity)

Firms' budget constraint (E_t firm's payout)

$$E_{t} = (1 - \tau)(Y_{t} - F_{t}) + \tau \delta K_{t} + \tau r_{f}B_{t} - I_{t} - G_{t} + B_{t+1} - (1 + r_{f})B_{t} - \Phi_{t}$$

Debt adjustment cost

$$\Phi_t = \frac{c_b}{2} \left(\frac{\Delta B_t}{B_t}\right)^2 B_t$$

Equity financing

External equity H_t :

$$H_t = \max\left(-E_t, 0\right)$$

Equity issuance cost

$$\Psi(H_t) = (\eta_0 X_t + \eta_1 H_t) \exp\left[-\eta_2 \xi_t\right] \mathbf{1}_{\{H_t > 0\}}$$

Stochastic disturbance in issuance cost follows an AR(1):

$$\xi_{t+1} = \rho_{\xi}\xi_t + \sigma_{\xi} \underbrace{\varepsilon_{t+1}^{\xi}}_{\text{Exogenous ICS}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Firms' maximization problem

Effective cash flow

$$D_t = E_t - \Psi_t$$

Stochastic discount factor

$$M_{t,t+1} = \frac{1}{1+r_f} \frac{e^{-\gamma_x \Delta x_{t+1} - \gamma_{\xi} \Delta \xi_{t+1}}}{\mathbb{E}_t \left[e^{-\gamma_x \Delta x_{t+1} - \gamma_{\xi} \Delta \xi_{t+1}} \right]}$$

Value maximization

$$V_t = \max_{I_t, B_{t+1}, K_{t+1}} D_t + \mathbb{E}_t [M_{t, t+1} V_{t+1}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Optimality conditions

The first-order condition with respect to I_t

Marginal benefit of investing = marginal cost of investing

Note: q_t is the Lagrangian multiplier associated with the LOM of capital.

Calibration

Technology		
Returns to scale	θ	0.75
Corporate tax rate	au	0.35
Rate of depreciation for capital	δ	.01
Fixed operating cost	f	.04
Adj. cost parameters in capital	c_k^+/c_k^-	0/39
Adj. cost parameters in debt	Cb	2.8
Resale value of capital	φ	0.75
Fixed/linear issuance costs	η_0/η_1	.002/0.1
Parameter of time-varying issuance cost	η_2	10
Stochastic processes		
Growth/volatility/persistence of agg. productivity	μ/σ_x	.001/.055
Mean/persistence/volatility of firm productivity	$\bar{z}/ ho_z/\sigma_z$	-3.4/.97/.15
Persistence of issuance disturbance	$ ho_{\xi}$.98
Conditional volatility of issuance disturbance	σ_{ξ}	.035
Loading of the SDF on agg. prod. shock	γ_x	9.25
Loading of the SDF on the issuance shock	γ_{ξ}	7

Targeted moments

Moment	Data	Model
Asset prices		
Agg. excess stock market returns	5.71	5.88
Real risk-free rate	1.65	1.65
Avg. book-to-market ratio	0.67	0.68
Real quantities: Aggregate-level		
Std. dev. of aggregate profits	0.14	0.12
Std. dev. of agg. net issuance-to-book-equity ratio	0.04	0.05
Std. dev. of aggregate debt growth rate	0.08	0.08
Average frequency of net issuance	0.37	0.34
Marginal issuance cost	.084 – .12	0.10
Real quantities: Firm-level		
Std. dev. of IK	0.19	0.17
Std. dev. of net issuance-to-book-equity ratio	0.35	0.32
Autocorrelation of investment rate	0.29	0.39
Financial leverage ratio	0.38	0.38
Std. dev. of financial leverage ratio	0.14	0.08
Autocorrelation of financial leverage ratio	0.65	0.62

Model: asset pricing performance

Data

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q ()

Model: asset pricing performance

Model: Replicate the failure of CAPM

Model: asset pricing tests of investment portfolios

Note:	ICS	constructed	as	in	the	real	data,	from	issuing	fraction,	it's	not ξ	t
-------	-----	-------------	----	----	-----	------	-------	------	---------	-----------	------	-----------	---

	Low IK	High IK	L-H	Data
E(r ^e)	9.03	2.23	6.80	5.20
[t]	5.42	1.40	7.90	1.88
α	3.62	-4.02	7.64	9.34
[t]	7.38	-8.65	8.84	2.48
МКТ	0.96	1.14	-0.18	-0.57
[t]	37.04	42.87	-2.63	-1.67
R ²	0.93	0.96	0.15	0.15
МКТ	0.85	1.04	-0.31	-0.67
[t]	14.17	14.68	-2.97	-1.98
ICS	0.10	-0.09	0.22	1.67
[t]	1.88	-1.33	2.92	3.14
R ²	0.79	0.82	0.35	0.25

Model: asset pricing tests of BM portfolios

Note:	ICS	constructed	as	in	the	real	data,	from	issuing	fraction,	it's	not ξ_t
-------	-----	-------------	----	----	-----	------	-------	------	---------	-----------	------	-------------

	Growth	Value	V-G	Data
E(r ^e)	2.84	9.56	6.72	7.09
[t]	1.69	5.80	7.76	2.05
α	-3.35	4.26	7.61	7.43
[t]	-7.63	8.19	8.89	1.97
мкт	1.13	0.94	-0.18	-0.05
[t]	46.79	33.09	-2.82	-0.22
R ²	0.96	0.92	0.15	0.00
мкт	1.03	0.83	-0.30	-0.17
[t]	14.71	13.83	-3.16	-1.13
ICS	-0.07	0.11	0.21	2.01
[t]	-1.15	1.99	2.71	2.17
R ²	0.82	0.78	0.33	0.17

Model: asset pricing tests in the simulated data

Note: ICS constructed as in the real data, from issuing fraction, it's not ξ_t

	All-Data			All-Model			
	CAPM	2F		CAPM	2F		
b_M	2.83	1.12		4.17	4.12		
[t]	1.04	0.55		2.97	2.55		
b _{ICS}		19.18			22.74		
[t]		2.70			5.15		
MAE	2.24	1.27		1.95	0.38		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model: investment portfolio characteristics data/model

	L IK	H IK	H-L	Data	•
IK	<mark>-5.84</mark>	51.81	57.65	74.57	
Equity/BE	-9.76	30.55	40.31	2.32	
EquityFreq	13.47	72.27	58.80	26.62	
$\Delta Debt$	-18.15	35.68	53.83	43.17	
DebtFreq	3.89	98.88	94.99	25.39	
Lev	48.93	31.72	-17.21	-31.06	
Prod	0.83	1.56	0.73	0.17	

Low investment: invest less, issue less equity, have higher leverage and are less productive than high IK (low risk) firms

Outline

3. Model mechanism

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Mechanism: market and ICS betas

- High IK and growth firms are an hedge against ICS.
- Cross sectional risk driven by ICS betas: the CAPM fails in our setup.

Mechanism: IRF to negative ICS (higher mg. cost)

Flexibility in the marginal sources of financing of high productivity firms makes them operationally more flexible and hence less risky

Mechanism: comparative statics of quantities

Validation: under which conditions is the VAR shock a good proxy for the true ICS?

	Correl.	
Spec.	$r(ICS, \xi)$	
0-Data		
1-Benchmark	0.31	
2-No ICS	0.01	
3-Tighter collateral const.	0.28	
4-High debt adj. cost	0.42	

Mechanism: comparative statics of asset pricing

	IK		BM	
Spec.	r ^e	α	r ^e	α
0-Data	5.99	9.06	7.07	7.46
1-Benchmark	6.8	7.64	6.72	7.61
2-No ICS	-0.81	-1.89	-1.92	-1.99
3-Tighter collateral const.	-3.43	-2.37	-4.2	-2.82
4-High debt adj. cost	-1.59	0.4	-2.59	0.71

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion

- Time variation in the availability of external funds can have a significant impact on risk premiums in the cross section
- Empirical approach: measure external equity issuance cost shocks (ICS) using cross sectional data
- Exposure to ICS helps price the cross section of stock returns (BM, IK, Size, Issuance, etc.)
- Theoretical insight: Inflexible substitution between two marginal sources of external financing generates cross sectional dispersion in firms' risk

(日) (同) (三) (三) (三) (○) (○)

Optimality conditions

The first-order condition with respect to K_{t+1}

Note: μ_t is the Lagrangian multiplier associated with the collateral constraint.

Optimality conditions

The first-order condition with respect to B_{t+1}

shadow value of collateral constraint
$$\underbrace{-\mathbb{E}_{t}\left[M_{t,t+1}\left(1+\Psi'(H_{t+1})\mathbf{1}_{\{H_{t+1}>0\}}\right)\frac{\partial E_{t+1}}{\partial B_{t+1}}\right]}_{\text{marginal cost of debt}}$$
$$=\underbrace{\left(1+\Psi'(H_{t})\mathbf{1}_{\{H_{t}>0\}}\right)\frac{\partial E_{t}}{\partial B_{t+1}}}_{\partial B_{t+1}}$$

Marginal benefit of debt

Robustness checks

Validation: Capturing variation in the cost of external **equity** financing? or **debt** financing?

1. Redo previous analysis using the shocks to the fraction of firms issuing debt (blue line) and compare to our ICS (black line).

- Low correlation between the two measures
- Asset pricing tests using shocks to debt fraction are weak.

Robustness checks (cont.)

- 2. ICS also helps pricing other portfolios: earnings to price, cash flow to price, leverage, etc.
- 3. Several issuance events due to exercise of employee stock options. Re-define issuance as >1% to 5% of assets.

 \Rightarrow These alternative shocks are **highly correlated** with baseline shocks