Asset Pricing when "This Time Is Different"

Pierre Collin-Dufresne Michael Johannes Lars Lochstoer

Discussion by Nicolae Gârleanu UC Berkeley-Haas, NBER, and CEPR

Macro-Finance Society Chicago, May 2014

Disc. of 'AP when "This Time is Different"', p.1

< 67 ►

Motivation

Part I:

- ▶ Learning can have sizable AP implications with EZ preferences
 - ▶ "long-run-risk" logic at individual-investor level
 - ▶ persistent, variable updates to beliefs
 - ▶ preference for early resolution of uncertainty
- ▶ Evidence that learning is "imperfect"
 - ► Malmendier and Nagel (2011): over-weight personal experiences ⇒ large updates to beliefs

Motivation

Part I:

- ▶ Learning can have sizable AP implications with EZ preferences
 - ▶ "long-run-risk" logic at individual-investor level
 - ▶ persistent, variable updates to beliefs
 - ▶ preference for early resolution of uncertainty
- ▶ Evidence that learning is "imperfect"
 - ► Malmendier and Nagel (2011): over-weight personal experiences ⇒ large updates to beliefs

Part II:

- ▶ Agents of different ages coexist
 - ▶ Do their beliefs average out?
 - Does risk-sharing reinforce the risk faced by agents?

< A →

Motivation

Part I:

- ▶ Learning can have sizable AP implications with EZ preferences
 - ▶ "long-run-risk" logic at individual-investor level
 - ▶ persistent, variable updates to beliefs
 - ▶ preference for early resolution of uncertainty
- ▶ Evidence that learning is "imperfect"
 - ► Malmendier and Nagel (2011): over-weight personal experiences ⇒ large updates to beliefs

Part II:

- ▶ Agents of different ages coexist
 - ▶ Do their beliefs average out?
 - Does risk-sharing reinforce the risk faced by agents?

Part III:

• What if there is investment?

N. Gârleanu

Disc. of 'AP when "This Time is Different"', p.2

< A →

"This Time is Different": Malmendier and Nagel

- Not Bayesian updating
- ▶ Quite strong emphasis on recent observations (returns, inflation)
- ▶ No weight on history before agent's birth
- Malmendier and Nagel (2011) weight on shock l quarters ago for age a:

$$w_{a,l} = \frac{l^{\lambda}}{\sum_{l'=0}^{a-1} l'^{\lambda}}, \qquad \lambda \approx 1.5$$

▶ Malmendier and Nagel (2013) – weight on latest shock:

$$\gamma_a = \frac{\theta}{a}, \qquad \theta \approx 3.$$

► Bayesian updating would require $\lambda = 0$ ($\theta = 1$)

N. Gârleanu

Disc. of 'AP when "This Time is Different"', p.3

< 67 ►

"This Time is Different": CJL

► Model:

$$m_{t+1} = (1+A_t)^{-1}m_t + A_t(1+A_t)^{-1}\Delta c_t$$

$$A_{t+1} = A_t(1+A_t)^{-1}, \qquad A_0 = kA_{2T}$$

- ▶ Bayesian updating \Rightarrow equal weighting of all experienced data points
- ▶ History before agent's birth is downweighted
- Every new cohort takes the posterior mean of previous generation as its prior mean, but with higher variance (k = 5 times higher)
 - Captures the notion of overweighting recent experiences
 - But less than Malmendier-Nagel
- ▶ Relevant observations for asset pricing:
 - ▶ CJL innovations permanent, MN not
 - ▶ CJL weight on latest shock drops faster with age (both start at 3%, end at 0.5% vs 1%)
 - ▶ CJL heterogeneity in updating across agents higher

N. Gârleanu

Disc. of 'AP when "This Time is Different"', p.4

< - 47 → 1

Preferences, Demographics, Dividends

- ▶ Two cohorts alive at any point in time
 - Each lives 2T periods
 - Age difference always T
- EZ preferences with perfect bequest \Rightarrow two (representative) agents that, every 2T quarters, experience a dramatic loss of confidence in their understanding of the world
 - Stochastic discount factor

$$SDF_{t+1} \propto C_{t+1}^{-\gamma} \left(\frac{W_{t+1}}{C_{t+1}}\right)^{-\frac{\gamma-\frac{1}{\psi}}{1-\frac{1}{\psi}}}$$

- ▶ Usual (Bansal-Yaron) parameters
- "Leverage": $\beta_{\Delta d,\Delta c} = 3$

Disc. of 'AP when "This Time is Different"', p.5

< A >

Results

- ▶ Basically, it "works" (both versions) wrt AP moments
- ▶ Insights into the effect of heterogeneity in a TTID world
 - Different beliefs \Rightarrow excess volatility
 - ➤ Young and old update towards the same target, young more aggressively ⇒ Young perceive higher risk (LRR)
 - Excess volatility through risk-sharing can be overturned in some states: more optimistic agent may face more risk, therefore still seek insurance
 - ▶ Average effect is to increase excess volatility: analogous to heterogeneous risk aversion
- ▶ Predictions for risk-sharing patterns across cohorts
- ▶ Nice way to look at the predictions, given complexity: trace out the effects of the actual consumption-shock path
 - ▶ A drawback: Few (two) cohorts \Rightarrow discontinuities
 - ▶ Average over different possibility of ages at time 0
 - Krussel-Smith?
- ▶ One wish: Separate effects of TTID and heterogeneity

N. Gârleanu

Disc. of 'AP when "This Time is Different"', p.6

< 67 ►

Results

		'This Time is Different'		Known mean
	$Data_{1020} = 2011$	$EZ: \ \gamma = 10$	Power: $\gamma = 10$	$EZ: \ \gamma = 10$
	1525 2011	$\varphi = 1.0, \ \beta = 0.554$	$\psi = 1/10, \ \beta = 0.054$	$\varphi = 1.0, \ \beta = 0.554$
$E_T \left[r_m - r_f \right]$	5.1	5.2	0.1	1.5
$\sigma_T \left[r_m - r_f \right]$	20.2	16.6	10.5	12.9
$SR_T \left[r_m - r_f \right]$	0.25	0.31	0.01	0.12
$E_T \begin{bmatrix} r_f \end{bmatrix}$	0.86	2.4	18.7	3.4
$\sigma_T \begin{bmatrix} r_f \end{bmatrix}$	0.97	0.3	2.6	0.0
$\sigma_T \left[M_{t+1} \right] / E_T \left[M_{t+1} \right]$	-	0.51	0.20	0.27
$\gamma \times \sigma_T \left[\Delta c_{t+1} \right]$	-	0.27	0.27	0.27
$E_T \left[\Delta c_{t+1} \right]$	1.8%	1.8%	1.8%	1.8%
$\sigma_T \left[\Delta c_{t+1}^{TA} \right]$	2.2%	2.2%	2.2%	2.2%

< @ >

Historical Path

Disc. of 'AP when "This Time is Different"', p.8

Investment Economy

- ▶ Cobb-Douglas with (asymmetric) capital adjustment costs
- ▶ Mean TFP growth not known by agents
- ▶ Results presented for TTID (two-dynasty) economy
- Main observation:
 - ► TTID pushes equity volatility up to 6% (cf. Kaltenbrunner-Lochstoer)
 - \blacktriangleright Explanation: Aggressive updating of beliefs allows for higher adjustment costs, more variable q

Too Much Preference for Early Resolution of Unc-ty?

Experiment of Epstein et al (2014): What percentage of consumption would a Bansal-Yaron investor forego to have **all** consumption uncertainty resolved at time 1?

Disc. of 'AP when "This Time is Different"', p.10

Some Final Comments

- ▶ "Pain":
 - Do we really have to match AP moments?
 - ▶ How to judge whether increment in realism is worth that in complexity?
 - ▶ E.g., how many cohorts, what kind of learning, learning about what
- ► Objective:
 - ▶ Modus operandi: "best" parameters that match AP moments
 - How do we judge how good of a success $\gamma = 10, \psi = 1.5$ is?
 - Perhaps concentrate on satisfactory parameters and see how large AP effects. The model is bound to miss relevant channels anyway.
- Plausibility:
 - Young behave as more risk averse because they're worried about learning something big and bad about their consumption trend
- ► Learning:
 - ► Are the findings of Malmendier and Nagel good descriptions of **representative** agent in a cohort?
 - Maybe interaction btw a rational agent and a TTID one would actually lead to similar results?

N. Gârleanu

Disc. of 'AP when "This Time is Different"', p.11

Conclusion

- ▶ Reasonable motivation; from the beginning a quantitative question
- Concern for calibrating to data where available
- ▶ Channel can certainly generate first-order effect
- Paper couched in terms of TTID, but heterogeneity likely to be important. Authors can help quantify and clarify this point.
- ▶ Production: tighten the message?
- ▶ Lots of stuff, great pedagogical value

Disc. of 'AP when "This Time is Different"', p.12

< 67 ►