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Abstract

We present a dynamic heterogeneous-agent asset pricing model in which monetary
policy affects the risk premium component of the cost of capital. Risk tolerant agents
(banks) borrow from risk averse agents (depositors) and invest in risky assets subject to
a reserve requirement. By varying the nominal interest rate, the central bank affects
the spread banks pay for external funding (i.e., leverage), a link that we show has
strong empirical support. Lower nominal rates result in increased leverage, lower risk
premia and overall cost of capital, and higher volatility. The effects of policy shocks
are amplified via bank balance sheet effects. We use the model to implement dynamic
interventions such as a “Greenspan put” and forward guidance, and analyze their
impact on asset prices and volatility.
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I. Introduction

In the textbook model (e.g. Woodford 2003), monetary policy impacts the economy by in-

ducing changes in the risk-free interest rate. Yet, a growing body of evidence shows that

monetary policy also has a large impact on the risk premium component of the cost of cap-

ital.1 Furthermore, many central bank interventions can be usefully interpreted as directly

targeting risk premia. These include interventions undertaken during the financial crisis

such as large-scale asset purchases, “Operation Twist”, across-the-board asset guarantees,

and lender-of-last-resort operations, all of which specifically target the prices of risky assets.

Monetary policy may also influence risk premia in normal times; an active debate centers

on whether a “Greenspan put” in the late 1990s or abnormally low rates in the mid-2000s

encourage excessive leverage and “reaching for yield”.2

The link between monetary policy and risk premia works at least in part through financial

institutions (Adrian and Shin 2010). For this reason, it appears in the banking literature

alternatively as the bank lending channel (Bernanke and Blinder 1992, Kashyap and Stein

1994), the credit channel (Bernanke and Gertler 1995), and financial stability policy more

broadly (Stein 2012). Yet risk premia are the subject of asset pricing.

In this paper, we provide a dynamic asset pricing model of the risk premium channel

of monetary policy. The central bank varies the nominal interest rate in order to regulate

the effective risk aversion of the marginal investor in the economy. It does so by influencing

financial institutions’ cost of leverage. Lowering the nominal interest rate reduces the cost

of leverage, which increases risk taking and decreases risk premia.

Specifically, we model an endowment economy populated by two types of agents, those

with low risk aversion and those with high risk aversion. We think of the relatively risk

tolerant agents as pooling their wealth in the form of the net worth (i.e., equity) of financial

intermediaries, which we identify as banks. Because banks invest on behalf of the risk tolerant

agents, in equilibrium they take leverage. They do so by borrowing from the relatively risk

averse agents, or taking deposits. Our view of banks and deposits is purposely simplified,

abstracting from other functions such as screening and monitoring in order to focus on risk

taking and risk premia.

The central bank requires banks to hold a fraction of the deposits that they raise as

reserves.3 Reserves are a liability of the central bank and they enter circulation via open

1Bernanke and Kuttner (2005) document that monetary policy surprises have a powerful impact on stock
prices, and show that this is induced primarily by changes in risk premia, with very little of the effect coming
directly from changes in the risk-free rate. Hanson and Stein (2012), and Gertler and Karadi (2013) extend
these results to long-term Treasury bonds and credit spreads, respectively.

2See for example Blinder and Reis (2005), Rajan (2011), and Yellen (2011).
3We do not micro-found the reserve requirement, but this can be done in several ways. An important
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market operations. Aside from this constraint, the model is frictionless. In particular, there

are no nominal rigidities, which allows us to focus exclusively on the risk premium channel.

The single state variable of the model is the share of bank capital in total wealth.

The difference between the return on reserves and the return on risk-free bonds represents

the opportunity cost of holding reserves, and hence the cost of taking leverage. This difference

equals the nominal interest rate. Hence, the central bank regulates banks’ demand for

leverage by inducing changes in the nominal rate. An increase in the nominal rate represents

an increase in the cost of leverage and so it reduces banks’ demand for leverage. As banks

are the risk tolerant investors in the economy, this causes aggregate risk taking to fall and

the economy’s effective risk aversion to rise, driving up the equilibrium risk premium.

The solution to the model shows that the nominal rate equals the shadow price of banks’

leverage constraint–the reserves requirement. When the reserve requirement binds strongly,

and banks’ demand for leverage is tightly constrained, the nominal rate is high. When the

reserves requirement is slack and banks’ demand for leverage is satiated, the nominal rate

is zero. A zero nominal rate therefore implies that further easing cannot increase banks’

risk taking. Indeed, any further attempt to lower the nominal rate results in banks holding

excess reserves. As a result, the nominal rate in the model is bounded below by zero.

Our model allows the central bank to specify the nominal interest rate policy as a function

of the state variable, the net worth share of the banking sector. We solve for the dynamics of

reserves required for the central bank to support its target nominal rate. The solution shows

that the nominal rate depends on the dynamics of total reserves, not on their quantity. The

reason is that the return to holding reserves does not depend on their level, but on their

growth rate over time.4 We take reserves to be the numeraire in the model, so inflation is

the endogenous change in the price of consumption in units of reserves, or minus the capital

gain on reserves.

We show that banks’ optimization problem can be rewritten as an unconstrained portfolio-

choice problem by replacing the interest rate on deposits or risk-free bonds with the Fed

Funds rate, the rate banks charge to lend to each other in the interbank market. The lit-

erature refers to the spread between these two rates as the external finance spread (e.g.,

Bernanke and Gertler 1995) because it represents the difference between the rate paid to

rationale for reserves is that deposit insurance severs the link between banks’ risk taking and the rate they pay
on deposits. This creates a role for the government in regulating banks’ risk taking. A reserve requirement
provides a way of doing so with the added advantage that the tightness of bank funding is visible to regulators
as a market price (Stein 2012). In turn, the standard rationale for government-run deposit insurance is the
need to avoid inefficient bank runs (Diamond and Dybvig 1983).

4One way to see this is to consider a one-time doubling of total reserves. This would halve the value of
each unit of reserves (i.e. double the price level), but it would not affect the holding return of reserves going
forward, and so it would leave the nominal rate unchanged.
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borrow a dollar externally and the rate earned on a dollar that is “inside” the bank. Mon-

etary policy can therefore be viewed as governing bank leverage by altering the external

finance spread.

A novel prediction of our model is that the external finance spread is proportional to

the nominal rate. Figure 1 shows the corresponding empirical relationship. It plots 20-week

moving averages of the Fed Funds rate and the Fed Funds-TBill spread for the period July

1980 to May 2008. The sample average Fed Funds-TBill spread is 0.57%, which is large since

Fed Funds are overnight and extremely safe.5 The relationship between this spread and the

level of the Fed Funds rate is remarkably tight and nearly proportional. The raw correlation

is 86%, and the two series track each other closely both in the cycle and in the trend. This

evidence shows that there is a strong relationship between the nominal interest rate and

bank funding conditions, which is the essential mechanism underpinning our model.

The model’s asset pricing implications all follow from the interaction of the external

finance spread with the nominal rate in combination with heterogeneity in agents’ risk toler-

ances. We emphasize that any channel that gives rise to the observed relationship between

the external finance spread and the nominal rate will induce the same asset-pricing dynam-

ics. Such channels can originate with frictions on either the asset or liabilities side of bank

balance sheets that impose a cost on taking leverage. In the body of the paper we model

the reserves requirement, an asset-side cost.

The appendix presents a version of the model where the leverage cost arises instead on

the liabilities side. In that version, deposits provide households with liquidity services and

therefore pay a low rate, but must also be secured with collateral. The spread banks earn on

deposits is controlled by the nominal rate, which therefore governs the tradeoff banks face

between funding cost and leverage, just as in the main model.6

To analyze the full implications of the model, we solve for the equilibrium using projection

methods. To demonstrate the impact of monetary policy, we compare prices and quantities

between a high nominal rate and a low nominal rate regime. We show that when nominal

rates are high, bank leverage is low, the Sharpe ratio and risk premium of the endowment

claim are high, and the valuation of the endowment claim is low. We also show that volatility

is decreasing in the nominal rate. Volatility in the model is endogenously stochastic; it

depends on banks’ net worth. Because low interest rates increase bank leverage, they also

increase the volatility of the state variable, the volatility of discount rates, and hence the

5By comparison, the credit spread (Moody’s Baa versus Aaa long-term bonds) averages 1.07% over the
same period.

6Driscoll and Judson (2013) show empirically that deposit rates are “sticky”, meaning that they do not
move one-for-one with the nominal interest rate, and hence the spread banks earn on deposits is driven by
the nominal rate.
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volatility of returns.

We further examine two dynamic interest rate policies. The first policy studies the impact

of forward guidance. Under forward guidance, the central bank commits to keeping nominal

rates low even after the economy recovers (the wealth share of the banking sector rises above

some threshold). We show that by reducing future discount rates through forward guidance,

the central bank is able to induce an additional increase in prices even when current nominal

rates are at the zero lower bound.

The second policy captures a “Greenspan put” by decreasing nominal rates as bank net

worth falls. This policy stabilizes prices locally by boosting bank leverage. However, as

leverage rises and eventually becomes satiated, further negative shocks cause prices to fall

rapidly. At this point, volatility is significantly higher than it would have been otherwise.

Thus, in our framework a Greenspan put can support valuations in the short run at the

expense of greater instability in the long run.

Finally, we extend the model to allow the central bank to deviate from its expected

nominal rate policy. We show that policy shocks lead to a second round amplification effect

on risk premia and other equilibrium quantities. This effect is akin to a financial accelerator:

when nominal rates fall unexpectedly, the assets on bank balance sheets rise more than their

liabilities, which raises banks’ net worth and enables them to expand their balance sheets,

pushing risk premia down even further.

The rest of this paper is organized as follows: Section II reviews the literature, Section

III presents the model, Section IV characterizes the equilibrium, Section V presents results

for a benchmark economy, Section VI examines the effects of dynamic policies, Section VII

introduces an extension with policy shocks, and Section VIII concludes.

II. Related literature

Our paper is related to the literature on the bank lending channel of monetary policy initiated

by Bernanke (1983) and formalized by Bernanke and Blinder (1988) and Kashyap and Stein

(1994). The bank lending channel relies on an imperfect substitutability between bank

loans and unintermediated bonds so that a contraction in bank lending affects the overall

availability of funding and spills over to the macroeconomy. The transmission runs through

bank reserves: a drop in the supply of reserves forces banks to shrink their balance sheets.

Bernanke and Gertler (1989), Kiyotaki and Moore (1997), and Bernanke, Gertler, and

Gilchrist (1999) develop the broader balance sheet channel of monetary policy, which em-

phasizes the impact of policy shocks on the net worth of borrowers, and by extension their

ability to raise capital and invest. Jermann and Quadrini (2012) and Christiano, Motto, and

5



Rostagno (2014) incorporate balance sheet frictions inside a DSGE model and find that they

can account for a large proportion of the observed macroeconomic fluctuations.

Against the backdrop of the financial crisis, recent models shift attention from firms to

financial intermediaries (e.g. Adrian and Shin 2010, Gertler and Kiyotaki 2010, Cúrdia and

Woodford 2009, Adrian and Boyarchenko 2012, Brunnermeier and Sannikov 2013, He and

Krishnamurthy 2013). In these models, a maturity or liquidity mismatch between intermedi-

ary assets and liabilities causes interest rate shocks to affect intermediary net worth, driving

the supply of credit.

Our contribution to these literatures is to develop an asset pricing framework in which

monetary policy directly influences the risk premium component of the cost of capital. We

model an economy populated by agents with different levels of risk aversion, which gives

rise to a credit market as in Dumas (1989), Wang (1996) and Longstaff and Wang (2012).

Risk tolerant agents deploy their wealth in levered portfolios that we interpret as banks.

They raise funds by selling bonds to risk averse households, or depositors. The key friction

is a cost on leverage. Our model is thus related to models in which margin requirements

lead to incomplete risk sharing (e.g. Gromb and Vayanos 2002, Brunnermeier and Pedersen

2009, Gârleanu and Pedersen 2011, Ashcraft, Garleanu, and Pedersen 2011). Geanakoplos

(2003) derives this type of market incompleteness endogenously, and Geanakoplos (2009)

emphasizes that the resulting variation in leverage has a large impact on asset prices. An

important distinction of our model is that the tightness of the leverage constraint depends

on monetary policy through the nominal interest rate.

Stein (1998, 2012) also studies the ability of the central bank to control bank leverage.

In Stein (2012), leverage entails a negative externality resulting from fire sales. Reserves

function as “pollution permits” whose price, the nominal rate, provides a market-based

signal that enables regulators to maintain financial stability. In our framework the central

bank controls the price of reserves by regulating their dynamics, which allows it to influence

the external finance premium faced by banks. The external finance premium in turn affects

bank leverage and risk premia.

In contrast to the literature, our model does not require any nominal price rigidities.7

Our asset pricing framework allows us to focus exclusively on risk taking. This differs from

other papers on monetary policy and bank balance sheets including Stein (2012), Adrian

and Shin (2010), and Dell’Ariccia, Laeven, and Marquez (2011).

Our paper is also related to the literature on the role of government liabilities as a source

7In this sense our model represents a counter-example to Kashyap and Stein’s (1994) conjecture that
absent nominal price rigidities, “there can be no real effects of monetary policy through either the lending
channel or the conventional money channel.”
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of liquidity for the financial sector (Lucas 1990, Woodford 1990, Gertler and Karadi 2011,

Caballero and Farhi 2013, Krishnamurthy and Vissing-Jorgensen 2012, Greenwood, Hanson,

and Stein 2012). In our model, policy accommodation provides liquidity to banks and

“crowds in” investment in risky assets similarly to the role of government debt in Woodford

(1990).

On the empirical side, Bernanke and Blinder (1992) and Bernanke and Gertler (1995) are

early papers that find support for the bank lending and balance sheet channels of monetary

policy. Bernanke and Blinder (1992) show that monetary tightening as reflected in a shock

to the Fed Funds rate, leads banks to shrink their balance sheets. Kashyap, Stein, and

Wilcox (1993) show that bank funding is sensitive to policy shocks, and Kashyap and Stein

(2000) find that this is especially true of smaller banks. More recently, Jiménez, Ongena,

Peydró, and Saurina Salas (2011) and Landier, Sraer, and Thesmar (2013) provide further

corroborating evidence on the links between monetary policy and bank balance sheets.

Our model generates a positive relationship between nominal interest rates and risk pre-

mia, a phenomenon sometimes referred to as “reaching for yield”. A fast-growing literature

finds support for this relationship. In a key paper, Bernanke and Kuttner (2005) document

that surprise rate hikes induce large negative stock returns. Using a VAR decomposition,

they find that this effect is largely due to increases in expected excess returns, and that very

little is directly attributable to changes in expected real interest rates. Bekaert, Hoerova,

and Lo Duca (2013) use the VIX index in a similar analysis, finding that tightening shocks

increase investor risk aversion. Hanson and Stein (2012) show that policy shocks affect long-

term Treasury bond premia, while Gertler and Karadi (2013) find similar results for credit

spreads.

III. Model

We model an infinite-horizon exchange economy in continuous time t ≥ 0, with aggregate

endowment Dt that follows a geometric Brownian motion:

dDt

Dt

= µDdt+ σDdBt. (1)

The economy is populated by a continuum of agents with total mass one. There are two types

of agents, A and B. Both types have recursive preferences as in Duffie and Epstein (1992),

the continuous-time analog to the discrete-time formulation of Epstein and Zin (1989).8

8These preferences allow us to vary the elasticity of intertemporal substitution (EIS) independently of
the risk aversion coefficient. An EIS greater than one ensures that valuations are decreasing in risk aversion.

7



To ensure stationarity, we assume that agents die at a rate κ. New agents are also born

at a rate κ with a fraction ω as type A and 1 − ω as type B. Gârleanu and Panageas

(2008) show that under these assumptions, κ simply increases agents’ effective rate of time

preference and hence the lifetime utility V i
0 of an agent of type i = A,B is given by the

recursion

V i
0 = E0

[∫ ∞
0

f i
(
Ci
t , V

i
t

)
dt

]
(2)

f i
(
Ci
t , V

i
t

)
=

(
1− γi

1− 1/ψi

)
V i
t

( Ci
t

[(1− γi)V i
t ]

1/(1−γi)

)1−1/ψi

− (ρ+ κ)

 . (3)

The felicity function f i is an aggregator over current consumption and future utility. The

parameters ψi and γi, i = A,B, denote agents’ elasticity of intertemporal substitution (EIS)

and relative risk aversion (RRA).

Without loss of generality, we assume that A agents are more risk tolerant, γA < γB.

We view these agents as pooling their wealth into the net worth (i.e. equity capital) of the

“banks” in the economy (or more generally the financial sector). We abstract from other

aspects of financial intermediation and adopt this simplified view in order to focus on risk

taking.9 We therefore often refer to the A agents as the banks and their wealth as the equity

capital of the banking sector.

Let W i
t denote the total wealth of type-i agents at time t. We denote the wealth share

of A agents by ωt:

ωt =
WA
t

WA
t +WB

t

. (4)

We show below that ωt summarizes the state of the economy. To derive its dynamics, we

assume that the wealth of agents who die is bequeathed to the newly born on an even

per-capita basis. We can then write the law of motion of ωt as

dωt = κ (ω − ωt) dt+ ωt (1− ωt)
[
µω (ωt) dt+ σω (ωt) dBt

]
. (5)

The evolution of ωt has an exogenous component due to demographic turnover that ensures

stationarity, and an endogenous component (in brackets) due to differences in the rates of

saving and the portfolio choices of the two agent types.

Agents trade a claim on the aggregate endowment. The price of this claim is Pt, its

9We note that in our setup it is not necessary to impose a restriction on equity issuance as in He and
Krishnamurthy (2013) and Brunnermeier and Sannikov (2013).
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dividend yield is F (ωt) = Dt/Pt, and its return process is

dRt =
dPt +Dtdt

Pt
= µ (ωt) dt+ σ (ωt) dBt. (6)

Agents also trade instantaneous risk-free bonds, i.e. deposits, that pay the endogenously-

determined real interest rate r (ωt).

A. Deposits and reserves

The difference in risk aversion between agents leads to the emergence of a credit market

(Longstaff and Wang 2012). In particular, optimal risk sharing implies that the risk-averse B

agents lend to the risk-tolerant A agents using the instantaneous risk-free bonds. Continuing

with our interpretation of A agents as banks, we think of these bonds as deposits. To be

clear, in addition to deposits, B agents can also hold the risky endowment claim directly.

The central bank regulates deposit taking through a reserve requirement. In particular,

banks must hold reserves of no less than a fixed proportion of their deposits. Holding reserves

is costly due to foregone interest.10 Reserves are issued only by the central bank though they

can be traded freely in a secondary market.

A reserve requirement can be motivated in several ways. For example, it provides a lever

for regulating deposit creation, and deposit creation entails an externality in the context of

deposit insurance. Deposit insurance itself can be optimal if deposits are susceptible to de-

structive bank runs as in Diamond and Dybvig (1983). A reserve requirement is particularly

well-suited to regulating the externalities associated with deposit creation because it takes

advantage of a price mechanism. The central bank monitors the cost of lending and borrow-

ing reserves in interbank markets and responds to fluctuations in that cost by conducting

open market operations.11

Rather than directly modeling the externalities associated with deposit creation, we take

reserve requirements as given and study their implications for risk-taking. Formally, let wS,t

be the banks’ portfolio weight in the risky endowment claim. Of this, max {wS,t − 1, 0} must

be deposit-financed (borrowed). Let wM,t be the banks’ portfolio weight in reserves. The

10Interest on reserves can be easily incorporated into the model as we discuss below.
11Stein (2012) draws the analogy with the market for pollution permits. Reserves regulate the supply of

deposits based on a tradeoff between the private value of monetary services and the externality due to fire
sales following crashes. In general, any negative externality associated with deposit creation introduces a
role for reserves.
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reserve requirement imposes the constraint

wM,t ≥ max
[
λσ2

t (wS,t − 1) , 0
]
. (7)

Banks must hold reserves in proportion to their deposits, if any, and reserves cannot be held

short. The parameter λ controls the reserve requirement, λσ2
t . Scaling by σ2

t simplifies the

resulting expressions, but is not essential.12 When λ = 0, there is no reserve requirement

and asset markets are complete. This case might correspond to a frictionless economy in

which deposit-related externalities and the need to regulate them do not arise.

Let Mt denote the total quantity of reserves and Πt the total real value of reserves in

units of the endowment. It will be useful to define

G (ωt) =
Πt

Pt
(8)

as the total wealth share of reserves. Furthermore, let πt = Πt/Mt denote the consumption

value of each dollar of reserves. We take reserves to be the numeraire, so πt is the inverse

price level.13 It follows that the realized rate of inflation is −dπt/πt. We assume that the

central bank sets the path of reserves dMt/Mt so that inflation is locally deterministic,

− dπt
πt

= i (ωt) dt. (9)

Locally deterministic inflation simplifies the exposition of the model and is arguably realistic.

In Section IV.B, we show precisely how the central bank implements (9) by adjusting the

drift of reserves growth and its exposure to the endowment shock.

Next, we define the nominal interest rate:

n (ωt) = r (ωt) + i (ωt) . (10)

We treat n (ωt) as the central bank’s policy instrument and solve for the path of reserves

that implements it. We write this policy as a function of ωt since it summarizes the state of

the economy. Agents have rational expectations so they know this function. In Section VII,

we also consider policy shocks, which may take the nominal rate away from its benchmark

rule.

12In the absence of this scaling, the tightness of the reserves requirements varies inversely with the variance
of the return on the endowment claim. This adds a degree of complication to the expressions which is
inconsequential.

13In practice, reserves are fungible with currency, which serves as numeraire. Since our focus is on risk
taking, we abstract from introducing a transactions medium such as currency.
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The central bank controls the supply of reserves via open market operations, sales and

purchases of bonds in exchange for reserves at prevailing market prices. Let Bt be the central

bank’s total holdings of bonds (hence the private sector as a whole holds −Bt). If we think

of reserves as the central bank’s liability, then its net worth is Bt − Πt. Since open market

operations are conducted at prevailing market prices, they do not change this net worth.

However, the central bank earns a stream of “seignorage” profits on its portfolio, which is

given by the sum of the interest income it earns on its bonds and the depreciation of its

reserve liabilities, which is given by realized inflation. Thus, total seignorage is

Btr (ωt) dt− Πt
dπt
πt

= Πtn (ωt) dt. (11)

As we show below, no-arbitrage requires n (ωt) ≥ 0 so seignorage is never negative. To close

the model, we assume the central bank pays out its seignorage profits, which keeps its net

worth at zero. To keep this refund from changing the wealth distribution, we assume it gets

distributed to all agents in the economy in proportion to their wealth.

B. Optimization

We begin with the Hamilton-Jacobi-Bellman (HJB) equation of an agent in our economy.

Let V i
(
W h
t , ωt

)
denote the value function of agent h of type i = A,B. Also let cht , w

h
S,t,

and whM,t be the agent’s consumption-wealth ratio, endowment claim portfolio weight, and

reserves portfolio weight (the remaining weight is held in bonds). The HJB equation is

0 = max
cht ,w

h
S,t,w

h
M,t

f i
(
chtW

h
t , V

i
(
W h
t , ωt

))
dt+ E

[
dV i

(
W h
t , ωt

)]
(12)

subject to the agent’s wealth dynamics14 and reserve requirement

dW h
t

W h
t

=

(
r (ωt)− cht + whS,t [µ (ωt)− r (ωt)] + whM,t

[
dπt
πt
− r (ωt)

]
(13)

+G (ωt)n (ωt)

)
dt+ whS,tσ (ωt) dBt

whM,t ≥ 0 (14)

whM,t ≥ λσ2 (ωt)
(
whS,t − 1

)
. (15)

14These are the wealth dynamics should the agent manage to cheat death over the next instant. The agent
accounts for the possibility of death directly in the felicity function (3).
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The diffusive component of wealth depends only on the weight of the risky claim and not on

the reserves holdings, which are locally risk-free. In the drift term, G (ωt)n (ωt) represents

the stream of seignorage refund payments.15 By (9) and (10), the excess return on reserves,

dπt/πt − r (ωt), equals −n (ωt), the negative of the nominal rate. Hence, reserves are costly

when the nominal rate is positive.16 Not that the reserve requirement consists of two parts:

the shorting restriction that prevents agents from increasing the effective supply of reserves

on their own, and the constraint on deposit taking.

The homogeneity of preferences implies that the consumption and portfolio policies are

independent of wealth, so we can write them as functions of agent type only. Finally, denote

the aggregated consumption-wealth ratio of type i agents by ci (ωt) =
∫
i
ch (ωt)

Wh

W i dh for

i = A,B, and similarly for the portfolio policies wiS (ωt) and wiM (ωt).

C. Equilibrium conditions

In equilibrium, the markets for goods (i.e. consumption), the endowment claim, and reserves

must clear. The bond (deposit) market clears by Walras’ law. Since the public’s net bond

holdings are minus the value of reserves, aggregate wealth equals the value of the endowment

claim, WA
t +WB

t = Pt. The three market-clearing conditions can therefore be written as

ωtc
A (ωt) + (1− ωt) cB (ωt) = F (ωt) (16)

ωtw
A
S (ωt) + (1− ωt)wBS (ωt) = 1 (17)

ωtw
A
M (ωt) + (1− ωt)wBM (ωt) = G (ωt) . (18)

All three conditions are normalized by total wealth. The first equation gives the goods-

market clearing condition, the second gives the market-clearing condition for the endowment

claim, and the third gives the market-clearing condition for reserves.

IV. Analysis

In this section we derive the equations that characterize the equilibrium. These equations

do not permit closed-form solutions. However, we are able to derive analytical expressions

15Recall from (11) that total seignorage is Πtn (ωt) and that it gets refunded in proportion to wealth, so

an agent with wealth Wh
t gets Πtn (ωt)

Wh
t

Pt
= G (ωt)n (ωt)W

h
t .

16Paying interest on reserves would partially offset this cost. In the end, what matters is the difference
between the nominal rate and the interest rate on reserves, which represents the net cost of holding reserves.
Interest on reserves could serve as a separate policy tool for achieving financial stability while maintaining
price stability in the presence of nominal price rigidities, see Kashyap and Stein (2012).
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that highlight key mechanisms. In the next section, we provide a full analysis of the model’s

implications by applying numerical methods.

A. The value function and the demand for leverage

For simplicity of notation, we drop agent, type, and time subscripts though it should be

understood that they apply. Let θλVWW ≥ 0 and θ0VWW ≥ 0 be the Lagrange multipliers

on the reserves and non-negativity constraints. By Ito’s lemma we can rewrite the HJB

equation as the Lagrangian

0 = max
c,wS ,wM

f (cW, V ) + VWW [r − c+ wS (µ− r)− wMn+Gn] (19)

+Vω

[
κ (ω − ω) + ω (1− ω)µω

]
+ VWωWω (1− ω)wSσωσ +

1

2
VWWW

2 (wSσ)2

+
1

2
Vωωω

2 (1− ω)2 σ2
ω + θλVWW

[
wM − λσ2 (wS − 1)

]
+ θ0VWWwM .

The following proposition gives the form of the value function up to an an unknown function

of the wealth distribution J (ω) together with the equation that characterizes it.

Proposition 1. Each agent’s value function has the form

V (W,ω) =

(
W 1−γ

1− γ

)
J (ω)

1−γ
1−ψ . (20)

The unknown function J (ω) gives the agent’s consumption-wealth ratio, c∗ = J and solves

the second-order ordinary differential equation

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
r + λσ2θλ +Gn

)
− 1/ψ

Jω
J

[
κ (ω − ω) (21)

+ ω (1− ω)µω

]
− 1/ψ

2

[(
ψ − γ
1− ψ

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

+
1

2

(
1− 1/ψ

γ

)[
µ− r
σ2
− λθλ +

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]2
σ2

if γB − γA ≥ λn, with θλ = n if the agent is of type A and θλ = 0 if the agent is of type B.

If instead γB − γA < λn, J solves

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
µ− γ

2
σ2
)
− 1/ψ

Jω
J

[
κ (ω − ω) + ω (1− ω)µω

]
. (22)

Proof of Proposition 1. The proof is contained in Appendix A.
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The function J is type-specific but not agent-specific since it does not depend on wealth.

Instead, it depends solely on the wealth distribution ω. As a result, ω is a sufficient statistic

for asset valuations and other equilibrium quantities.

Using the value functions, we can solve for agents’ portfolio demands. Proposition 2

below provides the conditions under which banks take leverage (by issuing deposits), and

characterizes their demand for the risky endowment claim as it depends on the central bank’s

nominal rate policy.

Proposition 2. Banks take leverage/deposits (wAS > 1) if and only if

γB − γA > λn. (23)

In this case, banks’ portfolio holdings of the endowment claim are given by

wAS =
1

γA

[
µ− r
σ2
− λn+

(
1− γA

1− ψA

)
JAω
JA

ω (1− ω)
σω
σ

]
. (24)

Proof of Proposition 2. The proof is contained in Appendix A.

Equation (24) has three parts. The first term, (µ − r)/σ2, is the standard “myopic”

mean-variance tradeoff for the endowment claim. It shows that banks take more leverage

when there is a higher return premium per unit of risk. The third term, which depends on

JAω , represents the intertemporal hedging component of banks’ demand for the risky asset.

This component determines how much banks adjust their current risk taking to hedge future

changes in investment opportunities. The investment opportunity set is stochastic because

of variation in aggregate risk aversion that is induced by changes in the relative wealth ω of

the risk-tolerant and risk-averse agents.

The term −λn in equation (24) gives the direct impact of the nominal rate on bank

leverage, which we summarize in the following corollary.

Corollary 1. All else equal, an increase in the nominal interest rate reduces bank leverage.

For every dollar of deposit funding, banks must increase their reserves holdings by the

reserve requirement. Since the excess return on reserves is the negative of the nominal rate,

holding reserves is costly. An increase in the nominal interest rate raises the effective cost of

deposits and results in less leverage.

Using (24), we can see that an increase in the nominal rate works like an increase in

banks’ effective risk aversion. This in turn raises the economy’s aggregate risk aversion and

hence also the risk premium.
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Proposition 2 also shows that banks lever up only if agents’ risk aversions differ sufficiently

to overcome the cost of leverage. The difference in risk aversions multiplied by the return

variance,
(
γA − γB

)
σ2, measures the risk premium earned by banks on their first dollar of

leverage. This premium reflects the gains from risk sharing. For banks to take leverage, it

must be greater than the cost of leverage which is given by the nominal rate n multiplied by

the reserve requirement λσ2.

Corollary 2. If λn ≥ γB − γA then wAS = wBS = 1.

If the cost of leverage exceeds the difference in risk aversions then banks do not raise

deposits and the two groups remain in “financial autarky”.

B. The external finance spread and the Fed Funds rate

Next, we relate the external finance spread and the Fed Funds rate inside our model. The

Fed Funds market is a short-term (mostly overnight) uncollateralized lending market for

banks in the US.17 The rate that prevails in this market, the Fed Funds rate, has emerged as

a key target for monetary policy. Unlike deposits, Fed Funds loans are not subject to reserve

requirements. In equilibrium, banks must be indifferent between raising a dollar of funding

in the form of deposits or Fed Funds. The real Fed Funds rate (FFr) must therefore equal

the real deposit (or risk-free bond) rate plus the cost of the reserve requirement:

FFrt = r (ωt) + λσ2
t n (ωt) . (25)

The term λσ2n captures the spread between the Fed Funds rate and the rate on deposits or

TBills. This spread represents the external finance spread, since it is the difference between

the value of a dollar inside the banking system versus outside. In the literature (Bernanke

and Gertler 1995), this term is similarly used to refer to the gap between the cost of banks’

marginal sources of funding and the rate on risk-free deposits or short-term TBills.

We highlight the importance of the external finance spread in the model by rewriting

equation (24) for banks’ optimal leverage/risky claim holdings as follows:

wAS =
1

γA

[
µ− FFr

σ2
+

(
1− γA

1− ψA

)
JAω
JA

ω (1− ω)
σω
σ

]
. (26)

17The Fed Funds market represents a substantial source of overnight funding for large US money-center
banks. The other significant source of interbank uncollateralized dollar funding is the Eurodollar market.
The prevailing rate in that market, LIBOR, tracks the Fed Funds rate very closely (Kuo, Skeie, and Vickery
2010).
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This shows that banks’ constrained leverage can be recast as an unconstrained optimal

portfolio decision if the real interest rate is replaced by the cost of external financing, which

exceeds the risk-free rate by the external finance spread.

Equation (26) shows that changes in the nominal rate affect bank leverage by changing

the external finance spread. When the central bank increases the nominal rate, the external

finance spread widens, reducing banks’ demand for leverage. In turn, this increases in

effective aggregate risk aversion and the price of risk.

Figure 1 plots the empirical relationship between the level of the Fed Funds rate (solid

line, left axis) and the Fed Funds-TBill spread (dashed line, right axis) for the period July

1980 to May 2008. The beginning of this period corresponds roughly to the abolition of

Regulation Q, which limited the rate banks could pay on deposits, while the end corresponds

roughly to the beginning of the financial crisis, which temporarily introduced credit risk into

the Fed Funds market. The figure plots 20-week moving averages of these series.

The figure displays a remarkably tight relationship between the two series over this 28-

year period. Indeed, the correlation is 86%. Moreover, the Fed Funds-TBill spread closely

tracks both the trend and the cycles in the Fed Funds rate over this period. The evidence

shows a relationship between the levels of interest rates and bank funding costs and therefore

presents a challenge to models driven solely by interest rate shocks.

The average Fed Funds rate over this period is 6.25%, while the average Fed Funds-

TBill spread is 0.57%. The sensitivity of the Fed Funds-TBill spread to the Fed Funds rate,

estimated via OLS regression, is 0.14. In the model, this value corresponds to the reserve

requirement. In practice, the reserve requirement on net transaction accounts in the US is

10%.

The relationship between the nominal rate and the external finance spread is more general

than the reserves-based approach employed here. Broadly speaking, it can be induced by

both asset- and liabilities-side frictions. The reserve requirement represents an asset-side

friction. In Appendix C, we present a version of the model in which a liabilities-side friction,

a tradeoff between cheap deposit funding and leverage, generates this relationship.

C. Reserves value and implementation dynamics

Recall that reserves are locally risk-free yet their excess return, −n, is negative in equilibrium.

The reason for this is that reserves give banks the right to take leverage, which we can think

of as a latent dividend stream. Its value is given by the Lagrange multiplier on banks’

reserve requirement, θAλ , which in equilibrium equals the nominal rate n. At the same time,

the risk-adjusted real return on any asset must equal r. Hence the capital gain on reserves,
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dπ/π = −idt, must adjust so that:

r = n− i. (27)

This is Fisher’s equation. Interpreted through the lens of asset pricing, it states that the

real risk-free rate r equals the capital gain on reserves −i plus the latent dividend stream n.

The following proposition solves for the value of reserves G and the law of motion for

their quantity M that supports the central bank’s nominal interest rate rule.

Proposition 3. The value of reserves as a share of aggregate wealth is given by

G(ωt) = ωtλσ
2
t (w

A
S,t − 1). (28)

Under the central bank’s nominal rate rule n (ωt), the quantity of reserves Mt must follow

the law of motion

dMt

Mt

= [n (ωt)− r (ωt)] dt+
dΠt

Πt

(29)

= [n (ωt)− r (ωt)] dt+
dG (ωt)

G (ωt)
+
dPt
Pt

+
dG (ωt)

G (ωt)

dPt
Pt

. (30)

Proof of Proposition 3. The proof is contained in Appendix A.

The dynamics of the quantity of reserves in equation (29) are given as a function of the

central bank’s policy n(ω), and two endogenous quantities, the total value of reserves Π(ω),

and the real rate r(ω). The central bank adjusts the growth rate of reserves to achieve the

target while responding to underlying shocks.

Note that the growth rate of reserves is stochastic even though realized inflation is locally

deterministic. To attain the nominal rate n (ω), the central bank must influence the rate of

return on reserves, which depends on the state of the economy ω. In particular, to maintain

a stable nominal rate, the quantity of reserves must keep up with aggregate wealth P and

demand for reserves G.

Equation (29) also implies the following corollary.

Corollary 3. The nominal interest rate depends on the growth rate of reserves, not their

level, which is not separately identified.

This result follows directly from equation (29), which shows that n(ω) is related to the

growth of M , not the level. A specific value of M pins down the price level (Π = Mπ), but

the nominal rate depends only on the growth rate of M . Thus, the model features neutrality

with respect to the quantity of reserves.
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Description Parameter Value

Risk aversion A γA 1.5
Risk aversion B γB 15
EIS ψA, ψB 3.5
Reserve requirement λσ2

D 0.1
Endowment growth µD 0.02
Endowment volatility σD 0.02
Time preference ρ 0.01
Death rate κ 0.01
Type-A share of population ω 0.10
Nominal Rate 1 n1 0%
Nominal Rate 2 n2 5%

Table I: Parameter values. This table lists the benchmark parameter values used to
illustrate the results of the model.

V. Results

To further examine the impact of monetary policy on the economy, we choose values for

the model parameters, specify a nominal rate policy, and solve for the resulting equilibrium.

Since the model does not permit a closed-form solution, we solve it numerically. This requires

solving the HJB equations of the two types of agents simultaneously. We do this using

Chebyshev collocation, which produces a global solution. Fernández-Villaverde et al. (2012)

emphasize the importance of obtaining global solutions for understanding the nonlinearities

inherent in the effects of monetary policy.

A. Parameters

Table I displays our benchmark parameter values. We set the risk aversions of the two agents

at 1.5 for type A and 15 for type B in order to generate a substantial demand for risk sharing.

We set the elasticity of intertemporal substitution (EIS) to 3.5 for all agents so that

the two types differ only in risk aversion.18 An EIS value greater than one implies that an

increase in effective risk aversion, for example generated by a rise in the nominal interest

rate, results in a decrease in the equilibrium wealth-consumption ratio. Thus, as rates rise,

18Campbell (1999) estimates an EIS less than one based on a regression of aggregate consumption growth
on the real interest rate. Running this regression within our model would produce an estimate that is even
lower—in fact zero—as consumption growth is i.i.d. Our model provides an example where this regression
is misspecified due to limited risk sharing.
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prices fall.

We pick the reserve requirement parameter λ so that λσ2
D = 0.1. Since σ2

D is similar

in magnitude to σ2
t , the reserve requirement is about 10%. In practice, this is the reserve

requirement for net transactions accounts in the US.

We set the endowment growth rate and volatility to 2%, consistent with standard esti-

mates for US aggregate consumption growth and volatility. We set agents’ time preference

parameter ρ and death rate κ both to 0.01, which leads to real interest rates near 2%. To

stabilize banks’ wealth share ω at moderate levels, we set the population share of A agents

ω to 10%.

We compare equilibria across two nominal rate policies. In the first policy, the nominal

rate is identically zero. In this case, holding reserves is costless, so the model is equivalent

to a frictionless one with no reserve requirement. This case represents a useful frictionless

benchmark. In the second policy, the nominal rate is at 5%, making reserves costly and

constraining leverage. While the model allows for much more complex policy rules, we

restrict attention to these simple cases in order to convey the main intuition. We consider

dynamic policies later in the paper.

B. Portfolio Choice

Figure 2 shows the impact of higher nominal rates on the holdings of risky claims by banks

(top panel) and depositors (bottom panel). The plots show portfolio weights across different

values of the wealth distribution ω under policy n1 = 0% (blue triangles) and policy n2 = 5%

(red squares).

As the nominal rate rises, bank leverage falls at every value of the wealth distribution.

The drop is larger when banks’ wealth is relatively small (low ω). When ω is close to zero,

banks’ risky asset holdings decrease from around 10 times their net worth to less than 2

times. At moderate levels of ω between 0.2 and 0.4 where the economy spends most of its

time, banks’ holdings of risky assets decrease from between 2 and 4 times net worth under

n1 to slightly above 1 under n2, so that a near complete deleveraging takes place.

As the bottom panel of Figure 2 shows, depositor holdings of the risky asset offset the

decrease in bank holdings. For instance, when ω is between 0.2 and 0.4, depositors hold 40%

of their wealth in risky claims under n1 = 0%, rising to almost 100% under n2 = 5%. The

shift in the allocation of risk in the direction of the more risk averse depositors is tantamount

to increasing the effective risk aversion of the representative investor.

The relationship between the portfolio weight and the wealth share ω in Figure 2 is a result

of market clearing. When ω is close to either zero or one, a single type of agent dominates
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the economy, which reduces the opportunity for risk sharing. Agents of the remaining type

must hold all their wealth in the endowment claim, whereas agents of the disappearing type

can be satisfied with a vanishingly small amount of borrowing and lending. Thus, when ω

is near zero, prices are set by depositors, causing banks to take high leverage as long as the

nominal rate is not too high. By contrast, when ω is near one, banks set prices, making risky

claims unattractive to depositors unless a high nominal rate keeps the risk premium high.

We see that under n2 = 5%, reserves are sufficiently costly so that banks take almost

no leverage. At even higher levels of n, the economy enters financial autarky (see Corollary

2): the credit market shuts down and both types of agents hold all their wealth in the risky

endowment claim at all levels of ω. This is why under n2 = 5% portfolio demand is relatively

flat in ω for both types of agents.

C. The price of risk and the risk premium

Figure 3 shows how the Sharpe ratio (top panel) and risk premium (bottom panel) of the

endowment claim change with the interest rate policy. As noted above, the effective risk

aversion in the economy is higher at the higher nominal rate, and this is indeed reflected in

a higher Sharpe ratio. At moderate levels of ω between 0.2 and 0.4, the price of risk goes

up by a factor of between two and four in going from the low-rate policy n1 = 0% to the

high-rate policy n2 = 5%. The effect is even stronger at higher levels of ω, rising to an

almost ten-fold increase near ω = 1.

The upper value of the Sharpe ratio near 0.3 is due to the high risk aversion of depositors.

When rates are high and depositors are required to hold almost 100% of their wealth in risky

claims, the price of risk approaches γBσD, its value in an economy inhabited solely by the

more risk averse agents.

The bottom panel of Figure 3 shows that the increase in the risk premium largely tracks

the increase in the Sharpe ratio. At ω between 0.2 and 0.4, the risk premium rises from 0.15–

0.3% under n1 = 0% to near 0.6% under n2 = 5%. The small differences in the shapes of the

risk premium and Sharpe ratio curves are due to changes in the volatility of the endowment

claim induced by the two policies.

D. Volatility

Figure 4 plots the volatility of returns. Although cash flow volatility is constant, return

volatility is time varying. Moreover, it exceeds cash flow volatility in a hump-shaped pattern.

Under the low-rate policy n1 = 0%, return volatility peaks near ω = 0.2 at about 2.8%, which
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is 40% higher than fundamental volatility.

The excess volatility of returns is a result of changes in discount rates. For a given

nominal rate policy, the aggregate discount rate is determined by a weighted average of

the risky-asset demands of the two agent types. The weights depend on ω. At moderate

values of ω, banks take significant leverage and at the same time command enough wealth

to affect prices. As a result, in this region endowment shocks have a large effect on banks’

wealth share ω. This makes aggregate risk aversion and the discount rate volatile, which in

turn makes prices volatile. By contrast, when either type of agent dominates the economy,

returns do not change the risk aversion of the representative investor by much and there is

little variation in discount rates. Return volatility is then close to fundamental volatility.

Note that excess volatility is much lower under the high-rate policy n2 = 5%. This is

because bank leverage is reduced so that shocks do little to change the wealth distribution,

and by extension discount rates. Hence, Figure 4 shows that a low interest rate policy

is associated with greater endogenous risk. This result illustrates the potential role for

monetary policy in promoting financial stability.

We note that return volatility is higher than fundamental volatility because discount

rates are “counter-cyclical”. The presence of leverage implies that a positive endowment

shock disproportionately raises the net worth of banks, which lowers effective aggregate risk

aversion and the discount rate. As a result, endowment shocks and discount rate shocks

reinforce each other, amplifying realized returns.

E. The real interest rate

Figure 5 plots the equilibrium real interest rate under the two nominal rate policies. The

real rate is lower under the high nominal rate policy n2 = 5% than under n1 = 0%. The

difference between the real rates under the two policies is greatest near ω = 1. Recall that

the same pattern holds for depositors’ portfolio holdings in Figure 2. At high nominal rates,

depositors retain a large amount of risk and so the real rate is lower.

It may seem surprising that the increase in the nominal rate has opposing effects on the

risk premium and risk free rate. Yet, this is a direct consequence of the higher nominal

rate increasing aggregate risk aversion. Higher risk aversion increases both risk prices and

precautionary savings. The risk premium rises and the hence the (real) interest rate falls.19

We note that the real rate effect can in principle be reversed without affecting the risk

19The same result obtains in homogeneous economies in a comparative static with respect to risk aversion.
Specifically, in a homogeneous economy with RRA γ and EIS ψ, we have ∂

∂γ (µ− r) = σ2 > 0 and ∂
∂γ r =

− 1
2σ

2 (1 + 1/ψ) < 0.
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premium effect, which is our main focus. For example, in the version of the model developed

in Appendix C, this can happen due to depositors’ preference for liquidity. Introducing

nominal price rigidities would also cause the real and nominal rate to move in tandem.

F. Valuations

Figure 6 plots the wealth-consumption ratio under the two policies. Although a higher

nominal rate has opposing effects on the risk premium and real risk-free rate, it has an

unambiguous net impact on the value of the endowment claim. For all values of ω, the

valuation ratio is higher under the low-rate policy n1. The effect is strongest near the middle

of the state-space where the value of the endowment claim is about 15% higher under n1.

The sign of the net impact of nominal rates on valuations is a function of the EIS.

When the EIS is greater than one, greater risk aversion reduces demand for assets causing

valuations to fall. In this case the rise in the risk premium exceeds the fall in the interest

rate. In contrast, when the EIS is less than one, the opposite occurs and valuations actually

rise in risk aversion.

While the higher nominal rate uniformly decreases valuations, the size of the impact is

non-monotonic in ω. In particular, it is highest at intermediate values of ω, when the wealth

shares of both banks and depositors are substantial. In this region, the deleveraging induced

by high nominal rates has a large impact on the allocation of risk: it causes demand for risky

assets and the supply of deposits to shrink substantially. In contrast, when ω is near zero,

a reduction in leverage has little effect on allocations since banks hold few assets. Similarly,

when ω is close to one, the supply of deposits is low regardless of the nominal rate. Thus,

the effect of monetary policy on valuations is largest when aggregate risk sharing (measured

either by aggregate leverage or aggregate deposits), is at its greatest extent.

G. Wealth distribution

While the nominal rate has no effect on aggregate leverage when ω equals zero or one, it

still has an effect on the price of the endowment claim, as Figure 6 shows. This is due to

the impact that the nominal rate has on the dynamics of the wealth distribution. At higher

nominal rates, banks take less risk and their wealth tends to grow more slowly. As a result,

the stationary distribution for their wealth share ω centers around a lower value. This is

shown in Figure 7, which depicts this stationary distribution under the two nominal rate

policies obtained by solving the associated forward Kolmogorov equation.

Since a higher nominal rate diminishes the expected future size of banks, it increases
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the expected aggregate risk aversion of the economy, and hence also discount rates. This

dynamic effect on prices via expected future risk aversion is in addition to the local, direct

effect of higher nominal rates on risk taking. Below, we further explore the dynamic asset

price effects of changes in interest rates by looking at policy shocks and forward guidance.

H. Reserves

Figure 8 plots the ratio of the value of reserves to total wealth (G) under each policy. The

wealth share of reserves is very small under the high nominal rate policy n2 = 5%, and for

most values of ω it is much greater under n1 = 0%. Since higher nominal rates make holding

reserves more costly, banks hold less reserves (and take less leverage). Indeed, if the interest

rate is high enough as to induce financial autarky (Corollary 2) reserves holdings fall to zero.

In Figure 8, the increase in equilibrium reserves holdings in moving from policy n2 to a

zero-interest rate policy is large. This occurs because under a zero nominal rate there is no

cost to holding reserves as they have the same rate of return as bonds.

Figure 8 further shows that reserves holdings depend on the relative size of bank wealth

ω. The relationship is non-monotonic. Holding the nominal rate fixed, equilibrium reserves

holdings at first increase in banks’ wealth, and then start to decrease. This shows that

aggregate reserves can both increase and decrease independently of any change in the stance

of monetary policy as measured by the nominal rate.

The non-monotonic relationship between banks’ wealth and reserve holdings tracks the

level of aggregate leverage in the economy, ω
(
wAS − 1

)
. When bank wealth ω is small,

aggregate leverage is small even though per dollar banks are highly levered (wAS − 1 is high).

As banks’ wealth increases, their per-dollar leverage decreases but it does so less rapidly at

first as the risk premium remains high. Aggregate leverage therefore increases. As bank

wealth continues to rise, however, the drop in the risk premium causes per-dollar leverage

to decline faster, and therefore aggregate leverage falls.

VI. Understanding dynamic policies

We now analyze two applications in which dynamic policies play a central role. The first is

one in which the central bank has already lowered the nominal rate to zero, and yet wishes

to further support asset prices. In the literature this is often referred to as “hitting the

zero lower bound”. We show how the central bank can use “forward guidance”, lowering

investors’ expectations of future nominal interest rates, to further support asset prices.

Our second application implements and interprets a policy that captures the notion of a
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“Greenspan put”. Under a Greenspan put, the central bank responds to negative shocks by

decreasing nominal interest rates in an effort to stabilize asset prices.

A. The zero lower bound and forward guidance

A zero lower bound arises endogenously in our model. Mathematically speaking, the nominal

rate must be nonnegative because it equals the Lagrange multiplier on the reserve holdings

constraint. The intuition is that when the nominal rate is at zero, banks are satiated in their

demand for risk, as shown in Proposition 2. Their weight in the risky asset then equals its

unconstrained optimum, and they have no desire to increase risk taking any further.

If the central bank did try to decrease the nominal rate below zero, banks would borrow

deposits to invest in reserves, rather than in risky assets. Since reserves are riskless, this

combination would represent an arbitrage. The resulting demand for reserves would force

the nominal rate back up to zero. This asymmetry between positive and negative nominal

rates reflects the fact that the reserves requirement forces banks to hold a minimum amount

of reserves, but does not prevent them from holding excess reserves.

Nevertheless, the central bank can influence asset prices by changing the course of ex-

pected future interest rates, i.e. forward guidance. This is illustrated in Figure 9. The top

panel plots two nominal rate policies, a benchmark policy and a forward guidance policy.

Consider a situation in which bank capital has fallen to a low level as in a financial crisis,

and as a result the central bank has lowered the nominal rate to zero. Under the benchmark

policy nfg,2 (red squares), investors believe the central bank will increase the nominal rate

as soon as bank capital has recovered to a value of ω = 0.25. In contrast, under the forward

guidance policy nfg,1 (blue triangles), the central bank commits to delaying the increase in

the nominal rate until ω = 0.3. Hence, under forward guidance, rates are expected to remain

low for a prolonged period.

The bottom panel of Figure 9 plots the ratio of the prices of the endowment claim under

the two policies, Pfg,1/Pfg,2. Consider the region where ω is less than 0.25, so the central

bank has hit the zero lower bound under both policies. The plot shows that the central

bank is nevertheless able to induce an increase in asset prices by guiding down expectations

of future rates under policy nfg,1. Indeed, forward guidance has a substantial impact of

on the current price of the endowment claim. For example, for ω = 0.25 the price of the

endowment claim is around 4% higher under the forward guidance policy nfg,1 than under

the benchmark policy nfg,2.

Guiding future nominal rates down increases prices by inducing a decrease in future

discount rates. Investors expect that assets will be worth more in the future, and they are
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therefore willing to pay more for them today. Note that this effect is purely dynamic, it does

not work by changing the cost of taking leverage today since this cost is already zero.

Finally, note that prices remain higher under forward guidance even at values of ω > 0.3,

where rates under the two policies are the same. This happens because investors take into

account the positive impact of forward guidance on valuations when bank capital is low.

B. Greenspan put

As our second application of a dynamic policy, we implement a “Greenspan put”.20 We

interpret a Greenspan put as a policy that reduces nominal interest rates in the event of a

large enough sequence of negative shocks. Specifically, we consider the simple example of a

constant-rate benchmark, ngp,1 (ωt) = 0.04, versus a Greenspan put alternative:

ngp,2 (ωt) = min

{
0.05,

0.05

0.3
ωt

}
. (31)

Under the Greenspan put policy, the nominal rate rises from 0% at ω = 0 at a constant

slope until it reaches 5% at ω = 0.3, and then levels off. This implies that a sequence of

negative shocks that pushes the bank capital share ω below 0.3 triggers progressive rate

cuts. The level of the constant benchmark ngp,1 is set so that the two policies have similar

unconditional average nominal rates (integrated against the stationary distribution of ω).

The top left panel of Figure 10 plots the two policies, while the top right panel displays

the valuation ratio of the endowment claim. The Greenspan put policy ngp,2 results in lower

prices when bank capital ω is high, as it implements a higher nominal rate. However, when

ω approaches the cutoff 0.3 from above, the valuation under ngp,2 approaches that under the

benchmark ngp,1. This occurs because of the nearing prospect of lower nominal rates. As ω

falls below 0.3, the valuation under ngp,2 flattens out and even mildly increases, whereas it

falls under ngp,1. In this way, the central bank is supporting asset prices by cutting nominal

rates, which increases bank leverage. As ω continues to fall however, there is little room

for further increasing leverage. Valuations can no longer be supported, and they start to

fall steeply. By the time ω nears zero, prices are nearly equal under the two policies. The

Greenspan put policy therefore has the effect of stabilizing prices in a moderate downturn

but it cannot forestall a severe price decline in a highly adverse scenario.

The bottom left panel of Figure 10 plots the risk premium. When bank capital is high,

20The term dates to the late 1990s when critics faulted Federal Reserve chairman Alan Greenspan for
“encouraging excessive risk taking by creating what came to be called ‘the Greenspan put’, that is, the belief
that the Fed would, if necessary, support the economy and therefore the stock market” (Blinder and Reis
2005).
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the higher nominal rates of the Greenspan put policy result in a higher risk premium. As ω

declines towards 0.3, the stabilization effect of the policy results in lower risk premia. Once

ω falls below 0.3, the risk premium drops precipitously as a result of the aggressive rate

cutting. However, when ω nears zero, prices are set to fall even more steeply than under the

benchmark policy, so the risk premium under the Greenspan put eventually exceeds that

under the benchmark.

The bottom right panel of Figure 10 plots volatility. The pattern here is striking. Under

the Greenspan put policy ngp,2, volatility is lower when ω is high. This is due to the higher

nominal rate in this region, which suppresses risk taking and stabilizes aggregate risk aver-

sion. As ω declines towards 0.3, it dips further as the prospect of intervention keeps prices

from falling. Below 0.3, the “put” goes “into the money” and the rate cutting kicks in,

causing volatility to fall even further, briefly dipping below fundamental volatility. In this

way, the Greenspan put is able to reduce volatility in moderate downturns. However, if ω

declines even further, the temporary support runs out, and volatility increases sharply. The

spike in volatility is due to the high level of leverage built up as a result of the Greenspan

put policy.

The results in Figure 10 convey the basic tradeoff that underlies the Greenspan put.

On one hand, it achieves short-run stability by boosting leverage in moderate downturns.

However, that same leverage build-up leads to instability should the downturn prove severe.

Moreover, greater leverage raises the likelihood that bank capital will fall to the low levels

associated with a severe downturn. These results formalize the concern that the Greenspan

put has short-term benefits and long-term costs (see Blinder and Reis 2005).

VII. Policy shocks

Under the baseline model, the interest-rate policy gives the nominal rate as a function of the

single state variable ω. Consequently, there is no independent monetary policy shock. For

this reason, we have thus far compared different policies across equilibria. In this section,

we extend the model to incorporate an independent shock to the interest rate policy.

We model the monetary policy shock as exogenous. The central bank “surprises the

market” by raising or lowering nominal rates independently of the endowment shock. A

policy shock has two effects. The first is direct: it changes banks’ cost of taking leverage.

This effect is present in the baseline comparison across policies. The second, indirect effect,

is that a surprise rate change impacts prices and causes the wealth distribution to change.

This is called a balance sheet effect in the literature. It produces second-round effects on

prices that amplify the direct impact of the rate change. In this way, the extended model
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features a dynamic that is akin to the financial accelerator.

A. Model extension

We extend the policy rule with two objectives in mind. First, we want to allow for a policy

shock that is independent of the endowment shock. This shock takes the nominal rate away

from the benchmark policy rule that agents know. This benchmark rule is a function of ω

as under the baseline model. At the same time, we do not want the nominal rate to stray

too far, so that the benchmark remains meaningful.

To that end, let nb (ωt) ∈ [n, n] be the benchmark policy rule and let the nominal rate nt

follow the process

dnt = −κn
[
nt − nb (ωt)

]
dt+ (nt − n) (n− nt)σndBn

t , (32)

where dBn are the policy shocks, which we assume are independent of the endowment shocks

dB. The nominal rate reverts towards the benchmark nb (ωt) at the rate κn. The structure

of the diffusive component implies that n is bounded below by n and above by n.

Because shocks to n are persistent, equilibrium now depends on two state variables,

the wealth share ω and the nominal rate n. Hence, we rewrite all endogenous quantities

as functions of the two state variables, and we maintain the same notation for the shock

exposures with the understanding that they represent 2 × 1 vectors whose first and second

components correspond to the endowment shock dB and the policy shock dBn. The rest of

the model, including the reserve requirement, is unchanged.

We now state the form of the agent’s value function and optimal portfolio choice under

the extended model, leaving the full derivation to Appendix B.

Proposition 4. The agents’ value functions are given by

V (W,ω, n) =

(
W 1−γ

1− γ

)
J (ω, n)

1−γ
1−ψ , (33)

where J (ω, n) represents the agents’ optimal consumption-wealth ratio, c∗ = J . Banks take

leverage (wAS > 1) if and only if

λn < γB − γA (34)

−
[(

1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

][ Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]
.
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In this case, their holdings of the endowment claim are given by

wAS =
1

γ

{
µ− r
σ′σ

− λn (35)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
.

Proof. The proof is contained in Appendix B.

The solution to the extended model follows that of the benchmark model. We note

two differences. First, the portfolio demand (35) includes a hedging term for policy shocks.

Second, the boundary of the region in which banks take leverage in n × ω space (equation

34) depends on the difference in hedging demands between the two agent types. The reason

is that, even though ω becomes locally deterministic in the no-leverage region, n does not.

B. Results

To examine the model with policy shocks, we set nb = 0.03, n = 0.00, n = 0.06, κn =

0.01, and σn = 5.21 A high persistence (low κn) increases their impact of policy shocks on

valuations, while the boundaries n and n keep the nominal rate from drifting far away from

its benchmark.22

Figure 11 shows the impact of a policy shock that raises the nominal interest rate from

1% to 4%, at different values of ω. As in the benchmark case, the increase in the nominal

rate leads to a higher risk premium, lower real interest rate, and lower valuation of the

endowment claim. Since the shock is highly persistent, the effects are similar to the changes

observed in the benchmark model across the high and low nominal rate policies.

Figure 11 further shows that policy shocks have a second-round effect on prices. This

occurs because in changing prices, the interest rate shock causes a change in banks’ capital

share. When the nominal rate is low, banks employ high levels of leverage. As a result, the

fall in the value of the endowment claim resulting from the surprise increase in the nominal

rate causes banks to lose capital disproportionately. The top left panel shows this fall in

banks’ capital share. The effect is greatest at moderate levels of ω where aggregate bank

leverage is highest.

The top right panel shows that this bank balance sheet effect amplifies the first-round fall

in prices. The dashed red line isolates the direct effect of the policy shock on the valuation

21Thus, the volatility of the nominal rate shock is 0.45% near the benchmark, the point at which it peaks.
22Figure B.1 in Appendix B plots the joint stationary density of n and ω under the model to give a sense

of the distribution of these state variables.
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ratio, calculated by holding ω constant. The total effect, given by the solid red line, also

incorporates the additional price impact induced by the change in the bank capital share.

By reducing banks’ capital, surprise rate hikes reduce their risk-bearing capacity, causing

prices to fall further. Hence, the total effect is always greater than the direct effect. This

amplification resembles the financial accelerator of Bernanke, Gertler, and Gilchrist (1999),

except it is driven by policy shocks.

The bottom panels of Figure 11 decompose the valuation effect of the policy shock into

its risk premium and real interest rate components. Looking at the risk premium, the direct

effect is large, while the indirect effect is small. This is because under these parameters, at

the higher nominal rate bank leverage is low and therefore nearly flat in ω. Turning to the

real interest rate, the direct effect of the policy shock is negative, as in the baseline model.

However, because the shock shifts the wealth distribution towards the risk averse depositors

who have a strong precautionary motive, the indirect effect actually raises the real rate. In

this way, the policy shock dampens the fall in the real interest rate while amplifying the rise

in the risk premium, leading to a greater fall in prices.

Finally, we note that policy shocks in our model have state-contingent magnitudes.

Specifically, a rate hike leads to greater amplification than a rate drop because banks take

less leverage at higher rates, so their capital share is less affected.

VIII. Conclusion

Contemporary monetary policy is substantially concerned with the functioning of the finan-

cial system and with valuations in the markets for risky assets. Through their effects on

financial institutions, central bank interventions drive not only the level of interest rates in

the economy, but also the level of risk premia.

We present a dynamic asset pricing framework that enables us to study the relationship

between monetary policy and risk premia. The nominal interest rate positively affects the

external finance spread that banks pay to obtain leverage, a relationship with strong empir-

ical support. Lower rates lead to greater leverage, and hence lower risk premia. They also

lead to higher volatility.

We develop two dynamic applications of our framework, forward guidance at the zero

lower bound, and a “Greenspan put”. A zero lower bound arises endogenously, reflecting

satiation in banks’ risk taking. Nevertheless, the central bank can support asset prices

further by guiding down expectations of the path of future interest rates. A Greenspan put

can stabilize prices locally by boosting leverage, but it leads to greater instability in the face

of large shocks.
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ardous times for monetary policy: what do twenty-three million bank loans say about the

effects of monetary policy on credit risk?. Econometrica, forthcoming.

Kashyap, Anil K, and Jeremy C Stein, 1994. Monetary policy and bank lending. in Monetary

policy . pp. 221–261 The University of Chicago Press.

Kashyap, Anil K, and Jeremy C. Stein, 2000. What do a million observations on banks

say about the transmission of monetary policy?. The American Economic Review 90, pp.

407–428.

Kashyap, Anil K, and Jeremy C Stein, 2012. The optimal conduct of monetary policy with

interest on reserv. American Economic Journal: Macroeconomics 4, 266–282.

, and David W Wilcox, 1993. Monetary policy and credit conditions: Evidence from

the composition of external finance. American Economic Review 83.

Kiyotaki, Nobuhiro, and John Moore, 1997. Credit cycles. Journal of Political Economy 105.

Krishnamurthy, Arvind, and Annette Vissing-Jorgensen, 2012. The aggregate demand for

treasury debt. Journal of Political Economy 120, 233–267.

Kuo, Dennis, David Skeie, and James Vickery, 2010. How well did libor measure bank

32



wholesale funding rates during the crisis?. Unpublished manuscript, Federal Reserve Bank

of New York.

Landier, Augustin, David Sraer, and David Thesmar, 2013. Banks exposure to interest rate

risk and the transmission of monetary policy. Discussion paper, National Bureau of Eco-

nomic Research.

Longstaff, Francis A., and Jiang Wang, 2012. Asset pricing and the credit market. Review

of Financial Studies 25, 3169–3215.

Lucas, Robert E., 1990. Liquidity and interest rates. Journal of economic theory 50, 237–264.

Moreira, Alan, and Alexi Savov, 2014. The macroeconomics of shadow banking. Working

paper.

Rajan, Raghuram G, 2011. Fault lines: How hidden fractures still threaten the world economy

Princeton University Press.

Stein, Jeremy C., 1998. An adverse-selection model of bank asset and liability management

with implications for the transmission of monetary policy. The RAND Journal of Eco-

nomics 29, pp. 466–486.

Stein, Jeremy C, 2012. Monetary policy as financial stability regulation. The Quarterly

Journal of Economics 127, 57–95.

Wang, Jiang, 1996. The term structure of interest rates in a pure exchange economy with

heterogeneous investors. Journal of Financial Economics 41, 75–110.

Woodford, Michael, 1990. Public debt as private liquidity. The American Economic Review

80, pp. 382–388.

, 2003. Interest and Prices: Foundations of a Theory of Monetary Policy Princeton

University Press.

Yellen, Janet L, 2011. Assessing potential financial imbalances in an era of accommodative

monetary policy. At the 2011 International Conference: Real and Financial Linkage and

Monetary Policy, Bank of Japan, Tokyo, Japan.

33



Appendix A: Baseline model

Proof of Proposition 1. Conjecture that V has the form in (20). After substituting for V
and f from (3), wealth drops out of the HJB equation (19):

0 = max
c,wS ,wM

(
1− γ

1− 1/ψ

)[(
c

J
1

1−ψ

)1−1/ψ

− (ρ+ κ)

]
(A.1)

+ (1− γ)
[
r − c+ wS (µ− r)− γ

2
(wSσ)2 − wMn+Gn

]
+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)µω + (1− γ)

Jω
J
ω (1− ω)wSσωσ

]
+

1

2

(
1− γ
1− ψ

)[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

+ (1− γ) θλ
[
wM − λσ2 (wS − 1)

]
+ (1− γ) θ0wM .

The FOC for consumption gives

c = J. (A.2)

Substituting and rearranging,

(ρ+ κ)

(
1− γ

1− 1/ψ

)
= max

wS ,wM
(1− γ)

(
1/ψ

1− 1/ψ

)
J (A.3)

+ (1− γ)
[
r + wS (µ− r)− γ

2
(wSσ)2 − wMn+Gn

]
+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)µω + (1− γ)

Jω
J
ω (1− ω)wSσωσ

]
+

1

2

(
1− γ
1− ψ

)[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

+ (1− γ) θλ
[
wM − λσ2 (wS − 1)

]
+ (1− γ) θ0wM .

Portfolio demand is characterized by

wS =
1

γ

[
µ− r
σ2
− λθλ +

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]
(A.4)

n = θB0 + θλ. (A.5)

Let

wS =
1

γ

[
µ− r
σ2
− λn+

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]
(A.6)

wS =
1

γ

[
µ− r
σ2

+

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]
. (A.7)
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There are three possible cases:

wS =


wS if wS ≤ 1
1 if wS ≤ 1 < wS
wS if 1 < wS.

(A.8)

The corresponding multipliers are

{θ0, θλ} =


{n, 0} if wS ≤ 1{

γ
λ

(1− wS) , γ
λ

(wS − 1)
}

if wS ≤ 1 < wS
{0, n} if 1 < wS.

(A.9)

Substituting into the HJB equation and simplifying,

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
r + λσ2θλ +Gn

)
(A.10)

−1/ψ

(
Jω
J
ω (1− ω)µω +

1

2

[(
ψ − γ
1− ψ

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ2

ω

)

+
1

2

(
1− 1/ψ

γ

)[
µ− r
σ2
− λθλ +

(
1− γ
1− ψ

)
Jω
J
ω (1− ω)

σω
σ

]2
σ2.

The market-clearing equation (17) for the endowment claim implies that only one type of
agents, if any, takes leverage, so the equilibrium must be in one of the three cases,

wAS > 1, wBS < 1 (A.11)

wAS = 1, wBS = 1 (A.12)

wAS < 1, wBS > 1. (A.13)

Substituting,

{
wAS , w

B
S

}
=


{
wAS , w

B
S

}
if wBS ≤ 1 < wAS

{1, 1} if wAS , w
B
S ≤ 1 < wAS , w

B
S ,{

wAS , w
B
S

}
if wAS ≤ 1 < wBS .

(A.14)

Call these three cases (i), (ii), and (iii).
Under case (i),

wAS =
1

γA

[
µ− r
σ2
− λn+

(
1− γA

1− ψA

)
JAω
JA

ω (1− ω)
(σω
σ

)]
(A.15)

wBS =
1

γB

[
µ− r
σ2

+

(
1− γB

1− ψB

)
JBω
JB

ω (1− ω)
(σω
σ

)]
. (A.16)

Note that

σω
σ

=
1

1− ω
(
wAS − 1

)
. (A.17)
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Stock-market clearing gives

1 = ωwAS + (1− ω)wBS (A.18)

= ωwAS + (1− ω)
1

γB

{
γAwAS + λn (A.19)

−
[(

1− γA

1− ψA

)
JAω
JA
−
(

1− γB

1− ψB

)
JBω
JB

]
ω
(
wAS − 1

)}
.

This gives a linear equation for wAS in terms of exogenous and conjectured quantities. The
solution is

wAS =
1− 1

γB
(1− ω)λn− 1

γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

ω + (1− ω) γA

γB
− 1

γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

. (A.20)

We need to verify wAS > 1, which gives

λn < γB − γA. (A.21)

From here we can get (µ− r) /σ2, and σω/σ. This also gives σ and hence σω, and as a result,
µ− r. To get the drift of ω, apply Ito’s Lemma to (4) and use WA +WB = P to obtain

dω

ω (1− ω)
=

(
dWA

WA
− dWB

WB

)
−
(
dWA

WA
− dWB

WB

)(
dP

P

)
. (A.22)

Substituting for the evolution of aggregate type-A and type-B wealth gives (4) and

µω =
(
wAS − wBS

)
(µ− r) + λσ2

(
wBS − 1

)
n−

(
JA − JB

)
− σωσ. (A.23)

This can be plugged into the dynamics of returns to get µ:

dR =
dD/F

D/F
+ Fdt (A.24)

=
dD

D
− dF

F
−
(
dD

D

)(
dF

F

)
+

(
dF

F

)2

+ Fdt (A.25)

µ = µD + F − Fω
F
ω (1− ω) (µω + σωσD) (A.26)

+

[(
Fω
F

)2

− 1

2

Fωω
F

]
ω2 (1− ω)2 σ2

ω

σ = σD −
Fω
F
ω (1− ω)σω. (A.27)

From here, get r using r = µ− (µ− r). Finally, plug the constraints θAλ = n and θBλ = 0 into
the HJB equations to verify the conjectures for JA and JB. To obtain the value of reserves,
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use the reserves-market clearing equation (18),

{
wAM , w

B
M

}
=

{
G

ω
, 0

}
. (A.28)

The binding leverage constraint pins down the value of reserves:

G = ωλσ2
(
wAS − 1

)
. (A.29)

Under case (ii), {
wAS , w

B
S

}
= {1, 1} (A.30){

wAM , w
B
M

}
= {0, 0} . (A.31)

The stock market clears and G = 0. From here, we get σω = 0 and so σ = σD. Next, use

µω = −
(
JA − JB

)
. (A.32)

in the dynamics of returns (A.26) and (A.27) to get µ and σ. Substituting into the HJB
equations and simplifying,

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
µ− γ

2
σ2
)
− 1/ψ

Jω
J

[κ (ω − ω) + ω (1− ω)µω] . (A.33)

This case requires

λn >
∣∣γA − γB∣∣ . (A.34)

The real interest rate lies inside a range between a lending and a borrowing rate.
Case (iii) is analogous to Case (i) with the roles reversed. It requires λn < γA − γB,

which is ruled out by assumption. This completes the proof.

Proof of Proposition 2. Banks take leverage under case (i) in the proof of Proposition 1
above. This case From (A.21), requires λn < γB − γA. Banks’ portfolio demand is then
given by (A.15).

Proof of Proposition 3. Equation (28) follows from the fact that reserves are costly and
therefore the reserve requirement binds, see (A.29). To obtain (29), apply Ito’s Lemma
to Πt = Mtπt and use the fact that inflation −dπt/πt = ι (ωt) dt = [n (ωt)− r (ωt)] dt is lo-
cally deterministic (equations 9 and 10). Finally, apply Ito’s Lemma to Πt = GtPt to obtain
(30).
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Appendix B: Policy shocks extension

This Appendix contains the derivations for the model with policy shocks. Denote the dy-
namics of ω by

dω = κ (ω − ω) dt+ ω (1− ω)
[
µω (ω, n) dt+ σω (ω, n)′ dB

]
. (B.1)

Write the return process

dR =
dP +Ddt

P
(B.2)

= µ (ω, n) dt+ σ (ω, n)′ dB, (B.3)

the instantaneous real risk-free rate as r = r (ω, n), and the dividend yield as F = F (ω, n).
Applying Ito’s Lemma gives

µ = µD + F − Fω
F

[κ (ω − ω) + ω (1− ω) (µω + σ′ωσD)]− Fn
F
κn (n− nb)

+

[(
Fω
F

)2

− 1

2

Fωω
F

]
ω2 (1− ω)2 σ′ωσω +

[(
Fn
F

)2

− 1

2

Fnn
F

]
(n− n)2 (n− n)2 σ2

n

+2

[(
Fω
F

)(
Fn
F

)
− 1

2

Fωn
F

]
ω (1− ω) (n− n) (n− n)σω,2σn (B.4)

σ =

[
σD
0

]
− Fω

F
ω (1− ω)σω −

Fn
F

(n− n) (n− n)

[
0
σn

]
. (B.5)

The reserve requirement is

wM ≥ max
[
λσ′σ (wS − 1) , 0

]
. (B.6)

The wealth dynamics are as in the benchmark case.

Proof of Proposition 4. Dropping agent subscripts and applying Lagrange multipliers θλVWW
and θ0VWW on the leverage and non-negativity constraints, the HJB equation is

0 = max
c,wS ,wM

f (cW, V ) + VWW [r − c+ wS (µ− r)− wMn+Gn] (B.7)

+Vω [κ (ω − ω) + ω (1− ω)µω] + Vnκn (n− nb)

+VWωWω (1− ω)wSσ
′
ωσ + VWnWwS (n− n) (n− n)σ2σn +

1

2
VWWW

2w2
Sσ
′σ

+
1

2
Vωωω

2 (1− ω)2 σ′ωσω + Vωnω (1− ω) (n− n) (n− n)σnσω,2

+
1

2
Vnn (n− n)2 (n− n)2 σ2

n + θλVWW [wM − λσ′σ (wS − 1)] + θ0VWWwM .
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Conjecture that the value function has the form

V (W,ω, n) =

(
W 1−γ

1− γ

)
J (ω, n)

1−γ
1−ψ . (B.8)

Then wealth drops out of the HJB equation:

0 = max
c,wS ,wM

1

1− 1/ψ

[
c1−1/ψJ1/ψ − (ρ+ κ)

]
+ r − c+ wS (µ− r)− γ

2
w2
Sσ
′σ (B.9)

−wMn+Gn− 1/ψ

1− 1/ψ

[
Jω
J

[κ (ω − ω) + ω (1− ω)µω] +
Jn
J
κn (n− nb)

+ (1− γ)
Jω
J
ω (1− ω)wSσ

′
ωσ + (1− γ)

Jn
J
wS (n− n) (n− n)σ2σn

]
−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ′ωσω

− 1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)(
Jn
J

)
+
Jωn
J

]
ω (1− ω) (n− n) (n− n)σnσω

−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jn
J

)2

+
Jnn
J

]
(n− n)2 (n− n)2 σ2

n

+θλ [wM − λσ′σ (wS − 1)] + θ0wM .

The FOC for consumption gives

c = J. (B.10)

Substituting and rearranging,

0 = max
wS ,wM

1/ψJ − (ρ+ κ)

1− 1/ψ
+ r + wS (µ− r)− γ

2
w2
Sσ
′σ − wMn+Gn (B.11)

− 1/ψ

1− 1/ψ

[
Jω
J

[κ (ω − ω) + ω (1− ω)µω] +
Jn
J
κn (n− nb)

+ (1− γ)
Jω
J
ω (1− ω)wSσ

′
ωσ + (1− γ)

Jn
J
wS (n− n) (n− n)σ2σn

]
−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)2

+
Jωω
J

]
ω2 (1− ω)2 σ′ωσω

− 1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jω
J

)(
Jn
J

)
+
Jωn
J

]
ω (1− ω) (n− n) (n− n)σnσω,2

−1

2

1/ψ

1− 1/ψ

[(
1− γ
1− ψ

− 1

)(
Jn
J

)2

+
Jnn
J

]
(n− n)2 (n− n)2 σ2

n

+θλ [wM − λσ′σ (wS − 1)] + θ0wM .
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Portfolio demand is characterized by

wS =
1

γ

{
µ− r
σ′σ

− λθλ (B.12)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
n = θB0 + θλ. (B.13)

Let

wS =
1

γ

{
µ− r
σ′σ

− λn (B.14)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
wS =

1

γ

{
µ− r
σ′σ

(B.15)

+

(
1− γ
1− ψ

)[
Jω
J
ω (1− ω)

(
σ′ωσ

σ′σ

)
+
Jn
J

(n− n) (n− n)
(σ2σn
σ′σ

)]}
.

There are three possible cases:

wS =


wS if wS ≤ 1
1 if wS ≤ 1 < wS
wS if 1 < wS.

(B.16)

The corresponding multipliers are

{θ0, θλ} =


{n, 0} if wS ≤ 1{

γ
λ

(1− wS) , γ
λ

(wS − 1)
}

if wS ≤ 1 < wS
{0, n} if 1 < wS.

(B.17)

Substituting into the HJB equation and simplifying,

ρ+ κ = 1/ψJ + (1− 1/ψ)
(
r + λσ′σθλ +Gn+

γ

2
w2
Sσ
′σ
)

(B.18)

−1/ψ

[
Jω
J
ω (1− ω) [κ (ω − ω) + ω (1− ω)µω] +

Jn
J
κn (n− nb)

]
−1/ψ

2

[
Jωω
J
ω2 (1− ω)2 σ′ωσω + 2

Jωn
J
ω (1− ω) (n− n) (n− n)σnσω,2

+
Jnn
J

(n− n)2 (n− n)2 σ2
n

]
− 1/ψ

2

(
ψ − γ
1− ψ

)[(
Jω
J

)
ω (1− ω)σω

+

(
Jn
J

)
(n− n) (n− n)

[
0
σn

]]′ [(
Jω
J

)
ω (1− ω)σω +

(
Jn
J

)
(n− n)

[
0
σn

]]
.

The markets for goods, stocks, and reserves must clear (the bond market clears by Walras’
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law):

ωcA + (1− ω) cB = F (B.19)

ωwAS + (1− ω)wBS = 1 (B.20)

ωwAM + (1− ω)wBM = G. (B.21)

Market-clearing implies that only one type of agents, at most, takes leverage, so there are
three possible cases in equilibrium:

wAS > 1, wBS < 1 (B.22)

wAS = 1, wBS = 1 (B.23)

wAS < 1, wBS > 1. (B.24)

Call these three cases (i), (ii), and (iii). Under case (i),

wAS =
1

γA

{
µ− r
σ′σ

− λn (B.25)

+

(
1− γA

1− ψA

)[
JAω
JA

ω (1− ω)

(
σ′ωσ

σ′σ

)
+
JAn
JA

(n− n) (n− n)
(σ2σn
σ′σ

)]}
wBS =

1

γB

{
µ− r
σ′σ

(B.26)

+

(
1− γB

1− ψB

)[
JBω
JB

ω (1− ω)

(
σ′ωσ

σ′σ

)
+
JBn
JB

(n− n) (n− n)
(σ2σn
σ′σ

)]}
.

Note that

σ′ωσ

σ′σ
=

1

1− ω
(
wAS − 1

)
(B.27)

σ2σn
σ′σ

=

[
1 +

Fω
F
ω
(
wAS − 1

)] −Fn
F

(n− n) (n− n)σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

.

Stock-market clearing gives

1 = ωwAS + (1− ω)wBS (B.28)

= ωwAS + (1− ω)
1

γB

{
γAwAS + λn (B.29)

−
[(

1− γA

1− ψA

)
JAω
JA
−
(

1− γB

1− ψB

)
JBω
JB

]
ω
(
wAS − 1

)
−
[
1 +

Fω
F
ω
(
wAS − 1

)]
·
[(

1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

] [ −Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]}
.

This gives a linear equation for wAS in terms of exogenous and conjectured quantities. The
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solution is

wAS =

1− 1
γB

(1− ω)λn− 1
γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

− 1
γB

[(
1−γA
1−ψA

)
JAn
JA
−
(

1−γB
1−ψB

)
JBn
JB

] [ Fn
F [(1−ω)−FωF ω(1−ω)](n−n)2(n−n)2σ2

n

σ2
D+(FnF )

2
(n−n)2(n−n)2σ2

n

]
ω + (1− ω) γA

γB
− 1

γB

[(
1−γA
1−ψA

)
JAω
JA
−
(

1−γB
1−ψB

)
JBω
JB

]
ω (1− ω)

− 1
γB

[(
1−γA
1−ψA

)
JAn
JA
−
(

1−γB
1−ψB

)
JBn
JB

] [ Fn
F [−FωF ω(1−ω)](n−n)2(n−n)2σ2

n

σ2
D+(FnF )

2
(n−n)2(n−n)2σ2

n

] .(B.30)

We need to verify wAS > 1:

λn < γB − γA (B.31)

−
[(

1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

][ Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]
.

From here we can get (µ− r) / (σ′σ), (σ′ωσ) / (σ′σ), and (σ2σn) / (σ′σ). This also gives σ and
hence σω, and as a result, µ− r.

Next, calculate wBS (verify wBS < 1) and calculate

µω =
(
wAS − wBS

)
(µ− r) + λσ′σ

(
wBS − 1

)
n−

(
JA − JB

)
− σ′ωσ. (B.32)

This can be plugged into the dynamics of returns to get µ, which also gives r. Finally, plug
the constraints θBλ = n and θAλ = 0 into the HJB equations to verify the conjectures for JA

and JB.
Money-market clearing gives

{
wAM , w

B
M

}
=

{
0,

G

1− ω

}
. (B.33)

The binding leverage constraint pins down the value of reserves:

G = (1− ω)λσ′σ
(
wBS − 1

)
. (B.34)

Under case (ii), {
wAS , w

B
S

}
= {1, 1} (B.35){

wAM , w
B
M

}
= {0, 0} . (B.36)

The stock market clears and G = 0. From here, we get σω = 0 and so σ = σD. Next, use
µω = −

(
JA − JB

)
in the dynamics of returns to get µ and σ. Substituting into the HJB
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equations and simplifying,

ρ+ κ = 1/ψJ + (1− 1/ψ)

[
µ+

(
1− γ
1− ψ

)
Jn
J

(n− n) (n− n)σnσ2 −
γ

2
σ′σ

]
(B.37)

−1/ψ

[
Jω
J

[κ (ω − ω) + ω (1− ω)µω] +
Jn
J
κn (n− nb)

]
−1/ψ

2

[(
ψ − γ
1− ψ

)(
Jn
J

)2

+
Jnn
J

]
(n− n)2 (n− n)2 σ2

n.

This case requires

λn >
∣∣γA − γB
+

[(
1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

]( Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

)∣∣∣∣∣ .(B.38)

The real interest rate lies inside a range between a lending and a borrowing rate.
Case (iii) is analogous to Case (i) with the roles reversed. It requires

λn < γA − γB (B.39)

+

[(
1− γA

1− ψA

)
JAn
JA
−
(

1− γB

1− ψB

)
JBn
JB

][ Fn
F

(n− n)2 (n− n)2 σ2
n

σ2
D +

(
Fn
F

)2
(n− n)2 (n− n)2 σ2

n

]
.

This completes the proof.

We solve the model using Chebyshev collocation with complete polynomials up to order
N in ω and n with N = 30.

Appendix C: “Sticky deposits” and the external finance

spread

Here we develop a parallel channel underlying the relationship between the nominal interest
rate and banks’ external finance spread based on a liabilities-side friction rather than the
asset-side friction presented in the main body of the paper. Both channels induce the same
equation linking banks demand for leverage to the nominal interest rate and therefore have
the same implications for risk premia.

The setup parallels that in the benchmark model. We focus on the points of departure.
The first is that B agents now have a preference for liquidity services, which they derive
from bank deposits. Let wM be the portfolio share of deposits. We modify the preferences
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of type-B agents to include a current period utility flow from deposits:

fB =

(
1− γB

1− 1/ψB

)
V

( C

[(1− γB)V ]1/(1−γ
B)

)1−1/ψB

+
(
1− 1/ψB

)
χ
(
wBM
)
− (ρ+ κ)

 .
(C.1)

The utility from deposits is given by the function χ, which we assume is increasing, concave,
and satisfies the Inada conditions. There are no other changes to preferences relative to the
benchmark model. A preference for liquidity makes households willing to supply deposits at
a low rate. For simplicity we leave agent A’s preferences unchanged, but the model can be
modified so that they also value liquidity.

Deposits are a long-lived asset that we take as numeraire. Each dollar of deposits is
worth πt units of consumption (the inverse price level). As in the main model, the central
bank controls the inflation rate −dπ/π so that it is locally deterministic, −dπt/πt = i (ωt) dt.
The real rate is r and the nominal rate is n (ωt) = r (ωt) + i (ωt). Again, we think of n (or
i) as an exogenous policy variable.

There are two key assumptions. The first is that the rate households earn on deposits is
low and “sticky”, meaning that it does not adjust one-for-one with market rates. Deposit
stickiness has been documented extensively in the banking literature (e.g. Driscoll and Judson
2013). It implies that the spread between the deposit rate and and the nominal rate is
increasing in the nominal rate. To keep things simple, we assume deposits earn zero nominal
interest, although any positive fraction of the market rate would do.

Deposits are a particular debt liability of A agents, the banks, to be contrasted with
non-deposits (such as Fed Funds). Deposits provide households with liquidity, whereas non-
deposits do not. As a result, non-deposits have a higher equilibrium rate of return, making
them expensive as a source of funding for banks.

The second assumption is that non-deposits require less collateral than deposits, which
sets up a tradeoff between leverage and funding cost. To formalize this, consider a bank
with risky assets (over equity) wAS and suppose that the fraction of these assets that is
pledgeable as collateral is (1− αS)wS, with 0 < αS < 1. Further suppose that each dollar of
deposits requires a dollar of pledgeable collateral, whereas a dollar of non-deposits requires
only 1 − αB dollars of pledgeable collateral, with 0 < αB < αS. Letting wAM be the bank’s
deposit holdings (so wAM < 0 when the bank is issuing deposits), and letting wAB similarly
be the bank’s non-deposit or bond holdings, the bank must have enough collateral to pledge
against its liabilities:

− wAM,t − (1− αB)wAB,t ≤ (1− αS)wAS,t. (C.2)

The left side of this equation gives the pledgeable collateral required for the bank’s liabilities,
and the right side gives its total pledgeable capacity.

Imperfect pledgeability of assets is a widespread assumption in the literature. It can be
motivated by a lack of commitment as in Kiyotaki and Moore (1997), moral hazard as in
Holmström and Tirole (1998), or an arbitrarily small probability of a crash as in Moreira
and Savov (2014). The assumption that deposits require greater collateralization than non-
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deposits follows the information-sensitivity argument in Gorton and Pennacchi (1990). This
argument stresses the idea that money-like instruments must be sufficiently collateralized to
dissuade agents from acquiring private information that could undermine their liquidity.

The collateral constraint (C.2) can be rewritten in a way that parallels the reserve re-
quirement (7) in the text. Using wM + wB + wS = 1 in equation (C.2)) and rearranging
gives

wAM,t ≥
(
αS − αB
αB

)
wAS,t −

1− αB
αB

. (C.3)

If we then let αS = (1 + λσ2
t )αB, then the constraint becomes

wAM,t ≥ λσ2
tw

A
S,t −

1− αB
αB

. (C.4)

This says that for each dollar of extra funding (wAS,t), banks must shrink their deposit funding
(wAM,t) by λσ2

t dollars.
Because the deposit rate is fixed, the amounts of deposits demanded by banks may not

equal the amount supplied by depositors. In the reserves-based model, the central bank
clears the money market. Here we instead model a new institution that fulfills this role,
which we call C banks, making them as simple as possible.

C banks issue deposits equal to the discrepancy between deposit supply coming from B
households, and deposit demand coming from A banks, G (ωt) = ωwAM,t + (1− ω)wBM,t. On
the asset side, C banks make loans to A banks at the non-deposit rate. This means that
C banks earn a spread ntGt. To minimize distortions, we assume this spread is refunded to
all agents in proportion to their wealth. Our interpretation of C banks is that they fulfill
the role of regional retail banks, funneling deposits to the risk-taking national banks via
interbank lending.

The optimization problem of B agents is similar to that in the main model except for
the inclusion of the demand for liquidity. The HJB equation of B agents is

0 = max
c,wS ,wM

fB (cW, V, wM) dt+ E
[
dV B (W,ω)

]
(C.5)

subject to the wealth dynamics

dW

W
= [r − c+ wS (µ− r)− wMn+Gn] dt+ wSσdB, (C.6)

where Gn is the refund from the C banks. The deposit-taking constraint does not bind in
equilibrium for B agents, so we leave it out. Then, by Ito’s Lemma, the Lagrangian is

0 = max
c,wS ,wM

fB (cW, V, wM) + V B
WW [r − c+ wS (µ− r)− wMn+Gn] (C.7)

+V B
ω [κ (ω0 − ω) + ω (1− ω)µω] + V B

WωWω (1− ω)wSσωσ +
1

2
V B
WWW

2 (wSσ)2

+
1

2
V B
ωωω

2 (1− ω)2 σ2
ω.
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Conjecture that the value function has the form

V B (W,ω) =

(
W 1−γ

1− γ

)
JB (ω)

1−γ
1−ψ . (C.8)

Wealth drops out of the HJB equation. The FOC for consumption gives c = J . B agents’
portfolio demand is characterized by

wBS =
1

γ

[
µ− r
σ2

+

(
1− γ
1− ψ

)
JBω
JB

ω (1− ω)
σω
σ

]
(C.9)

χ′ (wM) = n. (C.10)

The supply of deposits is given by wM = χ′ (n)−1 and is decreasing in n. Substituting into
the HJB equation and simplifying gives

ρ+ κ = 1/ψJB + (1− 1/ψ)
[
r + χ

(
χ′ (n)−1

)
− χ′ (n)−1 n+Gn

]
(C.11)

−1/ψ

(
JBω
JB

[κ (ω0 − ω) + ω (1− ω)µω]

+
1

2

[(
ψ − γ
1− ψ

)(
JBω
JB

)2

+
JBωω
JB

]
ω2 (1− ω)2 σ2

ω

)

+
1

2

(
1− 1/ψ

γ

)[
µ− r
σ2

+

(
1− γ
1− ψ

)
JBω
JB

ω (1− ω)
σω
σ

]2
σ2.

The magnitude of the effect of n on the intertemporal decision of B agents depends on
χ
(
χ′ (n)−1

)
−χ′ (n)−1 n, which depends on the curvature of χ. If we use χ (wM) = w1−η

M / (1− η),
then higher rates induce B agents to save less. This force pushes real and nominal rates in
the same direction. The optimization problem of A agents is

0 = max
c,wS ,wM

fA (cW, V ) dt+ E
[
dV A (W,ω)

]
(C.12)

subject to the wealth dynamics and the deposit-taking constraint

dW

W
= [r − c+ s (µ− r)−mn+Gn] dt+ sσdB (C.13)

wM ≥ λσ2wS −
1− αB
αB

. (C.14)

Let θV A
WW ≥ 0 be the Lagrange multiplier on the constraint. Then, by Ito’s Lemma, the
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Lagrangian is

0 = max
c,wS

fA (cW, V ) + V A
WW [r − c+ wS (µ− r)− wMn+Gn] (C.15)

+V A
ω [κ (ω0 − ω) + ω (1− ω)µω] + V A

WωWω (1− ω)wSσωσ +
1

2
V A
WWW

2 (wSσ)2

+
1

2
Vωωω

2 (1− ω)2 σ2
ω + θV A

WW

[
m−

(
λσ2wS −

1− αB
αB

)]
.

Conjecture that the value function has the form

V A (W,ω) =

(
W 1−γ

1− γ

)
JA (ω)

1−γ
1−ψ . (C.16)

Wealth drops out of the HJB equation. The FOC for consumption gives c = J and portfolio
demand is characterized by

θ = n (C.17)

wAS =
1

γ

[
µ− r
σ2
− λn+

(
1− γ
1− ψ

)
JAω
JA

ω (1− ω)
σω
σ

]
. (C.18)

This expression for banks demand for the risky endowment claim matches that in the bench-
mark model. Substituting into the HJB equation and simplifying,

ρ+ κ = 1/ψJA + (1− 1/ψ)

(
r +Gn+

1− αB
αB

n

)
− 1/ψ

(
JAω
JA

[κ (ω0 − ω) + ω (1− ω)µω]

+
1

2

[(
ψ − γ
1− ψ

)(
JAω
JA

)2

+
JAωω
JA

]
ω2 (1− ω)2 σ2

ω

)

+
1

2

(
1− 1/ψ

γ

)[
µ− r
σ2
− λn+

(
1− γ
1− ψ

)
JAω
JA

ω (1− ω)
σω
σ

]2
σ2. (C.19)

The markets for goods, the endowment claim, and deposits must clear. Since all wealth is
ultimately invested in the endowment claim, WA +WB = P .

ωcA + (1− ω) cB = F (C.20)

ωwAS + (1− ω)wBS = 1 (C.21)

ωwAM + (1− ω)wBM = G. (C.22)

The conditions for market clearing are therefore the same as in the benchmark model.
The solution follows that of the benchmark model with the above modifications to the

HJB equations. The drift of ω now accounts for the fact that B agents now hold deposits:

µω =
(
sA − sB

)
(µ− r) +

1

ω
χ′ (n)−1 n−

(
JA − JB

)
− σωσ. (C.23)

The final step is to verify that n is not too high, so that wAS > 0.
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Figure 1: Fed Funds-TBill spread vs. Fed Funds rate. The figure plots the
20-week moving averages of the Fed Funds rate (solid red line) and the difference
between the Fed Funds rate and the 1-month Treasury Bill rate (dashed blue
line). The sample is 7/25/1980 to 5/9/2008.

48



wA
S

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

ω

wB
S

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω

Figure 2: Risk taking. The figure plots the risky claim portfolio weight
for agent A (top panel) and agent B (bottom panel) under the n1 = 0% (blue
triangles) and n2 = 5% (red squares) interest-rate policies.
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Figure 3: The price of risk and the risk premium. The figure plots the
Sharpe ratio (top panel) and risk premium (bottom panel) of the endowment
claim under the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest
rate policies.

50



σ

0 0.2 0.4 0.6 0.8 1
0.02

0.022

0.024

0.026

0.028

0.03

ω

Figure 4: Volatility. The figure plots the volatility of the endowment claim
under the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest rate
policies.
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Figure 5: Risk-free rate. The figure plots the risk-free rate under the n1 = 0%
(blue triangles) and n2 = 5% (red squares) interest rate policies.
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Figure 6: Valuations. The figure plots the wealth-consumption ratio under
the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest rate policies.

53



Stationary Density of ω

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

ω

Figure 7: The Stationary Density of Banks’ Wealth Share (ω). The
figure plots the stationary density of ω, the share of wealth owned by banks,
under the n1 = 0% (blue triangles) and n2 = 5% (red squares) interest rate
policies.
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Figure 8: Ratio of real reserves to wealth. The figure plots the ratio of
the real value of reserves to wealth G under the n1 = 0% (blue triangles) and
n2 = 5% (red squares) interest rate policies.
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Figure 9: Impact of forward guidance on prices. The figure plots the impact of
forward guidance on asset prices. The top panel plots the two nominal rate policies nfg,1
(blue triangles) and nfg,2 (red squares). The bottom panel plots the ratio of the price of
the endowment claim for nfg,1 relative to nfg,2 (Pfg,1 / Pfg,2).
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Figure B.1: Stationary density: model with policy shocks. Stationary
density of the state variables ω and n in the extended model with policy shocks.
We set n = 0.00, n = 0.06, κn = 0.01, and σn = 5. The density is obtained by
solving the forward Kolmogorov equation of the system. The contour lines are
at increments of 50.
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