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Abstract

We propose a theory of inattention solely based on preferences,
absent any cognitive limitations and external costs of acquiring in-
formation. Under disappointment aversion, information decisions and
risk attitude are intertwined, and agents are intrinsically information
averse. We illustrate this link between attitude towards risk and in-
formation in a standard portfolio problem, in which agents balance
the costs, endogenous in our framework, and benefits of information.
We show agents never choose to receive information continuously in
a diffusive environment: they optimally acquire information at in-
frequent intervals only. We highlight a novel channel through which
the optimal frequency of information acquisition decreases when risk
increases, consistent with empirical evidence. Our framework accom-
modates a broad range of applications, suggesting our approach can
explain many observed features of decision under uncertainty.
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1 Introduction

We propose a theory of inattention solely based on preferences, absent any

cognitive limitations, or external costs of acquiring information. In our

framework, agents are disappointment averse, in a dynamic extension to Gul

(1991). Disappointment averse agents are disproportionately affected by bad

news, so that a small negative signal, followed by an offsetting small posi-

tive one does not leave them indifferent: it lowers their utility. Sequences of

repeated small news are particularly costly, and our agents are intrinsically

averse to receiving signals. Formally, this feature of disappointment aversion

leads to an unambiguous dislike for information. In this paper, we explore

the widespread implications of this dislike for information for decision under

uncertainty, with a focus on applications in financial economics.

Our first contribution is to characterizes the strength and properties of

this information aversion for various types of risk. We show the endogenous

costs of information resulting from our parsimonious model of preferences

differ fundamentally both from the cognitive constraints and from the exoge-

nous information costs that are commonly used in the inattention literature.

In our setting, the preferences shape both the frequency of information ac-

quisition as well as the structure of observed signals. In particular, we find

a stark difference between diffusive and jump-driven information structure:

agents behave as if much more risk averse in a diffusive environment. We

further expand on the distinction with alternative models of inattention by

revisiting a few standard puzzles of the finance literature.

Our second contribution is to study how information averse agents cope

with their fear of information flows when information is necessary to make

appropriate economic decisions. We focus our analysis on a standard dy-

namic portfolio problem in which agents continuously allocate their wealth

between consumption and savings. Agents can invest their savings into both

a risk-free and a risky asset. We find agents optimally observe their wealth

(i.e. collect information) only at discrete points in time. They keep their
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eyes closed to the economic environment in between, even absent transaction

costs and external information costs. Further, in our framework, changes in

the characteristics of the economic environment affect not only the benefits,

but also the costs of information. In particular, we highlight a new chan-

nel for the role of risk for inattention and savings. Because a more intense

information flow is more stressful, the optimal frequency of information ac-

quisition and risky investment decrease when risk increases, consistent with

empirical evidence.

This consumption-saving problem illustrates the richness of our model

for inattention, and is but one example in which we can expect endogenous

information costs to play a distinctive role. In the last section of our paper,

we outline how information aversion affect many other decisions under un-

certainty, and how it sheds light on several existing puzzles. We focus on the

value of diversification, the role of background risk, the evaluation of risky

projects and the delegation of choice under uncertainty.

Let us more precisely describe our approach. We assume agents disap-

pointment averse, as in Gul (1991). Under disappointment aversion, agents

inflate the probabilities of outcomes that disappoint, i.e. fall under their

ex-ante “fair value”, or certainty equivalent.1 This parsimonious model of

preferences simply requires to specify the utility derived from realized out-

comes, and a disappointment aversion parameter that measures how much to

inflate the probabilities of disappointing outcomes. Disappointment aversion

has been successfully implementated in the finance literature, where it has

proven instrumental in explaining portfolio choices (Ang et al., 2005), equi-

librium aggregate prices (Routledge and Zin (2010), Bonomo et al. (2011)),

and the cross-section of expected returns (Ang et al. (2006), Lettau et al.

(2013)). However, this literature left aside the important implications of

these preferences for information choices. Disappointment averse agents ex-

1The “fair” value, or certainty equivalent, of risky outcomes is thus the unique solution
to a fixed point problem.
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hibit a preference for one-shot resolution of uncertainty (Dillenberger, 2010):

they prefer not to receive any partial information about lottery outcomes if

they cannot take any decision based on this information. As an illustration,

consider the example of a disappointment averse investor having bought a

stock that she has decided to sell after one year exactly. The investor has

a lot of control over the information structure she faces. She can choose to

follow the price of the stock continuously, each day, month, or ignore it alto-

gether until the end of the year. This information is of no use to the investor

as she will hold on to the asset anyways. Our investor unambiguously opts

not to observe the price at all over the year. This unambiguous information

aversion resulting from disappointment aversion is supported by a number

of empirical and experimental findings.2

Our first contribution is to characterize the strength and properties of the

endogenous costs of information implied by disappointment aversion. First,

we show our information aversion model results in a distaste for receiving sig-

nals that differs fundamentally from both the exogenous information costs

and the cognitive limitations that are commonly used in the inattention lit-

erature. Second, we analyze how the frequency of information observations

impacts the certainty equivalents of lotteries whose payoffs correspond to the

final value of a stochastic process. Across distributions, we find the certainty

equivalent is increasing in the length of the interval between observations:

the agent uniformly dislikes more frequent observations. The magnitude of

this effect varies greatly across characteristics of the process. For a diffusion,

we show the certainty equivalent converges to the worst-case outcome as ob-

servation frequency increases: the agent behaves as if infinitely risk averse

when the flow of information becomes continuous. On the other hand, for

2Starting with Gneezy and Potters (1997) and Thaler et al. (1997), followed by Benartzi
and Thaler (1999), Barron and Erev (2003), Gneezy et al. (2003), Bellemare et al. (2005),
Haigh and List (2005), Fellner and Sutter (2009) and Anagol and Gamble (2011), ex-
periments have consistently showed that subjects’s valuations of risky outcomes diminish
when they are given more detailed information.
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a jump process, the certainty equivalent admits a finite limit within the do-

main of the distribution when the frequency increases. This result informs

us that one should expect more inattention to information on smooth risky

processes than to information on sudden large changes in utility. In both

cases, the cost of information increases as risk increases or disappointment

aversion increases.

Our second contribution is to analyze how agents balance the utility cost

of paying attention to the economic environment with the benefits of making

informed decisions. Beshears et al. (2012) highlights the centrality of this

problem. They find they cannot replicate, in a natural setting, the results

of the experiments cited above (starting with those of Gneezy and Potters

(1997)): when agents use, as they arguably do in practice, the information

they observe to make decisions, they are no longer unambiguously averse to

receiving it. Going back to our example, assume now the investor manages

her wealth in order to finance her consumption over time. She can invest in

stocks that yield a high average return or in risk-free bonds. Following the

evolution of stock prices is endogenously costly for the information averse

investor, but also useful. Knowing her current wealth allows her to adjust

her immediate consumption and savings, and thus to optimally smooth her

consumption over time. We derive the optimal saving, consumption and at-

tention policy in such a portfolio problem, in the case of i.i.d. returns to the

risky asset. As in other models with infrequent transactions, the marginal

cost of extending the observation interval is to forego some of the high returns

of the risky asset. The novelty of our approach is to endogenize the marginal

benefit of increasing the length of time between observations, driven by the

lower “stress”, or utility cost, to the agent as the frequency of information

decreases. We show a sufficient statistic for this marginal benefit is the elas-

ticity of the certainty equivalent with respect to the observation interval (see

Proposition 6). We find higher risk, even compensated by higher expected

returns, results in an increased optimal time between observations: riskier
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environments encourage more inattention. Such a result obtains because of

the particular structure of the endogenous information costs, and is specific

to our model. In particular, existing similar models with exogenous informa-

tion costs do not typically yield the same implication. Consistent with our

prediction, Karlsson et al. (2009) documents investors reduce the monitoring

of their portfolios in riskier environments, displaying an “ostrich” behavior.

Finally, we outline a few extensions to this simple optimization prob-

lem, and show ours is a rich framework in which to analyze decisions under

uncertainty. In our first extension, we augment the agent’s investment op-

portunities, and show information aversion can significantly lower the bene-

fits of diversification. In a second extension, we discuss how our framework

provides a rationale for introducing intermediaries, i.e. firms or agents spe-

cialized in information diffusion, and the potential agency problems that it

entails. Finally, we study how our information aversion model impacts in-

vestment decisions, when an agent has to choose among several projects. We

show not only the risk and reward characteristics of the project matter, but

also what type, and how much information on the project performance is

revealed over time. These are but a few examples in which the endogenous

costs of information due to disappointment aversion affect optimal decision

making; they highlight the broad reach of our approach.

After a brief review of the related literature, Section 2 describes how dy-

namic disappointment aversion preferences result in endogenous information

costs. In Section 3, we characterize the strength of information aversion

across frequencies for various types of risk. Section 4 presents a standard

consumption-savings problem and illustrates how agents optimally choose

the frequency at which they acquire information. Section 5 proposes other

examples in which our inattention model could provide novel justifications

to existing puzzles. Section 6 concludes.
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Related literature

Because losses below a reference point are more costly than comparable gains

above the reference point, disappointment averse agents display loss aversion,

one of the main components of the prospect theory model of Kahneman

and Tversky (1979). The fact the frequency of utility evaluation plays an

important role for the calibration of preferences with loss aversion is well

known, at least since Benartzi and Thaler (1995). They show, numerically,

the observed returns and risk of the market portfolio are consistent with

the prospect theory model of Kahneman and Tversky (1979) only if agents

evaluate their risky portfolio at yearly intervals, somewhat consistent with

investors’ observation intervals in the data. Our paper provides a framework

to analyze simultaneously the endogenous determination of the information

structure and of risk taking decisions. Disappointment aversion intertwines

those two dimensions, providing a simple framework for such problems.

In a contemporaneous paper, Pagel (working paper) analyzes a consumption-

savings problem similar to ours, under the reference-dependent preferences

Kőszegi and Rabin (2009), a model with loss aversion that explicitly in-

troduces flows of information in the utility function. Our approach, with

disappointment aversion, is more parsimonious: risk aversion, information

aversion and the endogenous reference point as a function of the distribution

of future outcomes all derive from the same unique parameter. The relative

simplicity of our model allows for a formal analysis of the endogenous in-

formation costs, and of our optimization problem, and can be extended to

other economic applications. Disappointment averse preferences also have

the appeal over standard loss aversion to be axiomatically funded. Finally,

as mentioned above, they have been successfully implemented in the finance

literature.

We contribute to the inattention literature, by introducing endogenous in-

formation costs that derive from agents’ preferences. We revisit ones specific

inattention framework, a consumption savings decision, through the lenses
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of our endogenous cost structure. Gabaix and Laibson (2002) show slow

portfolio readjustment, as a result of inattention, can have a profound im-

pact on equilibrium asset prices. In their work, the frequency of observation

is exogenous or results from a fixed utility cost of information. Abel et al.

(2007) derive optimal inattention period and portfolio decision with an exoge-

nous monetary cost of information. Abel et al. (2013) add transaction costs.

Along the same lines, Alvarez et al. (2012) analyze theoretically and provides

micro-level empirical evidence on the consumption and savings decisions of

investors facing information costs and transaction costs, in the case of durable

consumption. We consider a setup similar to these last models, in which the

investor optimally chooses how frequently she observes information, and also

find a strictly positive optimal time interval between observations. However,

our information costs, resulting from information aversion, respond differ-

ently to the economic environment, thus yielding novel implications for the

sensitivity of the optimal frequency to changes in the underlying parameters

of the model. Our analysis of the structure and strength of information aver-

sion, in the case of disappointment averse agents, and in particular the fact

that it is model equivalent to neither a limited ability to process informa-

tion, or cognitive constraint (as in Sims (1998)), nor to exogenous costs of

information, highlights how general interest our model potentially is to the

inattention literature.

2 Disappointment Aversion and Information

Aversion

We start by introducing dynamic disappointment preferences. Then, we show

agents with such preferences have a motive for inattention we call information

aversion.
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2.1 Dynamic disappointment aversion

Under loss aversion, one of the main components of the seminal prospect the-

ory model of Kahneman and Tversky (1979), agents value outcomes relative

to a reference point, and losses relative to the reference create more disutility

than comparable gains. Disappointment aversion, introduced by Gul (1991),

provides a fully axiomatized model of preferences in which agents display loss

aversion. In most of what follows, we focus on the piecewise linear case, to

emphasize the role of the asymmetry between gains and losses rather than

the curvature around the reference point. The certainty equivalent of a risky

payoff X, with cumulative distribution function F , is given by

µ (X) =

∫
xdF (x) + θ

∫
x≤µ(X)

xdF (x)

1 + θ
∫
x≤µ(X)

dF (x)
. (1)

The certainty equivalent is a weighted average of all possible future payoffs in

which disappointing outcomes receive a higher weight (1 + θ). Disappointing

outcomes are defined with respect to the endogenous reference point µ (X),

equal to the certainty equivalent. The parameter θ ≥ 0 captures the degree

of disappointment aversion; larger values of θ correspond to more overweight-

ing of disappointing events. The definition in Equation (1) is a fixed point

problem in µ (X), and always admits a unique solution.

In a dynamic framework, we assume the agent values the lottery by taking

into account the disappointments he can feel at each revelation of informa-

tion. This assumption corresponds to a certainty equivalent evaluated recur-

sively using Equation (1). Precisely, given certainty equivalents µt+1 (st+1)

in each possible state st+1 at date t + 1 and transition c.d.f F (st+1|st), the

certainty equivalent for state st at date t is given by

µt (st) =

∫
µt+1 (st+1) dF (st+1|st) + θ

∫
µt+1(st+1)≤µt(st) µt+1 (st+1) dF (st+1|st)

1 + θ
∫
µt+1(st+1)≤µt(st) dF (st+1|st)

.

(2)
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It is straightforward to check that introducing intermediate dates in which

no new information is released does not affect the recursion. However, if

one considers the operation of Equation (2) as a distorted expectation, no

equivalent of the law of iterated expectations exists: the composition of the

arrival of information does matter. We analyze how in the next section.

2.2 Information aversion

To clarify the role information plays on in the dynamic disappointment aver-

sion model, let us focus on a setup with only three dates: 0, 1, and 2.

At date 2, the agent receives the final outcome X. At date 0, the agent

knows the ex ante distribution of the final payoff, F . At date 1, the agent

receives a signal i, i ∈ {1, N}, with probability αi. Given this signal, the

agent updates her belief on the distribution of X, from F to Fi. We are inter-

ested in comparing the certainty equivalent, at date t = 0, of the compound

lottery with date t = 1 signals, µ ({Fi, αi}), with that of a lottery without

intermediate signal, µ(F ). The distribution of final outcomes is the same for

both lotteries: F =
∑

i αiFi.

For an agent with dynamic disappointment aversion, we obtain the fol-

lowing result:

∀F, {Fi, αi}Ni=1 s.t. F =
∑
i

αiFi,

µ ({Fi, αi}) ≤ µ (F )

The agent always weakly prefers not to receive intermediate information,

and thus exhibits what we call information aversion. This result is a special

case of the more general theorem of Dillenberger (2010), as disappointment

averse preferences exhibit negative certainty independence.3

3Dillenberger (2010) describes this property as a preference for one-shot resolution of
uncertainty.
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Information aversion is generic: for most cases of partial information, the

agent will strictly prefer not to receive the signal. The following corollary

characterizes the particular cases for which there is indifference.

Corollary 1. The agent is indifferent whether to receive information or not,

µ ({Fi, αi}) = µ (F ), if and only if

∀i,

µ (Fi) = µ (F ) or

Fi is degenerate

Receiving intermediate information is costless if and only if all second

stage lotteries are either degenerate (taking only one possible value), or leave

the certainty equivalent unchanged. This result shows information is strictly

costly when it only partially reveals the final outcome, i.e. when some un-

certainty remains (non degenerate lotteries), and it has changed the value

of the certainty equivalent. Indeed, the agent is averse to information flows

that can give rise to repeated disappointment, and prefers receiving all the

bad news once.

Another useful insight from this corollary is that standard informativeness

measures cannot quantify the endogenous information costs for disappoint-

ment averse agents.

Corollary 2. For any level of mutual entropy at the first stage of the lottery,

there exists a compounded lottery that provides as much utility as one-shot

resolution.

Exogenous costs of information, which are typically monotonically in-

creasing in the quantity of information provided, are not model equivalent

to the endogenous cost structure of our information averse agents either. In

our framework, the costs are increasing when little information is provided,

but decreasing above a threshold, with a zero cost limit for fully revealing

information.
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We have showed agents with dynamic disappointment aversion are also

information averse. In situations when partial information is of no use to

them, they prefer not to receive it. In the next section, we quantify the

strength of this information aversion in specific cases.

3 Information Structure and Information Aver-

sion

In the analysis so far, we have left the information structure completely free.

In most practical situations, information is natually revealed progressively.

For instance, for an investment in a stock for a period of a year, observing the

value of a share closer and closer to the end of the year delivers an increasing

amount of information.

In this section, we focus on lotteries with payoff corresponding to the final

realization of a stochastic process. The agent receives information over time

by observing the current value of the process. The certainty equivalent of the

lottery depends on the frequency at which the agent observes the process.

We find the characteristics of uncertainty significantly affect the strength of

information aversion. In particular, we focus on two cases: Brownian motion

and pure jump process.

3.1 Setting

The agent evaluates, at date t = 0, a lottery with payoff at date t = 1. The

payoff corresponds to the final value of a stochastic process X = {Xt}t∈[0,1].

We assume the process X exhibits i.i.d. growth rate. Without loss of gener-

ality X0 = 1.

We are interested in understanding the role the frequency of information

plays on valuing the certainty equivalent of the process. Assume the agent

observes the process {Xt}t∈[0,1] at regular intervals of length T . We note
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Vt (T ) the certainty equivalent of the lottery at any date t ∈ [0, 1]. As

no information is revealed between observations, the certainty equivalent is

constant on those interval.4 Taking advantage of the multiplicative structure

of the process X, we obtain a simple expression for the valuation at each

observation. Indeed, using the fact that the growth rate of the process is

i.i.d., and the linearity of preferences, a simple recursion gives us

V0(T ) = V (T )1/T ,

where V (T ) is the certainty equivalent at time 0 of a lottery with uncertain

payoff XT , at t = T , starting from X0 = 1, and no intermediate observation.

The certainty equivalent of the overall lottery with payoff at t = 1 is the

certainty equivalent between each arrival of news, V (T ), compounded by the

number of observations 1/T .

Suppose the stochastic process X = {Xt}t∈[0,1] has average growth rate µ.

In a risk-neutral framework, the value of the lottery with payoff XT would

simply be V (T ) = exp (µT ). We define the equivalent instantaneous rate

under disappointment aversion as v (T ), such that:

V (T ) = exp (v (T )T ) (3)

Expected growth only adjusts multiplicatively the certainty equivalent. It

does not interact with the risk-adjustment and information aversion adjust-

ment coming from disappointment aversion: we could write the certainty

equivalent rate v(T ) as µ minus a risk-adjustment term. In the examples

that follow, we will analyze cases in which the expected growth µ is zero, to

fully isolate the analysis of the risk and information adjustment term. Re-

verting to a process with non-zero growth simply shifts our results for v(T )

by µ.

We can extend this setup to longer horizons than 1. To consider longer

4Formally, ∀τ ∈ [0, T [, n ∈ J0, 1
T − 1K, VnT (T ) = VnT+τ (T ) .
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horizons, one just needs compound the per-observation certainty equivalent

for longer periods of time. Naturally, once we move to longer horizons, the

observation frequency can be completely arbitrary, which allows us to define

v(T ) for all possible positive values of the interval T .

With those results, we now turn to the behavior of the certainty equivalent

for some precise dynamics of the process X. This approach informs us on

the link between types of risks and information aversion.

3.2 Brownian payoffs

We fist consider the case of a geometric Brownian motion. Assume the

following law of motion for Xt:

dXt

Xt

= σdZt

where {Zt} is a standard Brownian motion, and the parameter σ is the

volatility of X.

Proposition 3. The certainty equivalent of the lottery with observations at

intervals of length T , and payoff XT at date t = T , is V0(T ) = exp(v(T )T ),

where v(T ) is the unique solution of

exp (Tv (T )) =
1 + θΦ

(√
T
σ

(
v (T )− 1

2
σ2
))

1 + θΦ
(√

T
σ

(
v (T ) + 1

2
σ2
)) < 1, (4)

where Φ is the cumulative normal.

Note the certainty equivalent is always lower than one, the risk-neutral

value of XT : disappointment averse agents are risk averse. The adjustment

for risk is fully characterized by the instantaneous rate v(T ), and is function

of the observation interval T , the volatility σ and aversion parameter θ. In

the case of Brownian payoffs with volatility σ, the instantaneous rate v(T ) is
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• increasing in the observation interval T ,

• decreasing in volatility σ,

• decreasing in disappointment aversion θ.
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Figure 1: Lottery values for a diffusion process: role of observation
interval T , volatility σ and disappointment aversion θ.

Figure 1 illustrates these results. We plot the instantaneous rate v(T ),

as a function of the time interval T , across various values of the parame-

ters θ and σ. When the frequency of information increases, the certainty

equivalent sharply decreases, and the instantaneous rate becomes infinitively

negative. This feature is specific to our framework and does not obtain

with risk-neutral or CRRA preferences. Figure 1 also shows the certainty

equivalent decreases with the volatility of payoffs and with the coefficient of

disappointment aversion.
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In what follows we characterize two interesting limits. We first ask what

happens in the limit were the agent to observe information continuously.

Then, we move to the other extreme where the agent observes the process

extremely infrequently.

Continuous information limit We now study the limiting behavior of

the certainty equivalent when frequency increases to infinity, and our frame-

work converges towards continuous flows of information. As the period of

observation T tends to 0, the instantaneous certainty equivalent rate v(T )

satisfies:

v(T ) =
−κ (θ)σ√

T
+ o

(
−1/
√
T
)

(5)

where κ (θ), the unique solution to:

1 = θ

(
Φ′(κ)

κ
− Φ(−κ)

)
(6)

is positive, increasing in θ, with limit 0 in 0.

In particular, if θ > 0:

lim
T→0

v(T ) = −∞

lim
T→0

V0 (T ) = 0

As the frequency of information increases towards its continuous time limit,

the value of the lottery converges to 0, the worst possible outcome for the final

payoffs, with a faster convergence the higher the coefficient of disappointment

aversion θ, or the underlying risk σ. Disappointment averse agents thus

behave as though they were infinitely risk averse, when faced with continuous

Brownian signals.

To understand this result, keep in mind that, even though the agent’s time

horizon does not change with the frequency of information, she evaluates her
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utility each time she observes a signal. At each arrival of news, she runs the

risk of being disappointed, and, when the flow of news becomes continuous,

the agent is almost surely disappointed in any time interval.

An alternative way to describe this phenomenon is through the lenses

of the myopic risk aversion of Benartzi and Thaler (1995). The first-order

risk aversion effect, inherent to preferences with kinks, results in agents who

are more averse, comparatively, for small risks than for large risks. A fre-

quent re-evaluation of the lottery value, when information arrives at small

time intervals, corresponds to an accumulation of small risk taking. Because

agents are first-order risk averse, a repetition of small risks is more costly

for their utility than one large risk taking, and the lottery value decreases

as the frequency increases. The results of Proposition 3.2 make formal this

intuition.

Low frequency As the agent observes information at longer and longer

intervals of time, her adjustment for information aversion decreases such

that in the limit:

lim
T→∞

v(T ) = 0 (7)

Keep in mind, however, even at the infinite horizon limit, the agent never

behaves as perfectly risk-neutral (she is disappointment averse, and thus

risk averse), and the certainty equivalent V0(T ), with payoff at horizon T ,

converges to 1/(1 + θ) < 1.

3.3 Jump process

We now repeat our characterization of the certainty equivalent as a function

of frequency for the case of a pure jump process. Even though the geometric

Brownian motion and jump process have similar long-run behavior, their

local evolution is sharply distinct. A Brownian motion is continuous, but
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has infinite variation on any time interval. In contrast, over the same time

interval, a jump process is either constant with a given probability, or has

large discontinuous changes. We show our information averse agents value

these two processes very differently, most strikingly so in the limit case of

continuous observation.

We keep the same type of lottery, but now assume the following law of

motion for the process Xt:

dXt

Xt−
= λσdt− σdNt,

where Nt is the counting variable for a Poisson jump process with intensity

λ, and σ < 1. At each realization of a jump, the current value of Xt is

multiplied by (1− σ). The expected instantaneous growth rate is zero.

Up to the compensating growth term, the distribution of the logarithm of

the growth rate of the process after an interval T is Poisson, with parameter

λT . We can therefore characterize the certainty equivalent.

Proposition 4. The certainty equivalent of the lottery with payoff XT , at

t = T , determined by a jump process, is V0(T ) = exp(v(T )T ), such that:

exp (Tv (T )) =
1− θ

1+θ
Γ(k+1,(1−σ)λT )

k!

1− θ
1+θ

Γ(k+1,λT )
k!

. (8)

where Γ(., .) is the upper incomplete gamma function, and k ∈ N is the unique

solution for:

(v (T )− λσ)T

log (1− σ)
− 1 ≤ k ≤ (v (T )− λσ)T

log (1− σ)
. (9)

The certainty equivalent rate v(T ), for a lottery with final payoffs deter-

mined by a compensated geometric jump process, with negative jump size σ

and intensity λ, is :

• increasing in the observation interval T
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• decreasing in the jump size σ and the jump intensity λ

• decreasing in the loss aversion θ

As in the case of a Brownian motion, the certainty equivalent is increasing

in the interval between observations, which we illustrate in Figure 2. Further,

increases in loss aversion θ, the size of jumps σ or the intensity of jumps λ all

correspond to decreases in the certainty equivalent: as risk increases, agents

are less willing to observe information frequently.
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Figure 2: Lottery values for a jump process: role of observation
interval T , disappointment aversion θ, jump size σ and probability
λ.

All those results echo our previous analysis for the case of a Brownian

motion. However, a striking difference can be noticed when looking at the

limit when the observation interval converges towards 0. We now observe a

strictly positive limit
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Continuous information We can derive the limiting behavior of the cer-

tainty equivalent as we converge towards continuous information. As the

observation interval T tends to 0, the certainty equivalent rate satisfies:

v(T ) = −θσλ+O(T ). (10)

This result draws a sharp contrast between jump and diffusion processes.

As the information flow becomes continuous, the agent behaves as if infinitely

risk averse for the diffusion, but not for the jump process. The difference is

intuitive. With continuous information under a diffusion process, the agent

is constantly disappointed: in any interval of time, there is an infinity of

negative draws of the process. Along the path of the jump process, there

is only a finite number of negative draws and therefore of disappointment.

The continuous flow of information is thus not as large a source of stress

for the agent. Another way to comprehend this result is to think about the

behavior of the certainty equivalent for risks over a small interval of time. For

a brownian shock, the variation is localized closely to the certainty equivalent

and the kink in preferences generates first-order risk aversion. In the case of

a jump process, even for a small interval, the potential shocks are large. The

kink in the preferences does not play as important a role as the distribution

takes discrete values, both far from the kink.

This extreme differentiation in the limit is informative in terms of actual

predictions. It suggests one should expect more inattention to signals for

which the value moves continuously than those that display large sudden

jumps. For instance, stock prices are subject to a lot of local variation,

and our model implies, as is observed, most investors do not monitor them

continuously. In contrast, while waiting for one important piece of news,

agents are more willing to check regularly as the one-off nature of information

limits its disutility impact.
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Low frequency As in the case of the Brownian motion, in the limit:

lim
T→∞

v(T ) = 0, (11)

and V0(T ) converges to a strictly less than one limit.

4 A consumption-savings problem

As shown in Section 3, observing signals is costly for information averse

agents, the more so the higher the frequency of information. However, in

most practical cases, agents must collect information so as to make appro-

priate choices. In this section, we focus on how agents optimally choose the

frequency of observation in such situations. We study a portfolio problem, in

which information is valuable in that it helps agents make better consumption

and saving decisions. We study the tradeoff between the endogenous costs of

information and its benefits, and characterize agents’ optimal consumption,

savings and information choices.

4.1 Setup

4.1.1 Preferences

We extend our definition of preferences to allow for intermediate consumption

in a continuous time, infinite horizon framework. The value function Vt is

defined as the limit:

Vt = lim
∆t→0
H→∞

V(H,∆t)
t .

where, for a discrete time problem with time step ∆t and horizon H, the

value function V(∆t,H)
t , is solution to the recursion:(

V(∆t,H)
t

)1−α

1− α
=
C1−α
t

1− α
∆t+ (1− ρ∆t)

(
µθ

[
V(∆t,H)
t+∆t |Ft

])1−α

1− α
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with final condition: (
V(∆t,H)
H

)1−α

1− α
=
C1−α
H

1− α
.

and {Ct}t∈[0,∞[ is a consumption process adapted to a filtration {Ft}t∈[0,∞[.

This construction consists in adding the disappointment averse certainty

equivalent operator µθ(.) to an isoelastic specification of preferences. The

parameter α > 0 controls the elasticity of intertemporal substitution be-

tween consumption at different times. The parameter ρ > 0 controls the

rate of time discount. The only source of instantaneous risk aversion is the

disappointment aversion mechanism.

In our framework, we will show the agent optimally chooses deterministic

consumption plans over intervals of length T along which no information is

revealed, in which case the recursion for the instantaneous value function,

Vt, takes the simple form:

V1−α
t

1− α
=

∫ T

0

e−ρτ
C1−α
t+τ

1− α
dτ + e−ρT

(µθ [Vt+T |Ft])1−α

1− α
. (12)

This formula illustrates in a clear fashion the ingredients of the prefer-

ences: in the periods between observations of signals, intertemporal con-

sumption choices are deterministic. When information is revealed, the con-

tinuation values are adjusted downwards using the disappointment averse

certainty equivalent.

4.1.2 Opportunity sets

Investment opportunity set The agent has access to two investment

accounts to allocate her wealth Wt over time. She can invest some of her

wealth in a risk-free asset at a constant continuously compounded interest

rate r < ρ, and/or she can place an investment in a risky asset with cu-

mulative returns determined by the growth of a stochastic process X, with
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same properties as in Section 3. Note St the number of shares of the risky

assets the agent owns at date t. The agent allocates the rest of her wealth

between her instantaneous consumption needs, Ct, and the risk-free asset.

The budget constraint is:

dWt = −Ctdt+ StdXt + r(Wt − StXt)dt

The agent can rebalance her wealth across assets at all time, at no transaction

cost. We, however, do not allow for borrowing, so the agent must always

ensure Wt ≥ 0.

Information choice We allow for one specific information structure: at

any time t, the agent must choose either to receive no information, or to ob-

serve the full value of her risky portfolio. She cannot receive partial signals

related to the value of her wealth. In between observations, she is unaware

of the exact value of her wealth, and makes her decision based on past infor-

mation. Note this assumption does not correspond to limiting the cognitive

ability of the agent, nor to assuming non-bayesian updating. The agent can

always choose to access and process the maximal information available in

the economic environment, and her expectations are driven by a standard

probabilistic filtration.

Formally, noting {F̄t} the filtration generated by the process {Xt} (appro-

priately completed) and {Ft} that of the agent, the constraint on information

is:

∀t,Ft = F̄τ(t),

τ(t) ≤ t, increasing, càdlàg
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4.1.3 Optimization problem

Gathering the assumptions above, we define the optimization problem, given

initial wealth W :

max
{τ(t),Ct,St}t∈[0,∞]

V (W )

Ft = F̄τ(t), τ(t) ≤ t, τ(.) increasing càdlàg,

(Ct, St) Ft −measurable

dWt = −Ctdt+ StdXt + r(Wt − StXt)dt

W0 = W, Wt ≥ 0

where V is defined as in Equation (12).

Note the value function is homogenous of degree 1, and the opportunity

set is linear in the total wealth. Let V(Wt) be the value function for total

wealth Wt right after an observation of the current information. We can

rewrite:

V(Wt) = WtV0 (13)

where, because of the i.i.d growth of the risky asset, V0 is a constant, inde-

pendent from the value of wealth, to be determined.

This result highlights information acquisition will optimally happen at

constant time intervals. Indeed, at each observation, only the value of wealth

changes, while the optimization problem for V0 remains the same.

Note also the adjustment for disappointment aversion of the continuation

value, for a given wealth Wt, is given by: µθ (V (Wt)) = V0µθ (Wt).

The agent does not make any change to her risky investments between

observations. Indeed, because she is not allowed to hold negative positions

on any investment, she cannot divest from her risky portfolio without first

observing if she has sufficient funds. The restricted information choices she

has (either no information, or full information) imply she has to observe the
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full value of her wealth before she can reduce her risky position. We also find,

as we clarify later, she never optimally chooses to increase her risky position

between observations.

The agent’s optimization thus simplifies to the following Bellman prob-

lem, starting from initial wealth equals one:

(V0 (T ))1−α

1− α
= max

T,S0,{Ct}Tt=0

∫ T

0

e−ρτ
C1−α
τ

1− α
dτ + e−ρT

(V0 (T )µθ [WT ])1−α

1− α
(14)

s.t.

∫ T

0

e−rτCτdτ = C0

S0 + C0 < 1, S0 > 0, C0 > 0

WT = (1− C0 − S0) exp(rT ) + S0
XT

X0

.

T is the optimal time interval until next observation. C0 is the amount

put in safe assets strictly to finance consumption between t = 0 and t = T ,

i.e. until the next observation. S0 is the amount invested in the risky asset

until next observation. The remaining initial wealth, 1− C0 − S0 is invested

in the safe asset.

The recursive structure of the opportunity set and preferences guarantees

time consistency in the optimal policy.

4.2 Optimal decisions

We start by deriving the optimal consumption policy between observation,

for a given C0. We then focus on the savings policy from one observation to

the next, and finally obtain the agent’s optimal strategy.

4.2.1 Consumption between observations

Take as given the interval T between observations and the amount C0 put

aside for consumption during this interval. The optimal consumption policy
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solves:

max
{Ct}Tt=0

∫ T

0

e−ρt
C1−α
t

1− α
dt

s.t.

∫ T

0

e−rtCtdt ≤ C0

This problem admits the unique solution:

∀t ∈ [0, T ] , Ct = C0e
− ρ−r

α
t

ρ
α
− 1−α

α
r

1− e−( ρα−
1−α
α
r)T

. (15)

Consumption is proportional to C0, the amount initially put aside, and

decays at rate (ρ − r)/α. The decay rate reflects the tradeoff between time

discount ρ and interest gains r, when the elasticity of substitution across

periods is determined by α.

4.2.2 Optimal savings portfolio

Take as given the interval T between observations, and the amount C0 put

aside for consumption during this interval. The optimal savings policy solves:

max
S0

µθ [WT ]

s.t.

WT = (1− C0 − S0) exp(rT ) + S0
XT

X0

0 ≤ S0 ≤ 1− C0

The investment in the safe asset has deterministic returns, so, using the

linearity of the certainty equivalent µθ with respect to constants, we find:

µθ [WT ] = (1− C0 − S0) exp(rT ) + S0µθ

[
XT

X0

]
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and the optimisation problem admits a corner solution. In the notations of

Section 3,

µθ

[
XT

X0

]
= exp (v (T )T ),

where v(T ) is the certainty equivalent rate, when observing the stochastic

process X at interval T .

The optimal savings solution is:S0 = 1− C0 if v(T ) > r

S0 = 0 if v(T ) ≤ r.
(16)

This proposition provides some insight regarding the link between risk-

taking decisions and information decision. In both examples we considered

for the return process X, the agent perceives the asset as offering higher

returns as the observation interval becomes longer: v(.) is an increasing

function of T . As T becomes infinitively large, v(T ) converges to µ, the

instantaneous growth rate of X. Therefore, as long as µ > r, there are ob-

servation intervals that make investing in the risky asset, rather than in the

safe asset, optimal.

4.2.3 Optimal frequency and savings

We now characterize the optimal consumption C0 and observation interval T .

Suppose investing in the risky asset is never optimal, at any observation

interval T (case µ ≤ r). Then, trivially, C0 = 1, and any T ≥ 0 is an optimal

solution. The agent only uses the risk-free asset and is completely unaffected

by the information flow.

We focus on the more interesting case in which the investor optimally

decides to invest in the risky asset. We show, for both the Brownian and

jump cases, it is necessary and sufficient to have µ > r.

Proposition 5. For a given time interval T between observations, the opti-
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mal consumption and value function are given by:

C0 (T ) = 1− exp

[(
− ρ
α

+
1− α
α

v(T )

)
T

]
(17)

(V0 (T ))
1−α
α

(
ρ

α
− 1− α

α
r

)
=

1− exp
[(
− ρ
α

+ 1−α
α
r
)
T
]

1− exp
[(
− ρ
α

+ 1−α
α
v(T )

)
T
] (18)

The portfolio problem, across observations, is equivalent to having stan-

dard isoelastic utility and a deterministic rate of return v(T ). Hence optimal

consumption takes the simple form of Equation (17). In particular, current

consumption is increasing in the rate of return v(T ) if and only if the elastic-

ity of intertemporal substitution 1/α is lower than 1. In that case the income

effect dominates: facing a better opportunity set the agent consumes more

immediatly. Conversely, when 1/α > 1 the substitution effect dominates:

the agent pushes her consumption towards the future.

We now maximize the value function by taking the first-order condition

for the optimal frequency and obtain our main result.

Proposition 6. If the instantaneous growth rate of the risky investment

asset is greater than the risk-free rate, µ > r, the agent’s optimal strategy

for information is to observe the value of her risky portfolio at constant time

intervals, of length T ∗, where T ∗ is the unique solution to:

∂v(T )

∂ log(T )
f

(
v (T )− ρ

1− α

)
=(

r − ρ

1− α

)
f

((
r − ρ

1− α

))
−
(
v (T )− ρ

1− α

)
f

(
v (T )− ρ

1− α

) (19)

where f (x) = exp
(

1−α
α xT

)
/
(
1− exp

(
1−α
α xT

))
.

The optimal length of time interval T ∗ verifies v(T ∗) > r.

This condition characterizes the tradeoff agents face when deciding the

frequency at which they observe the value of the risky asset. The right-hand

side of Equation (19) is the marginal cost of increasing the interval T : the

cost of financing some of the consumption stream at the risk-free rate r rather
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than at the superior risky rate v(T ). This marginal cost is increasing in the

spread between v(T ) and r, and therefore in the observation interval T , and

is standard to models with infrequent transactions à la Baumol-Tobin.

The novelty of our approach is to make the marginal benefit to inatten-

tion, the left-hand side of Equation (19), endogenous, rather than exoge-

nously determined by a fixed cost of information. When observing returns

less often, the agent considers the risky asset to be more attractive. The

key quantity to determine the marginal benefit of increasing the time period

between observations is the elasticity of the certainty equivalent rate v (T ),

with respect to the observation interval T : ∂v (T ) /∂ log(T ). In both of our

examples this elasticity is decreasing in the time interval T .

The behavior of this elasticity, and thus of the marginal benefit to increas-

ing the time interval between observations, characterizes how the optimal

policy responds to changes in the economic environment. In the next sec-

tion, we derive such comparative statics for the case of a geometric Brownian

motion.

4.3 With Brownian Risk

Consider the case of a geometric Brownian motion, with drift µ and volatility

σ, as in Section 3. We suppose µ > r, and the intertemporal elasticity of

substitution, 1/α, larger than 1.

Figure 3 illustrates the behavior both of the value function and of the

share of wealth allocated to the consumption account, as functions of the

observation frequency. It is infinitely costly to hold the risky asset when the

flow of information is continuous, and the value function V0 (T ) converges to

0 when T goes to zero: for small values of the time interval, increasing the

space between observations increases the value function. On the other hand,

when the interval between observations becomes very large, the agent has

to put aside more and more cash for consumption, which prevents her from

fully benefiting from her investment opportunity in the risky asset. We find,
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for large time intervals, increasing the space between observations decreases

the value function.

As investment opportunities deteriorate, and/or the agent is more dis-

appointment averse, the value function becomes lower: the value function is

decreasing in the risk σ and disappointment aversion θ, whereas it is increas-

ing in the growth rates µ and r.
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Figure 3: Utility as a function of T , the time interval between ob-
servations. For parameters values: θ = 1, α = 0.5, σ = 1, µ− r = 1, ρ = 0.1.

We turn to the behavior of the unique optimal observation interval T ∗. In

particular we are interested in the behavior of this interval with respect to the

volatility of risky asset returns, σ, and with respect to the disappointment

aversion parameter, θ. Focusing first on the risk, σ, note both the cost and

benefit of a higher observation interval are affected. Because the agent is risk

averse, increasing σ makes the risky asset less attractive, so the agent has an

incentive to move her holding towards the risk-free asset, and to lower the
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frequency of observation. This effect is standard to information costs model.

In our model a second mechanism obtains: the marginal benefit of a higher

time interval increases with the underlying risk: the elasticity of the certainty

equivalent rate to the observation interval is increasing in the volatility σ.

This second force also pushes the agent to increase the observation frequency.

Figure 4 illustrates these results. Similar results obtain for the parameter of

disappointment aversion θ.
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Figure 4: Optimal frequency as a function of volatility σ. For param-
eters values: θ = 1, α = 0.5, µ− r = 1, ρ = 0.1.

Importantly, even in cases where the constant growth rate µ is augmented

to directly compensate for an increase in the underlying risk σ, the net force

towards longer time intervals is not suppressed. Suppose one increases µ to

fully compensate for the increase in σ, in such a way that the instantaneous

certainty equivalent rate, v(T ), remains unchanged at the initial optimal time

interval T . This leaves the marginal cost of increasing T , which depends on
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v (T ) only, unchanged. The marginal benefit of increasing T , which depends

on the elasticity of the certainty equivalent rate, increases, on the other

hand. Therefore, even if compensated for by an increases expected growth,

an increase in volatility results in increased inattention. This result can

provide a rationalization of the “ostrich” effect documented by Karlsson et al.

(2009). To summarize those results, the elasticity of the certainty equivalent

rate, ∂v(T )/∂ log(T ) is

• decreasing in the observation interval T ,

• increasing in the volatility σ and the disappointment aversion θ;

the optimal time interval T ∗ is

• increasing in σ and θ, even if compensated by a higher growth rate µ,

• decreasing in the growth rate µ.

5 Extensions

In section 4, we analyzed the portfolio choices of an investor who needs to

optimally balance the costs of information, endogenously determined by her

disappointment aversion, with the benefits of informed consumption and sav-

ings decisions. We showed, even in this relatively simple optimization prob-

lem, the endogenous information cost structure of our framework provides

novel implications that are supported by the empirical evidence regarding

the frequency of information acquisition in risky environments. This is but

one example in which information aversion impacts and modifies the opti-

mal decision making of agents facing uncertainty, relative to models with

exogenous information costs or constraints. Our approach has pervasive im-

plications for most decisions under uncertainty. In this section, we revisit

several classic questions and stress the novel tradeoffs present with informa-

tion averse investors.
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5.1 Diversification and the multiplication of informa-

tion flows

A robust insight of portfolio theory is that diversification is valuable. When

presented with two assets with imperfectly correlated returns, it is optimal

to invest in both. Because our disappointment averse agents are risk-averse,

the rationale for diversification obtains. However, in our framework, not only

does the distribution of the final payoffs matter, but also the structure of the

information flow. It is plausible to think investing in a larger number of assets

corresponds to more frequent arrivals of information. For instance, suppose

an agent is faced with news reports at given intervals (daily headlines from

national newspapers for instance), and she is invested in both tech stocks

and automobile stocks. As long as the news report pertains to either one

of those sectors of the economy, she will observe information relevant to the

value of her portfolio. In contrast, if she were invested only in tech stocks

(or automobile stocks), fewer news reports would have information content

regarding her wealth. As disappointment averse agents fear high frequency

information flows, this latter force might diminish and even overcome the

benefit of diversification.

To characterize this tradeoff between the costs and benefits of diversifi-

cation within our model, we focus on a simple example. Suppose the agent

receives at date 1 the final value λX
(1)
1 +(1−λ)X

(2)
1 , where the processes X

(1)
t

and X
(2)
t are two arithmetic Brownian motions with volatility σ and corre-

lation ρ. The fraction λ ∈ [0, 1] can be thought of as a portfolio share. We

assume the agent observes alternatively the current value of each of the pro-

cesses at intervals of length T . In the appendix, we derive a simple expression

for the certainty equivalent of this lottery.5

Figure 5 represents the certainty equivalent of this lottery, as a function

of the horizon, for three different cases. We consider (a) the case of investing

5Extending the horizon, as well as allowing for drifts, is easily done, as before.
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perfectly correlated portfolio (green), and an equal weight independent payoff
portfolio (blue). Parameters values: θ = 1, σ = 0.1.

in only one asset (λ = 0), (b) investing in two perfectly correlated assets

(λ = 50%, ρ = 1), and (c) investing equally in two fully independent as-

sets (λ = 50%, ρ = 0). Situations (b) and (c) allow us to decompose the

impact of diversification between i) the risk reduction, and ii) the increase

in information flows. Investments (a) and (b) share the exact same payoff

structure, but have different information flows, with case (b) corresponding

to observing the current value of the payoff process twice as frequently as

case (a). Not surprisingly, the certainty equivalent of this “diversified” lot-

tery is always lower than the undiversified one. Moving from case (b) to case

(c), we now keep the frequency of information constant, with same interval

2T between observations for each individual asset, allow for diversification
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across the risks of the two assets, and find the certainty equivalence is now

higher.

In this example, the net effect of full diversification is unambiguous: the

agent always prefers the diversified portfolio with frequent information (c)

over the portfolio with one asset and infrequent information (a). Further, the

relative advantage of the diversified portfolio is increasing in the observation

interval T . As the information flow becomes more infrequent, the relative

risk of the two portfolios becomes the main concern, and the diversified port-

folio dominates more and more the single-asset portfolio. For a continuous

observation flow, on the other hand, we can show, at the limit, the two port-

folios have same value. Indeed, the per observation certainty equivalent rate

is approximately proportional to −σ
√
T , a first-order risk correction. The

lottery value is therefore proportional to −σ/
√
T . The diversified portfolio

has twice as many observations, but a variance divided by
√

2, so these two

effects cancel out perfectly. In numerical calculations, we show this conver-

gence is true for arbitrary values of λ. This continuous time limit delivers

further intuition as to why the fully diversified portfolio always dominates,

for T > 0.

To summarize, even when increasing the frequency of information flows,

diversification is valuable in our framework, albeit with limited benefits. The

correlation across assets plays a crucial role. Indeed if investing in more

assets multiply the frequency of information without providing a complete

diversification benefit, the agent might prefer to hold only a limited number

of assets. Our framework could thus rationalize the under-diversification

observed in the data.

5.2 Incentives for delegation

Another natural deviation from the core example of our paper would be to

allow the agent to choose her information flows from a richer set of options

than the all-or-nothing framework we used so far (the agent either fully ob-
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serves her wealth or receives no information whatsoever). Consider again an

investor with continuous consumption and same investment opportunities,

risk-free bonds or risky asset, as before. She might be willing to forego a

portion of her wealth if it allowed her to access useful information at a lower

endogenously implied cost. For instance, rather than having to observe the

full value of her portfolio each time she transfers funds to her consump-

tion account, she could have an “alert” system that would be triggered only

when her wealth reaches a certain value. Such a framework would signifi-

cantly reduce the amount of information she is forced to receive and could

be preferable to her.

Allowing the agent to optimize on the structure, or the type, of infor-

mation she receives could provide a very natural rationale for delegation.

Consider again the example just given: the “alert” system of information

presupposes the existence of an intermediary who has access to the full in-

formation on the investor’s risky assets, and who translates this continuous

information flow into discrete time trigger signals. Of course, the intermedi-

ary would need to be compensated for the service provided. And, precisely

because the investor pays the intermediary to hide information from her,

agency problems quite naturally arise.

Enriching the model to let the agent optimally choose the flow and quality

of the signals she observes intuitively results into settings with incentives for

delegation. We leave for future research a more careful analysis of desirable

contracts in such settings

5.3 The joint role of payoff distribution and informa-

tion structure for investment decisions

So far, we focused mainly on the implications of information aversion for the

time series of investor’s decisions, with results on the frequency of signals

in i.i.d environments. Our endogenous cost structure also informs us on the

joint role of the distribution of payoffs and intermediate signals, for an agent
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who has to choose among a cross-section of investment projects. Indeed

information averse agents care not only about the quantity of information,

but also about how it shapes the conditional distribution of final payoffs.

As an illustration, consider the following simple setup. At date 0 an agent

invests in a project, that can succeed (outcome G), with probability p, or

fail (outcome B), with probability 1− p, at date 2. We can assume, without

loss of generality, the certainty equivalent of the project is 0.6 The agent

automatically observes a binary signal at date 1, and gets more informed

about the quality of the project: with equal probability, the agent observes

a good or a bad signal, such that the probability of the good outcome G

becomes p + x and p− x respectively. x, which controls the strength of the

signals, satisfies the constraint: 0 ≤ x ≤ 1− p and 0 ≤ x ≤ p.

Because the agent is disappointment averse, observing the intermediate

signal comes at a cost, except in the corner case x = 0. However, let’s allow

for the agent to benefit from observing it: she can costlessly divest a portion

α of her initial investment following a bad signal at time t = 1.7 At time

t = 0, the agent can choose among a cross-section of investment projects that

vary in the quality, x, of the intermediate information. We can easily derive

the following results:

1. If α > θ
1+θ

, the agent optimally chooses investments with the highest

quality of intermediate information, x = min(p, 1− p)

2. If α < θ
1+θ

, the agent optimally chooses investments with no interme-

6This corresponds to the constraint:

µ0 =
pG+ (1 + θ)(1− p)B

1 + θ(1− p)
= 0

7We obtain the certainty equivalent of the project with partial information at time 1:

µ̃0 =
x(G− (1 + θ)B)

2 + θ

[
(1 + θ(1− p))(1− (1 + θ)(1− α)) + θx(1 + (1 + θ)(1− α))

(1 + θ(1− p))2 − θ2x2

]
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diate information, x = 0, unless the uncertainty at time t = 0 is high

and such that

p∗1 ≤ p ≤ 1− p∗2,

where, when α > 0,

1

2
> p∗1 =

(1− α) (1 + θ)− 1

2(1− α)θ
> p∗2 =

(1− α) (1 + θ)− 1

2θ
,

in which case, she chooses to observe the most possible intermediate

information (x = min(p, 1− p)).

In the first case, α > θ
1+θ

, the divestment option is high, and the agent

is not too disappointment averse, so the benefits of information always out-

weigh its costs. In the second case, the agent is either highly disappointment

averse, or has little divestment opportunity after observing information, in

which case she chooses investments with intermediate signals only if her ini-

tial uncertainty is high (p around 1
2
). The set of probabilities p in which

the agent chooses to observe the intermediate signals shrinks as θ increases

(higher information aversion), and as α decreases (lower benefit of informa-

tion). Strikingly, because p∗1 > p∗2, information averse agents in this sim-

ple optimization problem are more likely to optimally observe intermediate

signals when they are optimistic about the investment project, p ≥ 1/2

(left-skewed distribution), than when they are pessimistic about the project,

p ≤ 1/2 (right-skewed distribution). These results complements our previ-

ous results: information averse agents dislike information even more in risky

environments.

The somewhat complex results we obtain for the agent’s optimal strate-

gies in this very simple framework indicate information aversion should have

rich implications for the analysis of investment strategies across projects that

vary in their risk and information structures.
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6 Conclusion

Because they run the risk of being disappointed each time they receive a sig-

nal, disappointment averse agents are intrinsically information averse. We

propose a theory of inattention solely based on these preferences, absent

any cognitive limitations, or external costs of acquiring information. We

start by characterizing the strength and properties of the endogenous costs

of information, implied by this model of preferences, and find them to differ

fundamentally from both the cognitive constraints, and the exogenous costs

commonly used in the inattention literature. We focus our analyzis on the

impact of the frequency of information observations on the certainty equiv-

alents of lotteries whose payoffs correspond to the final value of a stochastic

process. We find agents behave as if infinitely risk averse when the flow of

information becomes continuous, in the case of a diffusion, but not in the case

of jumps. This result informs us that one should expect more inattention to

information on smooth risky processes than to information on sudden large

changes in utility. In both cases, the cost of information increases as risk

increases or disappointment aversion increases. We then study how agents

balance the utility cost of paying attention to the economic environment

with the benefits of making informed decisions, in the case of a standard

consumption-savings problem. In this setting, we find attention decreases in

turbulent times: when there is more risk, information is more stressful. This

endogenous cost-driven result is unique to our model of inattention, and is

supported by the empirical evidence. Finally, we outline how information

aversion impacts a number of decisions under uncertainty: i) information

aversion can significantly reduce the benefits of diversification; ii) it creates

a rationale for delegations; iii) it affects the evaluation and choice of invest-

ment projects. The simplicity of our approach, combined with its pervasive

implications for decision under uncertainty, suggest a large avenue for future

research, both to further clarify the theoretical predictions of this model, and

to explore its empirical implications.
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A Disappointment Aversion and Information

Aversion

Focus on a setup with three dates: 0, 1, and 2. At date 2, the agent receives a final

outcome X with cumulative distribution function F . The certainty equivalent under dis-

appointment aversion with linear realized utility and coefficient θ is µ (F ). Define:

h (µ) =

∫
x≥µ

(x− µ) dF (x) + (1 + θ)

∫
x<µ

(x− µ) dF (x)

The function h is continuous, decreasing in µ. It admits limit +∞ when µ tends to

−∞ and −∞ when µ tends to +∞. There exist as unique zero, the certainty equivalent

µ (F ).

If, at date 1, the agent receives a signal i ∈ {1, N} with probability αi, the agent

updates her belief on the distribution of X from F to Fi. We are interested in com-

paring the certainty equivalent at date t = 0 of the compound lottery with date t = 1

signals, µ ({Fi, αi}) with that of a lottery without intermediate signal, µ(F ). Naturally,

the distribution of final outcomes is the same for both lotteries: F =
∑
i αiFi.

For all i ∈ {1, N}, the function

hi (µ) =

∫
x≥µ

(x− µ) dFi (x) + (1 + θ)

∫
x<µ

(x− µ) dFi (x)

admits µ(Fi) as a unique zero. To simplify notations, we write µ (Fi) = µi from now on.

Also, keep in mind µ ({Fi, αi}) is the unique zero of

hs (µ) =
∑
µi≥µ

αi (µi − µ) + (1 + θ)
∑
µi<µ

αi (µi − µ)

We write the certainty equivalent with intermediate signal µ ({Fi, αi}) = µs.
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Let us compute h (µ ({Fi, αi})):

h (µs) =

∫
(x− µs) dF (x) + θ

∫
x<µs

(x− µs) dF (x)

=
∑
i

αi

[∫
(x− µs) dFi (x) + θ

∫
x<µs

(x− µs) dFi (x)

]
=
∑
i

αi

[
(µi − µs) + θ

∫
x<µi

(µi − x) dFi (x) + θ

∫
x<µs

(x− µs) dFi (x)

]
h (µs) = θ

∑
µi<µs

αi

[
(µs − µi)

∫
x≥µs

dFi (x) +

∫
µi≤x<µs

(x− µi) dFi (x)

]
(20)

+ θ
∑
µi≥µs

αi

[
(µi − µs)

∫
x<µs

dFi (x) +

∫
µs≤x<µi

(µi − x) dFi (x)

]

Observe all the terms on the right-hand side are positive, so that

h (µ ({Fi, αi})) ≥ 0

Remember h is decreasing with µ (F ) as its unique zero. Therefore we can conclude

µ ({Fi, αi}) ≤ µ (F )

Let us now analyze under which condition µ ({Fi, αi}) = µ (F ), i.e. under which

condition h (µ ({Fi, αi})) = 0. From equation 20, it is straightforward that if i0 is such

that µi0 = µs then the positive terms in αi0 are equal to zero. Suppose there is j ∈ {1, N}
such that µj 6= µs. If µj < µs, the positive contribution to h (µ ({Fi, αi})) of the j term

is:

(µs − µj)
∫
x≥µs

dFj (x) +

∫
µj≤x<µs

(x− µj) dFj (x)

The first term is zero iff ∀x ≥ µs, Fj (x) = 0, i.e. in the Fj distribution, all outcomes

are below µs. Supposing that is the case, let us analyze the second term. From µj ≤∫
xdFj (x), we know the interval µj ≤ x < µs is not empty. Under these conditions,

the second term
∫
µj≤x<µs (x− µj) dFj (x) is null if and only if x = µj , and the lottery

under signal j is degenerate: Fj admits a unique non-zero, µj . A similar result obtains if

µj > µs.
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We have thus proven the result:

µ ({Fi, αi}) = µ (F )

⇔ ∀i,

µ (Fi) = µ (F ) or

Fi is degenerate

Finally, we prove using this result that for any level of mutual entropy at the first stage

of the lottery, there exists a compounded lottery that provides as much utility as one-shot

resolution. Indeed, consider the lottery that reveals the final outcome with probability

p or nothing with probability 1 − p. Clearly, such lottery satisfies the conditions above

and is equivalent to one-shot resolution. One can choose p to attain any level of mutual

entropy between the first stage outcome and the final outcome.

B Certainty Equivalent Rate

To be consistent with the notations in the body of the paper, note V (T ) the certainty

equivalent at time 0 of a lottery with uncertain payoff XT at t = T , starting from X0 = 1,

and no intermediate observation. Then we write

V (T ) = exp (v (T )T )

where v (T ) is the certainty equivalent rate.

B.1 Brownian motion

Assume

dXt

Xt
= σdZt

so the log payoff is log (XT ) = − 1
2σ

2T + σ
√
Tε, where ε is distributed N (0, 1). The

certainty equivalent of payoff XT is thus given by

V (T ) =
1 + θ

∫
XT<V (T )

XT dF (XT )

1 + θ
∫
XT<V (T )

dF (XT )
.
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Expanding, we get

exp (v (T )T ) =
1 + θ

∫
ε<(v(T )+ 1

2σ
2)
√
T
σ

exp
(
− 1

2σ
2T + σ

√
Tε
)

exp(− 1
2 ε

2)√
2π

dε

1 + θ
∫
ε<(v(T )+ 1

2σ
2)
√
T
σ

exp(− 1
2 ε

2)√
2π

dε

=
1 + θ

∫
ε−σ
√
T<(v(T )− 1

2σ
2)
√
T
σ

exp
(
− 1

2 (ε−σ
√
T)

2
)

√
2π

dε

1 + θ
∫
ε<(v(T )+ 1

2σ
2)
√
T
σ

exp(− 1
2 ε

2)√
2π

dε

and, finally,

exp (Tv (T )) =
1 + θΦ

(√
T
σ

(
v (T )− 1

2σ
2
))

1 + θΦ
(√

T
σ

(
v (T ) + 1

2σ
2
)) < 1,

where Φ is the cumulative distribution function of a standard normal distribution.

B.1.1 Continuous information limit

Result.
√
Tv (T )→ −κσ where κ is the unique solution to

κ+ θκΦ (−κ) = θΦ′ (−κ)

Derivation. Suppose v (T ) has a finite (negative) limit in zero. Then as T converges

to 0, we have

1 + Tv (T ) =
1 + θ

(
1
2 + 1√

2π
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θ
(

1
2 + 1√

2π
1
σ

√
T
(
v (T ) + 1

2σ
2
))

1 + Tv (T ) =

(
1 + 1

(1+ θ
2 )
√

2π

1
σ

√
T
(
v (T )− 1

2σ
2
))

(
1 + 1

(1+ θ
2 )
√

2π

1
σ

√
T
(
v (T ) + 1

2σ
2
))

1 + Tv (T ) ≈

(
1 +

1(
1 + θ

2

)√
2π

1

σ

√
T

(
v (T )− 1

2
σ2

))(
1− 1(

1 + θ
2

)√
2π

1

σ

√
T

(
v (T ) +

1

2
σ2

))

≈ 1− 1(
1 + θ

2

)√
2π

√
Tσ.

This last approximation contradicts the existence of a finite limit.

Let us now look for a −∞ limit (we still have to show that v (T ) is increasing but let
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us assume it for now). We know Tv (T )→ 0 so

exp (Tv (T )) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
))

becomes

1 + Tv (T ) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
)) .

Suppose
√
Tv (T )→ −∞, then

1 + Tv (T ) =

(
1 + θΦ

(
1

σ

√
T

(
v (T )− 1

2
σ2

)))(
1− θΦ

(
1

σ

√
T

(
v (T ) +

1

2
σ2

)))
= 1 + θ

[
Φ

(
1

σ

√
T

(
v (T )− 1

2
σ2

))
− Φ

(
1

σ

√
T

(
v (T ) +

1

2
σ2

))]
= 1− θσ

√
T√

2π
exp

(
− 1

2σ2
T (v (T ))

2

)
which again yields a contradiction.

If
√
Tv (T )→ 0, then we can still write

1 + Tv (T ) =

(
1 + θΦ

(
1

σ

√
T

(
v (T )− 1

2
σ2

)))(
1− θΦ

(
1

σ

√
T

(
v (T ) +

1

2
σ2

)))
= 1 + θ

[
Φ

(
1

σ

√
T

(
v (T )− 1

2
σ2

))
− Φ

(
1

σ

√
T

(
v (T ) +

1

2
σ2

))]
= 1− θσ

√
T√

2π
exp

(
− 1

2σ2
T (v (T ))

2

)
and we obtain a contradiction.
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Finally, suppose
√
Tv (T )→ −κσ. Then,

1 + Tv (T ) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
))

=
1 + θΦ (−κ)− θ σ

√
T

2
√

2π
exp

(
−κ

2

2

)
1 + θΦ (−κ) + θ σ

√
T

2
√

2π
exp

(
−κ2

2

)
=

1− θ σ
√
T

2(1+θΦ(−κ))
√

2π
exp

(
−κ

2

2

)
1 + θ σ

√
T

2(1+θΦ(−κ))
√

2π
exp

(
−κ2

2

)
and

κ =
θ

(1 + θΦ (−κ))
√

2π
exp

(
−κ

2

2

)
so

κ+ θκΦ (−κ) = θΦ′ (−κ) .

We can show there is a unique solution for κ. Indeed, defining

g (κ) = κ+ θκΦ (−κ)− θΦ′ (−κ) ,

we obtain the following properties:

g (0) < 0

g (κ)→+∞ +∞

g′ (κ) = 1 + θ (Φ (−κ)− κΦ′ (−κ) + κΦ′ (−κ)) > 0.

These conditions guarantee the existence and uniqueness of a solution.

B.1.2 Very infrequent observation limit

Result.

v (T ) ∼+∞ −
log (1 + θ)

T
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Derivation. Remember that

exp (Tv (T )) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
)) .

So, unless v → 0 in +∞ (again, we’re assuming that v is increasing and thus admits a

limit in +∞), exp (Tv (T )) → 0 which is impossible.Therefore v (T ) → 0 at least as fast

as 1
T . Hence,

√
Tv (T )→ 0 and

1 + θΦ
(

1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
)) → 1

1 + θ

so that

Tv (T )→ − log (1 + θ)

and

v (T ) ∼ − log (1 + θ)

T

B.1.3 Role of observation interval T

Result. v is increasing in T .

Derivation.

exp (Tv (T )) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
)) .

Let us define 1
σ

√
Tv (T ) = g (T, σ). We have

exp
(
σ
√
Tg (T, σ)

)
=

1 + θΦ
(
g (T, σ)− 1

2σ
√
T
)

1 + θΦ
(
g (T, σ) + 1

2σ
√
T
) .

Writing z = 1
2σ
√
T ,

2zg (z) = log (1 + θΦ (g (z)− z))− log (1 + θΦ (g (z) + z)) .
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Differentiating, we obtain

2g (z) + 2zg′ (z) = θ

(
(g′ (θ)− 1) Φ′ (g (z)− z)

1 + θΦ (g (z)− z)
− (g′ (θ) + 1) Φ′ (g (z) + z)

1 + θΦ (g (z) + z)

)
= −2θ

Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

= −2θ
Φ′ (g (z) + z)

1 + θΦ (g (z) + z)
.

Let us define the function u by

u (x) = log (1 + θΦ (x)) .

We have

u′ (x) =
θΦ′ (x)

1 + θΦ (x)
> 0

u′′ (x) =
−θΦ′ (x) [x (1 + θΦ (x)) + θΦ′ (x)]

(1 + θΦ (x))
2

[x (1 + θΦ (x)) + θΦ′ (x)]
′

= (1 + θΦ (x)) > 0.

So u′′ is positive then negative, and u is increasing convex then concave with a unique

inflection point x∗. Observe

u′ (g (z) + z) = u′ (g (z)− z) ,

so, ∀z, g (z)− z ≤ x∗ ≤ g (z) + z. Because u is convex between g (z)− z and x∗,

u (x∗)− u (g (z)− z) ≥ (x∗ − (g (z)− z))u′ (g (z)− z) .

Because u is concave between g (z) + z and x∗,

u (g (z) + z)− u (x∗) ≥ ((g (z) + z)− x∗)u′ (g (z) + z) .

Putting these results together,

u (g (z) + z)− u (g (z)− z) ≥ ((g (z) + z)− x∗)u′ (g (z) + z) + (x∗ − (g (z)− z))u′ (g (z)− z)

u (g (z) + z)− u (g (z)− z) ≥ 2zu′ (g (z) + z) ,
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and finally

−2zg (z) ≥ 2zu′ (g (z) + z)

which proves g′ (z) positive for all z.

We have

v (T ) =
σ√
T
g

(
1

2
σ
√
T

)
so

v′ (T ) =
σ

2T
√
T

(zg′ (z)− g) ,

and v′ is positive for all T .

B.1.4 Role of the volatility σ

Result. v is decreasing in σ.

Derivation.

exp (Tv (T )) =
1 + θΦ

(
1
σ

√
T
(
v (T )− 1

2σ
2
))

1 + θΦ
(

1
σ

√
T
(
v (T ) + 1

2σ
2
)) .

Let us write 1
σ

√
Tv (T ) = g (T, σ), then

exp
(
σ
√
Tg (T, σ)

)
=

1 + θΦ
(
g (T, σ)− 1

2σ
√
T
)

1 + θΦ
(
g (T, σ) + 1

2σ
√
T
) .

Let us write z = 1
2σ
√
T , then

2zg (z) = log (1 + θΦ (g (z)− z))− log (1 + θΦ (g (z) + z))
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Differentiating, we obtain

2g (z) + 2zg′ (z) = θ

(
(g′ (z)− 1) Φ′ (g (z)− z)

1 + θΦ (g (z)− z)
− (g′ (z) + 1) Φ′ (g (z) + z)

1 + θΦ (g (z) + z)

)
= −2θ

Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

,

so

zg′ (z) = −g (z) + θ [g (z) Φ (g (z)− z) + Φ′ (g (z)− z)]
1 + θΦ (g (z)− z)

.

We have

v (σ) =
σ√
T
g

(
1

2
σ
√
T

)
,

so

√
Tv′ (σ) = g (z) + zg′ (z)

= −θ Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

< 0.

B.1.5 Role of disappointment aversion θ

Result. v is decreasing in θ.

Derivation.

σ
√
Tg (θ) = log

(
1 + θΦ

(
g (θ)− 1

2
σ
√
T

))
− log

(
1 + θΦ

(
g (θ) +

1

2
σ
√
T

))
Let us differentiate:

σ
√
Tg′ (θ) =


Φ(g(θ)− 1

2σ
√
T)+θg′(θ)Φ′(g(θ)− 1

2σ
√
T)

1+θΦ(g(θ)− 1
2σ
√
T)

−
Φ(g(θ)+ 1

2σ
√
T)+θg′(θ)Φ′(g(θ)+ 1

2σ
√
T)

1+θΦ(g(θ)+ 1
2σ
√
T)

=
Φ
(
g (θ)− 1

2σ
√
T
)

1 + θΦ
(
g (θ)− 1

2σ
√
T
) − Φ

(
g (θ) + 1

2σ
√
T
)

1 + θΦ
(
g (θ) + 1

2σ
√
T
)

+
1√
2π

θg′ (θ) e−
1
2 (g2+σ2T/4)

1 + θΦ
(
g (θ)− 1

2σ
√
T
)
e 1

2 gσ
√
T − e− 1

2 gσ
√
T

1 + θΦ
(
g (T )− 1

2σ
√
T
)

1 + θΦ
(
g (T ) + 1

2σ
√
T
)
 ,
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and so

σ
√
Tg′ (θ) =

Φ
(
g (θ)− 1

2σ
√
T
)
− Φ

(
g (θ) + 1

2σ
√
T
)

(
1 + θΦ

(
g (θ)− 1

2σ
√
T
))(

1 + θΦ
(
g (θ) + 1

2σ
√
T
)) < 0.

B.2 Jumps

We conduct the same calculation for the case of a pure jump process. Write Nt the

counting variable for a Poisson jump process with intensity λ. Define the process {Xt} by

the stochastic differential equation:

dXt

Xt−
= λσdt− σdNt,

where σ < 1. The value of Xt decreases geometrically at each jump. The drift term

compensates for the average decrease, so that {Xt} is a martingale. Solving this S.D.E.

with initial condition X0 = 1, we obtain

Xt = exp (λσt+ log (1− σ)Nt) .

We are interested in the certainty equivalent of a lottery paying XT for various values

of T .

B.2.1 Preliminaries

A few standard results on Poisson jump processes that will be useful:

P [Nt = k] =
(λt)

k

k!
e−λt

P [Nt = 0] = e−λt

P [Nt ≤ k] = e−λt
k∑
i=0

(λt)
i

i!
=

Γ (k + 1, λt)

k!

E [exp(uNt)] = exp (λt (eu − 1))

E [exp (log (1− σ)Nt)] = exp (−λσt) ,

where Γ(., .) is the incomplete gamma function.
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Further, we can express the certainty equivalent in a more convenient way:

V =
E[y] + θE [y1y≤V ]

1 + θP[y ≤ V ]

V =
(1 + θ)E[y]− θE [y1y>V ]

(1 + θ)− θP[y > V ]
.

B.2.2 Certainty equivalent

If the certainty equivalent is between the points of the distribution corresponding to k and

k + 1 jumps, we can compute it exactly. This corresponds to the condition:

(1− σ)k+1 ≤ V exp(−λσT ) ≤ (1− σ)k.

Then, we get immediately

exp (−λσT )V =
(1 + θ) exp (−λσT )− θE

[
(1− σ)

Nt 1NT≤k

]
(1 + θ)− θP [NT ≤ k]

.

Note that

E
[
(1− σ)

Nt 1NT≤k

]
= e−λT

k∑
i=0

(1− σ)i
(λT )

i

i!

= e−λT+(1−σ)λT e−(1−σ)λT
k∑
i=0

((1− σ)λT )
i

i!

= e−λσT
Γ (k + 1, (1− σ)λT )

k!
.

Therefore,

exp (−λσT )V =
exp (−λσT )

[
(1 + θ)− θΓ(k+1,(1−σ)λT )

k!

]
(1 + θ)− θΓ(k+1,λT )

k!

V =
1− θ

1+θ
Γ(k+1,(1−σ)λT )

k!

1− θ
1+θ

Γ(k+1,λT )
k!

.

As the certainty equivalent is unique, there is a unique k so that the corresponding V

falls in the right interval.

Remark 1. In matlab, the incomplete gamma function is defined such that Γ(k +

1, x)/k! = gammainc(x, k + 1).
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Remark 2. At the points where we go from one k to the next, we have V = (1 −
σ)k exp (λσT ).

B.2.3 Continuous information limit

Result.

v (T )→ −σλ.

Derivation. In the limit where T gets close to 0, the certainty equivalent falls in the

region between 0 and 1 jumps. We guess and verify this result and obtain the limiting

behavior of V as T converges to 0. In this case we have

V =
1− θ

1+θ exp (− (1− σ)λT )

1− θ
1+θ exp (−λT )

,

which clearly converges to 1 as T converges to 0 so the guess is indeed verified. In the

limit, we get:

V ≈
1− θ

1+θ (1− (1− σ)λT )

1− θ
1+θ (1− λT )

≈ 1 + θ (1− σ)λT

1 + θλT
≈ 1− θσλT

V ≈ exp (−θσλT ) .

In particular it tells us that V 1/T admits the finite limit exp (−σλ) as T → 0.

B.2.4 Infrequent observation limit

Result.

v (T )→+∞ 0.

Derivation.

B.2.5 Role of the observation interval T

Result. v is increasing in T .
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Derivation. and v′ positive in all T .

B.2.6 Role of the shock size σ

Result. v is decreasing in σ.

Derivation.

B.2.7 Role of the disappointment aversion θ

Result. v is decreasing in θ.

Derivation.

C Consumption-savings model

C.1 General case

Results.

V
1−α
α

0 =

(
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1−

(
exp

(
− ρ
α

)
(V0 (T ))

1−α
α

)T
C0 = 1−

(
exp

(
− ρ
α

)
(V0 (T ))

1−α
α

)T
.

T ∗ is the unique solution to

∂v(T )

∂ log(T )
f

(
v (T )− ρ

1− α

)
=(

r − ρ

1− α

)
f

(
r − ρ

1− α

)
−
(
v (T )− ρ

1− α

)
f

(
v (T )− ρ

1− α

)
where f (x) = exp

(
1−α
α xT

)
/
(
1− exp

(
1−α
α xT

))
.

Derivation.

V1−α
0 = (C0)

1−α

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α

+ exp (−ρT ) (V0V (T ))
1−α

(
(C0)

−1 − 1
)1−α

 ,
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and

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T ))
1−α

) 1
α

so

V1−α
0 =

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α−1

×

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α


+ exp (−ρT ) (V0V (T ))

1−α

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

−
1− exp

(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

1−α
V1−α

0 =

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α−1

×

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+ exp (−ρT ) (V0V (T ))
1−α

(
exp (−ρT ) (V0V (T ))

1−α
) 1−α

α


V1−α

0 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T ))
1−α

) 1
α

α

V
1−α
α

0 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T ))
1−α

) 1
α

,

and finally

V
1−α
α

0 =

(
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1− exp

(
− ρ
αT
)

(V (T ))
1−α
α

V
1−α
α

0 =

(
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1−

(
exp

(
− ρ
α

)
(V0 (T ))

1−α
α

)T .
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This is the optimal value function. Also,

V1−α
0 =

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

+
(

exp (−ρT ) (V0V (T ))
1−α

) 1
α

α

=

(C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α

α

V
1−α
α

0 = (C0)
−1

1− exp
(
−ρ+(α−1)r

α T
)

ρ+(α−1)r
α


(C0)

−1
=

1

1−
(

exp
(
− ρ
α

)
(V0 (T ))

1−α
α

)T
C0 = 1−

(
exp

(
− ρ
α

)
(V0 (T ))

1−α
α

)T
.

This is the optimal investment in the cash account.

Finally, let us turn to the fist order condition for the optimal observation interval
∂V0
∂T = 0. We have

V
1−α
α

0

(
ρ+ (α− 1) r

α

)
=

1− exp
(
−ρ+(α−1)r

α T
)

1− exp
(
−ρ+(α−1)v

α T
) ,

so

∂V0

∂T
= 0

⇔ ∂

∂T

log
(

1− exp
(
−ρ+(α−1)r

α T
))

− log
(

1− exp
(
−ρ+(α−1)v

α T
))

 = 0

⇔


(r− ρ

1−α ) exp( 1−α
α (r− ρ

1−α )T)
1−exp( 1−α

α (r− ρ
1−α )T)

− (v− ρ
1−α ) exp( 1−α

α (v− ρ
1−α )T)

1−exp( 1−α
α (v− ρ

1−α )T)

= v′ (T )T
exp

(
1−α
α

(
v − ρ

1−α

)
T
)

1− exp
(

1−α
α

(
v − ρ

1−α

)
T
) .

C.2 Case of a Brownian motion

C.2.1 Optimal investment in the cash account C0

Result. C0 is increasing in T , σ and θ.
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Derivation.

C0 = 1−
(

exp
(
− ρ
α

)
(V0)

1−α
α

)T
,

or equivalently

C0 = 1− exp

[(
− ρ
α

+
1− α
α

v (T )

)
T

]
.

Role of the observation interval T .

dC0
dT

=

[(
ρ

α
− 1− α

α
(v (T ) + v′ (T )T )

)]
exp

[(
− ρ
α

+
1− α
α

v (T )

)
T

]
.

Using the notations and results above,

v (T ) = µ+
σ√
T
g

(
1

2
σ
√
T

)
,

and

v′ (T ) =
σ

2T
√
T

(zg′ (z)− g) ,

so

(v (T )− µ) + v′ (T )T =
σ

2
√
T

(zg′ (z) + g)

= − σ

2
√
T
θ

Φ′ (g (z)− z)
1 + θΦ (g (z)− z)

< 0.

As long as ρ − (1− α)µ > 0, we have C0 → 1 and dC0
dT → 0 in +∞ in zero. Therefore,

C0 (0) = 0,

dC0
dT
≈ 1− α

α

σκ

2
√
T
,

and if 1 − α > 0, C0 increasing everywhere in T . Role of the volatility σ and the disap-

pointment aversion θ.

dC0
dσ

= −1− α
α

v′ (σ) exp

[(
− ρ
α

+
1− α
α

v (σ)

)
T

]
.
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If 1 − α > 0, C0 increasing everywhere in σ. The same result is valid for the dependence

on θ.

C.2.2 Optimal value V0

Results.

V
1−α
α

0 ∼0

√
T

κσ

V
1−α
α

0 →+∞
1(

ρ
α −

1−α
α r

)
V0 > 1

when v (T ) > r. Further, V0 has a unique maximum in T ∗, v (T ∗) > r, and V0 decreasing

in σ and θ.

Derivation.

V
1−α
α

0

(
ρ

α
− 1− α

α
r

)
=

1− exp
(
− ρ
α + 1−α

α r
)
T

1−
(

exp
(
− ρ
α

)
(V0 (T ))

1−α
α

)T ,
or equivalently

V
1−α
α

0

(
ρ

α
− 1− α

α
r

)
=

1− exp
(
− ρ
α + 1−α

α r
)
T

1− exp
(
− ρ
α + 1−α

α (v)
)
T
.

Limits.

1. In θ = 0, (
1− exp

(
− ρ
α + 1−α

α r
)
T

1− exp
(
− ρ
α + 1−α

α µ
)
T

)
=

(
1− exp (−xT )

1− exp (−x+ y)T

)
,

where x = ρ
α −

1−α
α r and y = 1−α

α (µ− r) < x. We have

(
1− exp (−xT )

1− exp (−x+ y)T

)′
∝ (1− exp (−xT )) y + x (exp (−yT )− 1) .

In zero,

(1− exp (−xT )) y + x (exp (−yT )− 1) ∼ 1

2
xT 2y (y − x) < 0.
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In +∞,

(1− exp (−xT )) y + x (exp (−yT )− 1) ∼ (y − x) < 0,

and

[(1− exp (−xT )) y + x (exp (−yT )− 1)]
′

= xy (exp (−xT )− exp (−yT )) < 0.

Therefore V
1−α
α

0 |θ=0 is decreasing everywhere in T . The agent optimally choses

T = 0 and is fully invested in the risky asset.

2. In T = 0,

V
1−α
α

0

(
ρ

α
− 1− α

α
r

)
∼
(
ρ
α −

1−α
α r

)√
T

κσ
.

3. In T = +∞, V
1−α
α

0 → 1

( ρα−
1−α
α r)

.

4. For µ > r, then, there is a T̂ , such that, if T > T̂ , v (T ) > R and V
1−α
α

0 > 1

( ρα−
1−α
α r)

.

This proves the existence of an optimal value T ∗ satisfying T ∗ > T̂ .

Role of volatility σ and disappointment aversion θ.

V
1−α
α

0 =

(
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1− exp

[(
− ρ
α + 1−α

α v
)
T
]

dV
1−α
α

0

dσ
=

1− α
α

v′ (σ) exp

[(
− ρ
α

+
1− α
α

v (σ)

)
T

] (
1−exp(− ρ+(α−1)r

α T)
ρ+(α−1)r

α

)
1− exp

[(
− ρ
α + 1−α

α v (σ)
)
T
] .

If 1− α > 0, V0 is decreasing everywhere in σ. The same result applies to θ.

C.2.3 Optimal time period T ∗

Results. T ∗ is decreasing in σ and θ.

Derivation.
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