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Abstract

Measuring “chemistry” and its effect on team performance has proven to be an elusive concept in

sports analytics. In order to shed further light on this topic, we apply advanced statistical techniques

designed to capture player complementarities, or “network” relationships, between teammates on Major

League Baseball teams. Using wins-above-replacement metrics (WAR) over the 1998-2016 seasons and

spatial factor models embodying the strength of teammates’ on-the-field interactions, we show that

roughly 40 percent of the unexplained variation in team performance by WAR can be explained by

chemistry. By building a set of novel individual player metrics which control for a player’s effect on his

teammates, we are then able to develop some “rules-of-thumb” for team chemistry that can be used to

guide roster construction.
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1 Introduction

Chemistry, intangibles, and a whole that is greater than the sum of its parts: These are the euphemisms that

often get thrown around in the sports media in an effort to rationalize how a team made up of seemingly

inferior players manages to outperform another that on paper looks unbeatable. While these analogies are

plentiful, little consensus exists on the proper way to attribute a team’s performance to its chemistry. At the

heart of the argument, however, is the notion that some teams just manage to get the “right fit” of players

together, while other teams—potentially still strong (or even superior) on an individual basis—do not.

In the movie Miracle about the 1980 U.S. men’s Olympic hockey team, there is a scene where Herb

Brooks is talking about the team he has chosen to his assistant coach Craig Patrick where he says: “I’m not

looking for the best players, Craig. I’m looking for the right ones.”(Guggenheim, 2004) This statement sums

up in a nutshell how we view team chemistry in this paper. What defines the “right fit” of players can often

be very subjective, however. Here, we provide a formal definition based on player complementarities, or

complementary skills, in the production of team wins via the interconnectedness of teammates’ on-the-field

interactions. This allows us to then objectively measure team chemistry in Major League Baseball (MLB).

Evaluating the degree to which a variety of inputs – in our case, different position players on a sports

team – are complementary or substitutable in production (e.g. of team wins) is a topic that economists have

wrestled with for just under a century (Hicks (1932) and Robinson (1933)). We appeal to this tradition

and apply advanced statistical techniques designed to capture “network” relationships in order to measure

the degree of team chemistry through nonlinear relationships in the on-the-field performance interactions

of teammates that are characteristic of player complementarities. Finding a large degree of complementa-

rities across players on the same MLB team provides scope for the hypothesis that team chemistry plays a

fundamental role in team success in baseball. Similarly, finding individual players whose presence routinely

complements their teammates allows for the identification of its sources.

The basis for our analysis is the correlations across teammates in their wins-above-replacement (WAR)

metrics and their relationship to team wins. WAR calculations, like those made by FanGraphs and Baseball

Reference, provide a comprehensive measure of individual player performance. While these measures often

differ in some key assumptions, central to each is the belief that a player’s actions should be judged regardless

of the game situations in which they occur. By making context-neutral evaluations, WAR has the advantage

of judging players solely on the aspects of team outcomes over which they have direct control (Cameron,

2017). A consequence of this assumption is that while WAR measures a player’s performance by how many

wins a player is expected to contribute to his team above replacement level, it will not necessarily correspond

to the actual contribution he made to team wins.
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This discrepancy between WAR and team wins has been at the center of critiques of its value as a

statistical tool for player evaluation. An oft-cited example is whether a player performed relatively well

or poorly in so-called “high-leverage” situations (James, 2017). WAR may arguably lead to misleading

judgments of a player’s ex-post value to his team in such confounding circumstances where a mismatch

between team wins and aggregate team WAR can result. In fact, other researchers have used this mismatch

to construct measures of “clutchness” which aim to back out the context-relevant portion of team wins

(Sullivan, 2015). Similarly, aggregate team WAR may also fail to reflect a player’s full contribution to his

team depending on the manner in which his interactions with teammates aids in the production of team

wins. In this paper, we find that the mismatch between team wins and team WAR serves as a valuable

empirical regularity for understanding the nature of team chemistry in baseball.

We begin our analysis by using the WAR metrics produced by FanGraphs and Baseball Reference to

construct player productivity residuals for the 1998-2016 seasons. These residuals reflect the difference

between the expected and actual number of team wins that can be attributed to each player in a given

season. When aggregated across teammates, they measure the difference between a team’s actual win count

and its expected wins based solely on individual player performances. If WAR was a comprehensive measure

of each players’ contribution to team wins and players were perfectly substitutable along this dimension, the

residuals for each team would sum to zero. However, this is not the case, with roughly 20 percent of the

variation in wins across teams left unexplained according to our productivity residuals.

From this unexplained variation in the win-loss ledger of MLB teams, we then isolate the element of

team wins arising from teammate interactions as opposed to potential mismeasurement in WAR arising

from other contextual factors. To measure the strength of teammate interactions, we take into account

several dimensions of teammates’ on-the-field relationships, weighting more heavily pairings: 1) that play

more often (taking into account both past and present playing time), and 2) that are characterized by the

network relationships that exist between hitters in a team’s lineup and defensive positions. For instance, the

correlations of the residuals of hitters who bat in adjacent positions at the top of the lineup are given more

weight than the residual correlations of hitters who bat at the top vs. the bottom of the lineup. Similarly,

the pitcher-catcher defensive relationship is given more weight than any other defensive pairing on the field

in terms of measuring residual correlations across teammates.

Measuring teammate interactions in this way lends itself to the use of a spatial factor model to decompose

our player productivity residuals into two separate unobserved components capturing elements of team

chemistry. The first component identifies what we call character players, or players who positively influence

their teammates regardless of the team that they play for; while the second component accounts for the

role that a team’s management has on team performance to isolate what we call team players. This second
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component also makes it possible to capture a team’s historical ability to consistently turn individual player

talents into extraordinary team outcomes, allowing for a relative ranking of MLB teams that can be used to

measure organizations on the dimension of team chemistry, or what we refer to as organizational culture.

Our methodology also has a natural connection to network statistics that allows us to construct refine-

ments of WAR which isolate a player’s own contribution to team wins irrespective of his teammates, WAR−,

and his contribution adjusted for his effect on his teammates, WAR+. Using WAR−, we demonstrate that

roughly 40% of the unexplained variation in team wins by WAR is explained by team chemistry. We refer

to this total network effect of a team’s players as tcWAR, or team chemistry WAR, and provide examples

of over- and under-achieving teams in recent seasons. Similarly, using WAR+, we show that WAR tends to

overvalue the contribution of low impact players and undervalue the contributions of high impact players to

team performance. A player’s net impact on his teammates, i.e. WAR+ −WAR, is then what we refer to

as his pcWAR, or player chemistry WAR. Our analysis of pcWAR confirms the conventional wisdom that

star players tend to make their teammates better.

Our tcWAR estimates indicate that it is fairly rare for a team to over-achieve in terms of team chemistry;

and, furthermore, those teams that do demonstrate very little persistence on this dimension. In this respect,

we find that team chemistry may be accurately described as “catching lightning in a bottle,” and is an

aspect of team performance that must be closely monitored and constantly managed. We then identify

organizations that have exceeded and fallen short of expectations on this dimension. In addition, we show

that the highly mean-reverting properties of team chemistry are something that can be exploited by teams

to improve upon pre-season team win projections. For example, using out-of-sample projections of tcWAR

we demonstrate that it would have been possible to improve upon PECOTA pre-season projections for the

2008-2016 seasons by a statistically significant margin of roughly 1 win on average.

At the player level, team chemistry is shown to be much more persistent, with pcWAR lending itself more

easily to prediction than tcWAR. However, we document that this persistence is highly nonlinearly related

to past player performance, with persistence increasing in the talent level of the player (e.g. “Star” players

exhibit nearly five times the persistence as “Scrub” players and about 1.5 times as much as “Role” players

as defined by the player’s previous season’s WAR). This suggests that player chemistry expectations based

on past performance may be an appropriate guide for teams to judge their own players. We then identify

players in our sample who have exceeded or fallen short of expectations on this dimension. Finally, we break

down our pcWAR metric into separate components due solely to characteristics of the player versus other

contextual factors related to their team, the former of which could be used as well to guide teams looking

to alter their chemistry profile through trades or free agency.

To further provide convenient “rules-of-thumb” for general managers in order to maximize team chemistry
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in roster construction, we next construct age-position profiles for pcWAR conditional on the dynamics

discussed above and player and team characteristics. For example, we show that the conventional wisdom

that older players make for good teammates has support empirically, but the rate of development of team

chemistry-related skills varies by position. Our profiles also allow for the estimation of a player’s chemistry

Intangibles, defined by whether or not their pcWAR exceeds or falls short of their profile. Using this measure,

we quantify the “David Ross Effect,” so-named after the back-up catcher who we show outperformed his

team chemistry profile for much of his career.

The identification of players such as David Ross represents a potential source of competitive advantage

for MLB teams. Using player salary data, we show that MLB teams have in the past inconsistently valued

the team chemistry-related skills that we capture in our pcWAR metric. Only during a player’s free agency

years does his compensation positively reflect on average his contribution to team chemistry after controlling

for various other individual factors such as his WAR, age, and experience. Furthermore, MLB teams have

placed too low of a value on the Intangibles element of pcWAR than the value of a win in MLB would

suggest is appropriate. One possible explanation for this would be an inability to identify and measure this

element of team chemistry, a feature which our analysis overcomes.

The remainder of this paper proceeds as follows: Section 2 provides a brief summary of the relevant

literature. Section 3 describes our methodology for measuring team chemistry. Section 4 then details our

refinements of WAR, and section 5 presents rules-of-thumb for roster construction. Section 6 then concludes

and offers some possible extensions of our methodology.

2 Literature Review

Accurately measuring team chemistry has in the past been referred to as the “holy grail” of performance

analytics (Schrage, 2014). Unsurprisingly, then, a number of other researchers have already made attempts to

define and measure chemistry as it relates to team performance in MLB. Their efforts have often focused on

identifying the particular traits that denote good “clubhouse culture,” and how this translates into success on

the field. Levine (2015) suggests that the presence of a charismatic leader on a roster could have an outsized

effect on the performance of his teammates. Similarly, Phillips (2014) uses a regression model and estimates

that team chemistry can account for up to four wins in a regular season based on characteristics of roster

composition like wage parity and demographic variation. Carleton (2013) focuses on two particular players,

Brandon Inge and Jonny Gomes, who have been suggested as “good chemistry” players by teammates. He

attempts to isolate whether their roster presence affected their teammates’ productivity relative to their

expectation for a variety of performance measures. Others have even suggested physiological underpinnings
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to the chemistry exhibited in the interactions of teammates (SyncStrength, 2016).

In contrast, economists have generally focused more on the particular mechanisms that may generate

chemistry spillovers between teammates, framing the problem as one of players serving as complementary

inputs in the production of team wins. The degree of complementarity across players varies substantially

across the major professional sports leagues. On one extreme, basketball is a sport where “star” players

often have the ability to substitute for their less talented teammates. To this fact, only two of the top ten

players as measured by Hollinger’s individual PER metric for the 2016-17 NBA season played for teams that

did not make the playoffs. On the other extreme, football presents itself as the quintessential team sport, as

it requires more players coordinating their efforts on the field of play.1 Baseball, on the other hand, seems

to fall somewhere in the middle, with some observers noting its largely individualized nature and others

highlighting the importance of offensive and defensive interactions. For instance, Gould and Winter (2009)

find that the performance of batters increases with that of other batters on a team. Arcidiacono et al. (2017)

suggest that this may be the case because pitchers tend to throw fewer balls to avoid a walk based on the

hitting ability of subsequent batters. On the defensive side of the ball, Willis (2017) provides the example

of a strong fielding shortstop that may produce greater value to his team if its pitching staff tends to induce

ground balls from opposing batters.2

The primary difficulty that others have faced when trying to measure team chemistry in MLB has been

their focus on identifying a priori the factors that drive it. Here, we take a novel approach to measuring

chemistry by estimating the effect of player complementarities on team wins. Our methodology is designed to

look for correlated “mistakes” in the relationship between team wins and the wins-above-replacement metrics

of teammates which can tell us something about the complementarities inherent to roster construction. We

view this as being consistent with the conventional wisdom that team chemistry is anything that makes

teams better than they otherwise would be as purely substitutable individuals. We recognize, however,

that this may not be how others view team chemistry. For instance, our analysis is based on on-the-

field interactions of players and not necessarily off-the-field interactions that tend to get characterized as

“clubhouse chemistry.” Insofar as the latter are also reflected in a team winning more games than its collective

individual performances would suggest, then they may also be captured by our methodology. Furthermore,

if some facet of “clubhouse chemistry” does not lead to either a team outperforming its individual player

1For example, as good as Tom Brady was for the 2017 Super Bowl winning Patriots, arguably the defining play in that
year’s Super Bowl came while he was not even on the field, and instead when the only quarterback with a higher rating that
year was. Matt Ryan, the quarterback for the losing team in that year’s Super Bowl, had a QB rating of 117.1 compared to
Tom Brady’s year-end QB rating of 112.2. Arguably, one of the most pivotal plays in one of the most historic comeback wins
in football history came when Matt Ryan was sacked by the Patriot’s defense and lost the football on a critical third down play
in the fourth quarter.

2Similar frameworks have also been used outside of sports; for instance, in capturing how spatial input-output relationships
generate productivity co-movement across sectors of the U.S. economy (Conley and Dupor (2003)).
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performances or is manifested only through individual performances already captured by WAR, then it has

limited to no scope anyway in explaining the large disparities between team wins and WAR.

The strength of using WAR for this purpose is its comprehensive nature: It compresses all of the things

that a player can do to help his team win at the plate, in the field, or on the mound into one number. We

concede, however, that WAR statistics are not perfect.3 For example, there are two predominant WAR

methodologies (fWAR and bWAR) that can in some extreme cases lead to quite different valuations of a

player’s worth. Both FanGraphs (fWAR) and Baseball Reference (bWAR), however, have taken steps to

standardize their particular calculations of WAR such that the definition of a “replacement level” player

is the same across both methods (Cameron, 2013). As Miller (2016) notes, the remaining differences in

methodology lie in the more subjective choices necessary to make the type of comprehensive valuations to

which wins-above-replacement aspires, such as whether a pitcher’s quality should be reduced to the outcomes

(i.e. runs) for which he is ostensibly responsible or if it should take into consideration how luck and fielding

quality may influence these outcomes.

Rather than focus on the details of these differences in methodology, most criticisms of WAR instead

center around the general wins-above-replacement paradigm of translating expected runs into wins in a way

that ignores how context may affect team outcomes – for example, a bases-loaded single counts the same as

one with two outs and no men on. Such critiques hew closely to common conventions regarding “clutchness,”

or whether or not certain players are more capable than others in high leverage situations. Sullivan (2015)

notes that while little evidence exists for within-season variation of “clutch” performances being driven

by particularly capable teams or players, timing can still be an important factor in explaining how teams

may outperform their expectation based on metrics like WAR. In this spirit, it is worth emphasizing then

that our particular use of WAR is intricately linked to a similar notion that individual players’ performances

cannot be measured in isolation, and instead often depend critically on the performance of the players around

them. This stands in contrast to the other vein of criticism that WAR contains some glaring omission of an

activity a player engages in to contribute to a team’s success. While our analysis would surely be influenced

by shortcomings like the latter, its ultimate goal is in uncovering shortcomings like the former. We are

not interested, however, in the context of how individual play impacts team performance, but instead the

correlated nature of performances arising from on-the-field interactions, or team chemistry.

3FanGraphs (2016b) provides a summary of potential shortcomings.
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3 Measuring Team Chemistry

In this section, we provide a formal definition for team chemistry in MLB and outline our methodology for

measuring it. Our first step along this path is to construct player productivity residuals capturing the diffe-

rence between the expected number of team wins arising from a player’s performance relative to how many

games that player’s team actually won.4 To measure a player’s performance, we make use of wins-above-

replacement, or WAR, an advanced sabermetric that captures how many total wins a player contributes to

his team above a replacement level player at the same position (Reference (2013) and FanGraphs (2016c)).

With these measures in hand, we then move to modeling performance interactions between teammates, or

player complementarities, and the effect that they have on team performance. Finally, in order to account

for the discrepencies among different WAR calculations mentioned before, we conduct our analysis separa-

tely using the WAR metrics produced by both FanGraphs, fWAR, and Baseball Reference, bWAR. Both

sources calculate WAR using the same replacement level (Cameron, 2013). This feature allows us to treat

the results from the respective versions of our model analogously, as any differences between the two will

only arise from the various ways that each calculation assigns WAR above replacement level.

3.1 Player Complementarity as Chemistry

To demonstrate what we mean by team chemistry, consider the hypothetical relationships on a baseball team

displayed in figure 1. For each panel, we display—through several contour lines—the mix of player talents

across two particular positions on a baseball team and holding the number of team wins (where darker lines

moving towards the northeast signify increases in team performance) fixed.5 On any contour line, the slope

at a particular point denotes the increase (decrease) in WAR required at one position to displace a loss

(increase) in WAR at the other position in order to hold overall team performance constant. The degree to

which players are substitutable or complementary determines the curvature of these contour lines.

We propose that the stronger complementarities are among players the greater the scope that exists for

team performances to be differentiated on the dimension of chemistry. In the top left panel, we display what

this relationship might look like for a designated hitter (DH) and a starting pitcher (SP) on the same team.

Given that these two types of players will never find themselves on the field at the same time, and also engage

in extreme types of activities, it’s natural to imagine that their performances are perfectly substitutable,

consistent with the linear contour lines in this panel. In other words, for a team to achieve +2 wins (medium

gray line) across their DH and SP positions they could obtain any combination of +2 WARs among the

4Details on the data and their sources can be found in the Appendix.
5The isoquants used in this figure all are particular instances of the constant elasticity of substitution (CES) production

function. Consequently, implicit in this figure is that the appropriate normalization constant was used to reflect the particular
elasticity of substitution under study.
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two positions. One possibility could be getting a strong +2 WAR designated hitter and a replacement

level pitcher, or alternatively a strong +2 WAR starting pitcher and a replacement level designated hitter,

or maybe a more evenly split +1 WAR at both positions. This sort of neutral interaction among players

mirrors the implicit assumption underlying the construction of WAR values for teammates and how they

map in the aggregate into a team’s WAR.

Now, consider the relationship between the 3rd and 4th place hitters in a team’s lineup, as displayed

in the top right panel of the figure. For the 3rd and 4th hitters in a lineup, it is much more natural to

assume that their performances are intricately linked when determining team performance. As good as the

3rd hitter might be (e.g. batting .300 and consistently getting on base), without a 4th hitter to either drive

him in to score runs or protect the 3rd hitter from getting intentionally walked in pivotal hitting situations

(e.g. runners on base with two outs), the team’s performance is likely to suffer. The complementary nature

of these two players’ performances in dictating overall team performance is captured by the strong kinks in

the contours displayed in this panel. For that same team to achieve +2 wins at the most cost-effective point,

it will be important to have exactly a +1 WAR 3rd and +1 WAR 4th hitter. In this case, having a stronger

(i.e. +2 WAR) 3rd hitter is only valuable in so much that the team has a capable 4th hitter to complement

him. These sorts of complementarities are very certainly lost in the construction of WAR at the individual

level and, thus, also by aggregating to the team level.

Of course, the 3rd and 4th hitter might be an extreme case as well. In the bottom panel, we instead

display what might be the appropriate degree of complementarity between the second basemen (2B) and

shortstop (SS). Here, one could imagine that some amount of substitution exists between these two defensive

positions: a shortstop with incredible range might be able to cover up for a slow-footed second baseman in

fielding ground balls up the middle. Alternatively, it would be natural to imagine that the two positions also

have a degree of complementarity in that both of these players are also necessary for a team to successfully

turn a double play. Furthermore, depending on where these two positions bat in the lineup, further offensive

interdependencies may also come into play. Keeping with the notion of a team trying to accrue +2 wins

across the two positions, this example is a balance of the previous two. While a +1 WAR second basemen

and +1 WAR shortstop will yield +2 wins, a spectrum exists of the possible combinations of WARs across

the second basemen and shortstop that would still yield +2 wins for the team. Note this spectrum is

not as interchangeable as the hypothetical relationship between the starting pitcher and designated hitter,

but some substitutability does exist unlike the hypothetical 3rd and 4th hitter relationship. Importantly,

however, even the more moderate degree of interdependency displayed in this panel would not be captured

in the construction of WAR.
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3.2 WAR and Team Wins

Instead of building a structural model of how individual players contribute to the different outcomes through

the course of a game and then how these outcomes translate into the likelihood of a team winning a game,

we take a more aggregate (reduced form) approach. Specifically, we search for systematic correlations in

the misspecifications of WAR across teammates by incorporating into our analysis how a team actually

performed. If these misspecifications are systematic both across teams and individual players as teammate

relationships change, our statistical model will attribute them to the player complementarities that must

exist between teammates along the lines of what is described in figure 1.

We show here that this tends to manifest itself in the fact that simply summing the WAR values for

a team across its players does not perfectly replicate its wins above those expected of a team comprised

entirely of replacement-level players. To get a sense of exactly how important player interactions may be to

team performance, we regressed the number of wins for each team on the sum total of its players’ WAR.

Specifically, we ran linear regressions of the form

Wnt = α+ βWARnt + εnt, (1)

where Wnt is the number of wins of team n in season t and WARnt is the sum total of wins-above-replacement

statistics for all players on team n in season t based on either FanGraphs or Baseball Reference’s calculations.6

The εnt in these regressions are what we call team productivity residuals. We refer to them as such because

in many ways they represent the baseball equivalent of the famous “Solow residual” used in economics to

measure the productivity of firms.7 An MLB team with a positive εnt was a team who out-performed, or

won more games than what could be attributed to the sum of its individual player performances (or in

economic terms, a firm that produced more output than the usage of its individual inputs would suggest).

Alternatively, a team with a negative residual would be a team who despite perhaps having a number of

strong individual performances (as measured by WAR) under-performed as it pertains to wins.

The results from these regressions using data from the 1998-2016 seasons, shown in table 1, provide

several insights. First, it is clear that the estimates of β are close to 1.8 This is intuitive given how both

WAR metrics are constructed, but also allows us to confidently use the idea that increasing a team’s WAR

should have a one-to-one relationship with their number of wins.9 Furthermore, the estimate for α in our

regressions is just less than 50. This estimate, too, has a natural interpretation of being the number of wins

6Keller (2014b,a) conducted a similar analysis in his examination of WAR.
7See Solow (1957) for details on the Solow residual.
8Both the fWAR and bWAR estimates are within two standard deviations of 1.
9See FanGraphs (2016c) and Reference (2013) for more information on the construction of fWAR and bWAR.
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one would expect a team full of replacement level players to accrue. At about 50, clearly a team with only

replacement level players is far from an average, or 0.500 winning percentage, team. With that being said,

it is consistent with the construction of these measures.

The team productivity residuals, ε̂nt, are our estimates of the element of team performance that is

unexplained by the sum of its players’ individual performances, and the variation that we may potentially

attribute to a team’s chemistry. Based on the R2 values of these regression, this amounts to about 20% of

the variation in team wins in our sample. Figure 2 further demonstrates just how important this element

is by plotting a kernel density function of ε̂nt from both regressions (blue lines). With a standard deviation

of about 5 wins and a range equal to approximately 30-40 wins, it is evident that a considerable portion of

the variability in team performance cannot be explained by WAR. This unexplained variation can be pivotal

considering that a standard deviation increase in a 0.500 team’s productivity residual would likely make the

difference in becoming a playoff team. Our contention is that at least part of this variation is the result of

attempting to construct an individualized measure of performance while abstracting from the complex set

of interdependencies amongst teammates.

To see why, consider the following interdependencies captured in our regression. In constructing a roster,

teams face a problem of maximizing wins, W , subject to a payroll constraint and MLB regulations like the

luxury tax. Suppose this production function, w, takes the form

W = w[d(f, p), l(b)], (2)

where w takes as its inputs a team’s defensive and offensive production.10 Defensive production is captured

by d(f, p), a function that describes how fielding (f) and pitching (p) resources determine defensive value;

and offensive production is captured by l(b), which specifies how batters (b) determine offensive value given

a lineup configuration. If the team’s defensive ability depends upon the specific mix of fielding and pitching

inputs, or if teams maximize the returns to their batter’s output based on their order in the lineup, then

team chemistry will be evident in the degree of substitution/complementarity between inputs.

We do not observe the functional form w takes for each team, but we do have the extensive work of

sabermetricians to appeal to on this matter. In fact, the construction of WAR resembles this production

function in many ways, as it incorporates fielding, pitching, and hitting metrics separately by converting them

to run-equivalent values for each player which are then translated to team win values by using an historical

run differential-win relationship. If the technology for turning player talents into team wins is linear with

10Other constraints teams face besides payroll and ones embodied within w(·), are how many players can bat, field, or pitch
at one time. The particular rules of how the game is played (e.g. nine unique players make up a batting lineup) might also
contribute to the non-linearities present in the game of baseball. Work by Swartz (2016) has explored if evidence of these effects
are present in the market for free-agents and has found only limited evidence of such effects.
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respect to the sum of its players’ individual WAR, i.e. if player performances are perfect substitutes, then

the relationship below should hold and the residuals of our regression should be zero in the absence of other

contextual factors contributing to the deviation of team wins and team WAR.

W =
∑
i

WARint + α. (3)

However, if complementarities exist between teammates causing this relationship to be nonlinear, then our

regressions will be misspecified.

When we replace WAR in our regressions with our measure that adjusts for the strength of teammate

interactions, WAR−, this is exactly what we see. In this case, the higher R2 values of these regressions

suggest that accounting for player performance interactions reduces the unexplained variation in team wins

by roughly 40%. This remains the case even after we account for sampling variability and estimation

uncertainty by examining the Pseudo R2 values from a k-fold cross-validation of these regressions.11 The

result of this adjustment on our team productivity residuals can be seen in figure 2. The kernel density of

team productivity residuals using our WAR− measures (red lines) is much more concentrated than before

with a standard deviation of about 4 wins and a range of about 25 wins.12 Taken together, these results

suggest that complementarities between individual players, or what we call team chemistry, do indeed have

scope for explaining some of the unexplained variation in team performance by WAR.

3.3 Team Wins and Teammate Interactions

Next, we focus on our methodology for decomposing team productivity residuals into player-specific pro-

ductivity residuals. The basis for this decomposition is the following identity,

ε̂nt =
∑
i

εint

=
∑
i

Ŵint −
∑
i

WARint, (4)

where Ŵint is a measure of the contribution of player i to team wins such that
∑

i Ŵint = Wnt− α̂. In order

to construct player productivity residuals, we must then carefully define a player’s expected contribution to

his team’s wins. Since WAR is context-free, we construct an expected contribution that is also context-free

11Our method of accounting for estimation uncertainty is discussed in more detail in later sections. To summarize, we use
recursive estimates of WAR− in the regressions as opposed to full-sample estimates.

12Bootstrapped bias-corrected 95% confidence intervals for the ratio of the standard deviations of the WAR− and WAR
kernel densities are also presented in figure 2.
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and dependent solely on playing time to determine each player’s share of team outcomes. It is meant to

reflect a baseline contribution to team wins from each player accounting for playing time at each defensive

or lineup position. The relevant thought experiment here is what you would expect to receive in terms of

team wins from a replacement level player in those positions given the same amount of playing time.

To arrive at this value, first we construct two weights designed to capture how a player’s placement in

the batting lineup (li) and his defensive position (di) affect his expected contribution to team wins,

li =

9∑
j=1

bjSij (5)

di =

9∑
j=1

pjgij , (6)

where Sij denotes the number of times player i appeared in the jth slot of the lineup and gij denotes the

number of times player i appeared at each of the eight non-pitching defensive positions or pitcher/DH as a

share of his total appearances.13 The adjustment weights, bj and pj , then describe the relative importance

weight given to their respective variables. Lineup weights are defined following Tango et al. (2007), while

defensive position weights are defined following FanGraphs’ positional adjustment methodology (FanGraphs,

2016a) for fWAR and Baseball Reference’s positional adjustment methodology for bWAR (Reference, 2017).

We then normalize each weighting scheme to sum to 1, with the resulting values reported in table 2.

In essence, with li and di we are skill-weighting the amount of time played at defensive positions and in

the lineup in our calculations of the expected contribution to team wins. We use the Fangraphs or Baseball

Reference positional weights for this purpose, because they reflect a value judgement of the relative skill

required to play each position holding fixed offensive skill. Similarly, we use the Tango et al. (2007) lineup

weights because they put a premium on time spent at the lineup positions that turn over more regularly

throughout the course of a game. In this sense, they reflect the relative likelihood of getting additional plate

appearances in a season, rather than any notion of proximity toward other players in the lineup.

With these weights in hand for each season, we then proceed to the construction of Ŵint for each player

13Pitching appearances by position players and plate appearances by pitchers are excluded from this calculation.
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based on his position and his share of playing time,

Ŵint = ηitτit (Wnt − α̂) (7)

ηit =


0.57/0.59 if i is a position player

0.43/0.41 if i is a pitcher

τit =


lit∗

PAit
3∗162+dit∗

DOutsit
27∗162∑K

k (lkt∗
PAkt
3∗162+dkt∗

DOutskt
27∗162 )

if i is a position player

di
POutsit
27∗162∑K

k dkt∗
POutskt
27∗162

if i is a pitcher,

where we refer to the product ηitτit as a player’s appearance weight in each season. FanGraphs and Baseball

Reference construct their WAR measures such that players contribute 1,000 WAR per 2,430 games league-

wide (162 games for 30 teams), where, by construction, the offensive WAR contributions of pitchers sums to

zero. The η in the above equation correspond to the proportion of league-wide fWAR/bWAR apportioned

to position players and pitchers, respectively. This split is based on the assumption that because position

players appear on both sides of the ball their contribution should be larger (FanGraphs, 2016a) as well as the

relative split of salaries for free agent pitchers vs. hitters (Reference, 2017). We maintain this assumption

here, as it is also in keeping with the fact that we do not use offensive fWAR or bWAR data for pitchers

in our analysis. To obtain τ , we use the sum of plate appearances (PA) and defensive outs (DOuts) for

position players differentially weighted by the lineup and defensive position weights reported in table 2. For

pitchers, we use outs recorded (POuts) as we found it to be the most reliable measure for capturing the

differences in pitching contributions across starters and a variety of relievers (middle relievers, one-out guys,

etc.).14 Finally, we scale these inputs on a per-game basis, dividing plate appearances by a three appearance

per-game scalar (3*162) and defensive and pitching outs by a 27 outs per-game scalar (27*162).

When aggregated across players on a given team in a given season, our player productivity residuals

measure the difference between a team’s actual win count and what it would be expected to be based on the

sum total of individual player performances as measured by WAR. Stacking these residuals into a IT ×N

matrix ε̂, we model the interactions between player residuals as a panel spatial autoregression (SAR),

ε̂ = ρAε̂+ υ, (8)

where A is an IT × IT network matrix identifying teammates in a given season. Typically, such a matrix

is symmetric with 0’s on the diagonal and 1’s off the diagonal “connecting” teammates. However, in order

14Alternatively, one could use batters faced instead here.
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to capture potential interdependencies in teammate relationships which correspond to their positions in the

field and lineup, we replace the 1’s with weights αijt. For a pairing between player i and j playing for team

n in season t, these connection weights are defined as follows:

αijt =

t∑
ni=nj

(κit + κjt)

κit =


lit ∗ PAit

3∗162 + dit ∗ DOutsit
27∗162 if i is a position player

dit ∗ POutsit
27∗162 if i is a pitcher.

This formalization of the network structure of our model captures several hypothesized features of team-

mate connections. First, the more one or both players in a pairing play, the more likely they will have played

together and the stronger their on-field connection will be. Second, the implicit orderings of our lineup and

defensive position weights shown in table 2 capture specific on-field dynamics. If both players in a pairing

tend to bat higher in the lineup, they will be more likely to affect each other’s performance based on the

greater number of game situations they are expected to be a part of over the course of a season. Similarly,

defensive pairings that include a catcher will be given relatively more weight, and if the other player is, for

example, a middle infielder, this pairing will receive greater weight, all else equal, than one with a left fielder.

Then, because pitchers receive a defensive weight equal to one, pitcher-catcher relationships will receive more

weight than other position pairings, all else equal. Finally, to allow for added weight to be given to repeated

“connections” across seasons in explaining player performance interactions, we sum over this value for each

previous season in which the players were teammates.

Next, we assume that a factor structure exists for the panel SAR residuals, υ, such that player productivity

residuals are summarized by a player-season specific component, or factors F , as well as a team specific

component, or factor loadings Λ. The F trace out a player’s career arc, potentially across several teams,

and reflect whether that player finds himself among over- or under-performing teammates in each season.

Identification of this latent variable is, therefore, predicated on roster turnover. Because of this, it will be

more difficult in general for us to establish such a player vs. team breakdown the less roster turnover exists

on a team over time. The Λ, on the other hand, reflect an organization’s average historical tendency to over-

or under-perform relative to the collection of its players.

Solving for ε̂ yields our spatial factor model with spatial weight matrix Ω = (I − ρA)−1,

ε̂ = (I − ρA)−1ΩFΛ, (9)
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where F is an IT×2 matrix of our player-season factors and Λ is an 2×N matrix of their team-specific factor

loadings. To estimate this model, we use a two-step estimation procedure described in the Appendix. In the

first step, an estimate of ρ is obtained by maximum likelihood conditional on a scale normalization on A.

Given ρ, the factor model is then estimated by spatial principal component analysis (SPCA) to extract the

latent player-season and team specific components up to a scale normalization on Λ (Demsar et al. (2012)).

In the next section, we provide further motivation for what we aim to capture in these factors in terms of

team chemistry.

4 The Network Effects of Team Chemistry

To measure the interdependence of teammates’ performances, we borrow heavily from the social and economic

network analysis literature (Jackson (2008)). Our spatial factor model fits the definition of a network.

The players on a team in a given season make up the “nodes” of the network, with the strength of the

connections between teammates summarized by our adjacency matrix, factors, and their loadings. In other

words, our model is simply a statistical framework for measuring the importance of correlations across team

and teammate performances. In this section, we refine WAR in order to take into account these correlations;

and, at the same time, construct new metrics that can be used to evaluate players’ contributions to team

chemistry.

4.1 Sources of Team Chemistry

Our methodology for measuring team chemistry boils down to nothing more than a decomposition of the

spatial correlation matrix of teammates’ productivity residuals into an exact linear combination of latent

factors. To see this, consider that we can decompose our player productivity residuals into two parts: 1) a

part that is unique to each player that we attribute to measurement error in team productivity residuals,

and 2) a part that can be explained by each player’s interactions, or spill-overs, with his teammates that we

attribute to team chemistry, where the scalars w correspond to the entries of our spatial weight matrix Ω,

ε̂int = wiifitλn︸ ︷︷ ︸
“Measurement Error”

+
∑
i:j 6=i

wijfjtλn︸ ︷︷ ︸
“Team Chemistry”

. (10)

It is important to note here the role played by the measurement error term. In the absence of systematic

spatial correlations in the player productivity residuals of teammates, this term will dominate our results. In
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this sense, it is an “out” for the model that allows it to explain the variation in player productivity residuals

solely as a function of individual circumstances. Based on our findings in table 1, roughly 60% of the variance

of the residual component between team wins and team WAR fits this description. The remaining 40% is

what we then capture in the team chemistry component.

We associate positive spill-overs with “good team chemistry” and negative spill-overs with “bad team

chemistry.” We do not take a stance on what drives these spill-overs between teammates; and, in all

likelihood, our latent factors probably capture a combination of many of the determinants of team chemistry

that others have already explored. However, by not restricting them ex-ante, they likely also embody elements

of team chemistry that could not be measured previously. The extent to which we do provide context for

our factors is only to appeal to the work of other social scientists who have singled out certain psychological

traits, such as “character” and being a “team player,” as being attributes of individuals in groups that excel

in working together.

By allowing for two factors and restricting their loadings such that F = [ch, tp] and Λ = [l, λ], where l is

a unit vector across teams, we can restrict our factor model to embody similar features.

ε̂int = wii (chitln + tpitλn) +
∑
i:j 6=i

wij (chjtln + tpjtλn) (11)

We think of the factor ch as capturing a player’s innate character, as through this factor players demonstrate

spill-overs to their teammates which do not depend on the identity of their team. In contrast, we think of

the factor tp as capturing a player’s contribution that is more closely linked to the “match quality” of his

current team (via λ), which we term as the team player factor.

Teams with large |λ| are then said to exhibit good organizational culture, as they either reinforce positive

spill-overs (tp < 0 & λ > 0) or minimize negative spill-overs (tp > 0 & λ < 0) between teammates. Notice,

however, that in our framework these factor loadings are fixed across time. As such, their estimation accounts

for the vast majority of the uncertainty associated with our spatial factor model. For example, when a new

season’s data is added to the model, the inference of λ applied to the previous seasons’ factor values for all

current and former players on each team must be updated as a result. Looking at how estimates of λ evolve

over time can then give a sense of changes in the model’s interpretation of an organization’s culture.

Figure 3 plots rankings from zero to 100 for all 30 MLB teams across the 1998-2016 seasons based on our

estimated values of |λ| using both fWAR and bWAR data. To capture variation over time in these rankings

the figure contains box and whisker plots for each organization summarizing the distribution of rankings

obtained by estimating our spatial factor model “recursively” by adding one season at a time to the 1998

data. The red dots in the figure correspond to the median ranking for each organization, while the blue bars
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give a sense of the interquartile range and broader sample variation over time. Certain organizations stand

out along this dimension. For instance, the St. Louis Cardinals, Arizona Diamondbacks, and San Francisco

Giants are in the top three of both rankings; while others do not fair nearly as well. Several organizations

near the middle to bottom of the rankings, however, also exhibit a very large amount of variability over time,

suggesting that for these organizations substantial changes in culture occurred during this time period.

4.2 Team Performance

If WAR measurements are indeed influenced by teammate interactions, then the regressions underlying our

team productivity residuals are misspecified. Namely, WAR may be under- or over-counting the importance

of individual contributions to team wins by ignoring the interactions between teammates. To adjust for this

possible source of bias, we construct an alternative measure called WAR− which subtracts from the WAR

of each player the portion of his productivity residual that can be explained by his teammates’ residuals. In

network statistics, this is often referred to as the “in-degree” for a node.

WAR−int = WARint −
∑
j:j 6=i

wijfjtλn︸ ︷︷ ︸
“In−degree”

(12)

Recall that figure 2 demonstrated the relative importance of adjusting WAR in this way for explaining

deviations of team productivity residuals from zero. We can get a sense of the impact that this adjustment

has on the productivity residual for any individual team by examining the aggregation of the differences

between WAR and WAR− over teammates in each season. This is often referred to as the network’s “total-

degree.” We call it “team chemistry wins-above-replacement,” or tcWAR, and scale it by −β̂ from the

regressions in table 1 so that we can relate it directly to figure 2.

tcWARnt = −β
∑
i

∑
j:j 6=i

wijfjtλn︸ ︷︷ ︸
“Total−degree”

(13)

Figure 4 scatters a team’s productivity residual in each season against its tcWAR. The figure is con-

structed so that the x-axis coordinate (tcWAR) is equal to the number of team wins (y-axis coordinate)

explained by team chemistry. Some of the best and worst teams on both ends of the chemistry spectrum

are noted in the figure for both fWAR and bWAR results. While not identical, the teams that are sing-

led out by both metrics on the basis of tcWAR overlap to a large degree. For instance, the 2012 Orioles,

2008 Angels, 2007 Diamondbacks, 2006 Athletics, and 1998 Padres all show up as teams with large positive
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tcWAR values and the 1998 Mariners, 1999 Royals, and 2015 Reds all show up as teams with large negative

tcWAR values. While the size of the team productivity residuals tends to vary across fWAR and bWAR,

the number of team wins that each metric attributes to team chemistry remains fairly similar. For example,

of the 2012 Orioles’ nearly 15 team wins above fWAR’s expectation, tcWAR attributes roughly 4 of these

to good team chemistry. In contrast, of the 2012 Orioles’ nearly 8 team wins above bWAR’s expectation,

tcWAR attributes roughly the same number to team chemistry.

Examining our tcWAR estimates on an organization-by-organization basis reveals that it is fairly rare

for a team to over-achieve in terms of team chemistry (tcWAR > 0); and, furthermore, those teams that

do demonstrate very little persistence on this dimension. To confirm this, we regressed the current season’s

tcWAR on the previous season’s value for the full panel of 30 MLB teams over the 1998-2016 seasons. These

regressions for fWAR and bWAR data produced remarkably low estimates of first-order autocorrelation in

team chemistry; and, hence, exhibited very strong mean-reverting properties.15 In this respect, our results

are consistent with the notion that team chemistry may be accurately described as “catching lightning in

a bottle.” It is, therefore, likely to be an aspect of team performance that must be closely monitored and

constantly managed by organizations.

To identify organizations that have exceeded and fallen short of expectations on this dimension, we

took the residuals from these regressions and summed them over time for each organization into a metric

that we call “team chemistry wins-above-expected.” Figure 5 presents the results of this exercise, ranking

organizations from over- to under-achievers during our sample period. As with our Organizational Culture

rankings, here, too, there exists some variability across fWAR and bWAR in interpreting team chemistry.

In some instances, the differences can be quite pronounced; as they are for the San Franciso Giants who top

the bWAR rankings with nearly 10 wins above expected, but fall in the middle of the pack in the fWAR

rankings with about 1 win above expected. A few organizations, however, stand out in both rankings, such

as the Oakland A’s, Chicago White Sox, New York Yankees, Los Angeles Dodgers, and St. Louis Cardinals.

The apparent lack of persistence in team chemistry raises the question of what value tcWAR holds

for a team or analyst. Therefore, to demonstrate its value we next show that the highly mean-reverting

properties of team chemistry are something that can be exploited to improve upon PECOTA’s pre-season

team win projections. First, though, we consider the possibility that the information on team chemistry

found in tcWAR is already captured in PECOTA’s player-based projections. Table 3 contains the coefficients

obtained by regressing PECOTA projections for the 2008-2016 seasons on the previous season’s projection,

recursive estimates of the previous season’s tcWAR computed using only data through the previous season,

and the combined previous season’s value of WAR for the current season’s roster. Interestingly, we find that

15Estimates are available from the authors upon request.
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at least part of what we measure in tcWAR does seem to be reflected in the PECOTA projections on either

an fWAR or bWAR basis according to these regressions.

This would seem to set a high bar then for tcWAR to provide any value-added over PECOTA. We show,

however, that a very simple forecasting model incorporating the previous season’s team wins, the PECOTA

projection, and a projected value of tcWAR based on the first-order autoregression described above can

do just that. To see why this is the case, table 3 also contains the results for these regressions using the

full-sample of data. Even after accounting for the PECOTA projection, the regressions calculated on either

an fWAR or bWAR basis still load significantly onto tcWAR, suggesting there is information in our metric

that is not captured by the PECOTA forecast. Using out-of-sample one-step ahead projections from this

regression, we find that it would have been possible to improve upon PECOTA pre-season projections by a

statistically significant margin of roughly 1 win based on a Diebold and Mariano (1995) test of equal mean

absolute error across models. While the magnitude of this improvement may seem small, for our purposes it

is sufficient to demonstrate that tcWAR contains information that is not already summarized in PECOTA.

We leave it to future work to determine whether or not this result can be improved upon, perhaps through

a reconfiguration of PECOTA’s projection system to also account for the player-level team chemistry effects

that we discuss next.

4.3 Player Evaluation

We can also refine WAR as a measure of player performance by taking into account how much a player

affects his teammates’ performances. Here, we add to WAR− the contribution of each player to all of his

teammates’ productivity residuals, or what is referred to in network statistics as the “out-degree” of a node.

We call this measure WAR+.

WAR+
int = WAR−int +

∑
i:i6=j

wjifitλn︸ ︷︷ ︸
“Out−degree”

(14)

Figure 6 scatters WAR− and WAR+ versus WAR on an fWAR and bWAR basis. Interestingly, WAR−

and WAR on an individual player-season basis are very highly correlated, with the plotted points clustered

fairly closely around the 45 degree line. Thus, it is the aggregation of somewhat small differences at the

player level that leads to the drastic reduction in the unexplained variance of team performance in table

1 and figure 2. For WAR+, on the other hand, the differences are much more pronounced. In particular,

our analysis suggests that WAR overestimates the relative performance of low impact (WAR < 1), and
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underestimates the relative performance of high impact (WAR > 4) players on team performance.16

The difference betweenWAR+ andWAR can be used to evaluate players on the basis of their contribution

to team performance through their impact on their teammates. In network statistics, this is what is called

the “net-degree” for each node.

pcWARint =
∑
i:i 6=j

wjifitλn −
∑
j:j 6=i

wijfjtλn︸ ︷︷ ︸
“Net−degree”

(15)

In keeping with our terminology above, we instead refer to it as “player chemistry wins-above-replacement,”

or pcWAR. In figure 7, we plot the pcWAR for all player-season combinations in our dataset relative

to a player’s WAR on an fWAR and bWAR basis. Notice that summing a player’s pcWAR and WAR

reproduces our WAR+ metric, such that adding the x-axis and y-axis coordinates for each player-season in

this figure provides a sense of his true value to his team.

The conventional wisdom that good players make their teammates better is confirmed by our analysis

of pcWAR, as figure 7 demonstrates a strong positive correlation exists between pcWAR and WAR for

all player-season combinations in our sample. The vertical lines in the figure correspond to thresholds for

WAR used by FanGraphs to distinguish Good from Star players (WAR = 4) and Scrub from Role players

(WAR = 1). Star players tend to add anywhere from about 0 to 1.5 wins to their team through their indirect

impact on the performance of their teammates, whereas Scrub players tend to add from about 0 to 0.5 losses

to their team. In between, there exists considerable variation with players contributing from -0.5 to 0.5 wins

through team chemistry.

The impact of Star players on their teammates likely comes through so strongly in our analysis because

they are among the most talented; and, therefore, have skill sets that are just naturally likely to be more

complementary to others on the team in a variety of ways. We show below, however, that even still there

exists a considerable amount of diversity across these players in how much this is the case. Part of the reason

for this likely reflects the team-related aspects of chemistry, i.e. the player is just a bad fit for the team as

a whole, but part also boils down to the player’s ability (or willingness) to adapt to his teammates.

Figure 8 ranks all active players through the 2016 season on the basis of their career average pcWAR

values.17 The left-hand panel of the figure shows the top 25% of players on this dimension, while the right-

hand panel shows the bottom 25%. Many of the top players in the game dominate our leaderboard, with

Mike Trout the undisputed champion in this regard, averaging over one-half win of additional value through

16One way in which this result could manifest itself is if low/high WAR players tend to accrue a disproportionate share of
their WAR during non-pivotal/pivotal game situations.

17To avoid populating our rankings with players with minimal playing experience, we additionally require that they fall in
the top half of the sample in terms of their average appearance weight.
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team chemistry over the course of his career. While our estimates for pcWAR may seem small at first glance

in terms of win value, they are of a non-trivial economic value. With a team win valued at roughly $6 million

in MLB, the value of team chemistry alone for some of the game’s best players is just as high according to

our pcWAR metric as what WAR would assign to a typical role player on the team (Cameron, 2014). In

fact, even a player whose WAR was 0 and pcWAR was as low as 0.1 would still be worth paying the MLB

minimum salary.

The figure also breaks down pcWAR into separate components due solely to characteristics of the player

(e.g. the contributions from the “character” factor of our model) versus other contextual factors related to

the team (e.g. the contributions from the “team player” factor of our model). The former component of

pcWAR is potentially of value for teams looking to alter their chemistry profile through trades or free agency,

as it strips out any previous organizational effects. For example, a common criticism of general managers

of the consideration of leadership qualities in the evaluation of another team’s player is that it is difficult

to ascertain how much of a player’s past performance is the result of his previous team environment versus

some innate ability (Olney, 2018). Our method allows for a disentangling of such effects.

At the player level, team chemistry is also much more persistent, with pcWAR lending itself more easily

to prediction than tcWAR. This can be seen in table 4 in the coefficients of the regressions of the current

season’s pcWAR on the talent level of the player (e.g. Star, Role, Scrub) based on his previous season’s WAR

and its interaction with the previous season’s pcWAR value. The persistence of a player’s chemistry effects

is increasing in past player performance, with Star players exhibiting nearly five times the persistence as

Scrub players and about 1.5 times as much as Role players. This suggests that player chemistry expectations

based on past performance may be an appropriate guide for teams to judge their own players.

Just as we did with teams, we can use these regressions to define “player chemistry wins-above-expected”

by taking their residuals and summing them over a player’s career. Figure 9 plots the resulting measure

against each player’s average previous season’s WAR value. The black vertical lines in the figure corre-

spond to the FanGraphs thresholds, while the red horizontal lines are used to highlight the extremes of the

distribution. Each dot in the figure then represents a player’s career chemistry wins-above-expected, with

notable examples highlighted in order to identify players in our sample who have exceeded or fallen short of

expectations on this dimension.

The good players make their teammates better paradigm is also highly evident in this figure, but the

proximity (or lack thereof) between certain players also draws out some interesting comparisons. For instance,

the early career of Clayton Kershaw and late career of Randy Johnson look very similar on this dimension

whether they are measured on an fWAR or bWAR basis. In contrast, Derek Jeter represents an extreme

outlier in this analysis for a Star player with a career chemistry wins-above-expected that is both negative
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and from four to six wins less than Adrian Beltre, the career leader during our sample period. There are

also a handful of Role players according to WAR with career chemistry wins-above-expected on par with

the top 10 Star players in our sample (e.g. Mariano Rivera, Carlos Beltran, and Jim Thome), and a handful

of Star players that show negative career chemistry wins-above-expected (e.g. Jose Abreu, Albert Belle, and

Derek Jeter) on an fWAR or bWAR basis.

5 Chemistry and Roster Construction

Our aim in this section is to develop some additional convenient “rules-of-thumb” for MLB general managers

to follow when considering team chemistry in roster construction. We first explore the drivers of player

chemistry by constructing age-position profiles for pcWAR conditional on player and team characteristics.

These profiles then allow us to rank players on the dimension of their unobserved chemistry Intangibles.

Because salary negotiation plays such an important role in roster construction, this leads naturally then to

a discussion of the value of team chemistry.

5.1 Age-Position Profiles and Intangibles

We construct our conditional average age-position profiles for team chemistry by extending the pcWAR

dynamic regressions discussed above according to,

pcWARit =%1(1 ≤WARt−1 < 4) + %2(WARt−1 ≥ 4) + ρ1 (pcWARit−1 ∗ (WARt−1 < 1)) + (16)

ρ2 (pcWARit−1 ∗ (1 ≤WARt−1 < 4)) + ρ3 (pcWARit−1 ∗ (WARt−1 ≥ 4)) +∑
p

γppospit +
∑
p

θp(pospit ∗ ageit) +
∑
p

ψp(pospit ∗ age2it)+

∑
p

τp(pospit ∗ age3it) +
∑
p

ωp(pospit ∗ age4it)+

∑
k

δkXkit +
∑
h

φhZhit + ξit,

where pos is an indicator variable for a player’s primary defensive position, including the designated hitter

and a “utility” category for players who tend to play multiple defensive positions, age is a player’s age, X is

a vector of player characteristics including WAR and controls for MLB and team games played, and Z is a

vector of league, team, and manager indicator variables. The estimated coefficients of these regressions are

summarized in table 4.

Figure 10 plots our conditional average age-position pcWAR profiles with 95% confidence intervals on

an fWAR and bWAR basis. The conventional wisdom that older players make for better teammates is
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certainly consistent with these profiles, as they tend to slope upward with age on average across almost

all positions. However, we want to caution anyone from taking the results from this regression as “causal”

estimates of age on team chemistry, as the estimated coefficient is most likely also confounding a selection

effect. In other words, having good team chemistry may make it more likely for a player to remain in the

game for longer.

Some additional interesting patterns also emerge from this analysis. For instance, the slopes of these

profiles tend to vary by position. Second basemen and catchers tend to have profiles that are less steep

than other infielders; relief pitchers tend to have steeper profiles than starting pitchers; and the profiles of

designated hitters and utility players tend to be among the steepest that we estimate. The level of the

profiles also varies depending on whether or not they were constructed on an fWAR or bWAR basis, with

chemistry effects generally more positive across all positions and ages when measured on the former.

By conditioning these regressions on so many observable dimensions, we can also isolate the player

Intangibles of team chemistry. In other words, we can measure the individual contributions to team wins

through chemistry that are not associated with any covariates in the above regressions. We use the residuals,

ξit, from these regressions to rank active players through the 2016 season on their career average Intangibles.

Positive residuals capture players whose contributions to team chemistry exceed their conditional age-position

profile, whereas negative residuals correspond to players who fall short of their profile.

Figure 11 displays our Intangibles rankings, where the left-hand panel shows the top 25% of players on

this dimension and the right-hand panel shows the bottom 25%.18 Our top players are now very different

than who they were for pcWAR, with the exception of Joey Votto who shows up in the top four of both

rankings. Kevin Keirmaier is the undisputed active leader on this dimension of team chemistry, with an

average contribution of a little more than 0.1 wins coming from his Intangibles.

At this point, a word of caution is warranted. Many of the players who we find have negative Intangibles

are the same type of player that any MLB franchise would be happy to build their team around. In other

words, depending on a player’s position, his age, and current manager, etc. he could still have a strong positive

influence on his teammates even despite a negative Intangibles measure. A more appropriate interpretation

of the rankings in figure 11 is then that they provide an indication of those players who have a knack for

exceeding expectations on the dimension of team chemistry. We call this the “David Ross Effect.”

The esteem with which the 2016 World Champion Chicago Cubs held their teammate David Ross and

his contribution to their success has by now become well known. The ability of a team to identify players like

him is, therefore, a potential source of competitive advantage that is made possible by our team chemistry

18As in figure 8, to avoid populating our rankings with players with minimal playing experience, we additionally require that
they fall in the top half of the sample in terms of their average appearance weight.
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metrics. What makes David Ross uniquely suited to our analysis is that, as a back-up catcher, his WAR

defines him as a role player; but, as a teammate, he is routinely characterized as someone who makes everyone

around him better. We are able to provide evidence to support these claims with our metrics.

Figure 12 plots the pcWAR and Intangibles values for David Ross through the 2016 season against his

WAR values. More than one labeled instance of a season occurs whenever he was traded. For most of his

career, and across several different teams, David Ross exhibited the sort of beneficial relationship with his

teammates that his reputation attests to, evidenced by his mostly positive pcWAR values. Furthermore, his

Intangibles reveal a player who tended to outperform his age-position profile even at low levels of WAR and

with limited playing time.

Players such as David Ross are true “diamonds-in-the-rough” according to our analysis, with their full

impact on team performance likely to fly under the radar according to traditional performance metrics.

Given how rare that we find that this type of player is in our analysis, one might expect that MLB teams

would be willing to pay a premium for their services. For example, others have already documented the

importance of wins-above-replacement in pricing player services in MLB.19 For this reason, we might expect

our pcWAR metric to also be priced into player compensation. Whether or not this extends to a player’s

Intangibles, which are much more difficult to observe than age, position, and the other variables that we

condition on, is unclear.

5.2 Putting a Price on Team Chemistry

To see how MLB teams have historically valued chemistry-related skills, we run player-level regressions of

log annual salary adjusted for inflation using the U.S. Consumer Price Index as our dependent variable on a

player’s career WAR and pcWAR through the previous season.20 This regression takes the following form,

log(salaryit) =
∑
c

γc(FAcit

t−1∑
n=1

WARin) +
∑
c

βc(FAcit

t−1∑
n=1

pcWARin)+ (17)

∑
c

θcFAcit +
∑
c

θc(FAcit ∗ teamExpit−1) +
∑
p

ρppospit+

∑
p

φp(pospit ∗ ageit) +
∑
p

λp(pospit ∗mlbExpit−1)+

∑
p

τp(pospit ∗mlbExp2it−1) + αi + εit,

where pos is an indicator variable for a players’ primary defensive position, including the designated hitter

and a “utility” category for players who tend to play multiple defensive positions; age is a player’s age on

19See Cameron (2014) and Paine (2015).
20The functional form of these regressions is similar in spirit to the wage determination model presented in Mincer (1974).
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January 1st of the year in which season t occurs; teamExp indicates the number of seasons the player has

appeared in with his current team prior to the current season; mlbExp is the number of MLB games in

which the player has appeared through the previous season; FA is an indicator variable which takes on one

of three values denoting whether a player is in the pre-arbitration (0-2 years of service), arbitration-eligible

(3-5 years), or free agent-eligible (6+ years) stage of his career; and α is a player fixed effect.

The use of a player fixed effect focuses our analysis on the variation “within” player salary histories. For

this reason, we restrict our sample of players to only those with careers that began at some point during

the 1998-2016 seasons. As we will soon explain, the inclusion of the FA indicator variable serves to capture

important differences in how player salaries are determined throughout a career based on the labor market

structure of MLB and changes in the bargaining power of players according to service time.21 We interact

this variable with teamExp to then capture the impacts of trades and other reasons for team changes on

service time and player salaries. The inclusion of pos and its interaction with age and experience then serves

to capture any nonlinear variation in how players’ career earnings trajectories vary across defensive positions.

We are primarily interested in obtaining estimates for γ and β, the coefficients on career WAR and

pcWAR, respectively. Interacting these variables with our service time-status indicator allows us to estimate

how these skills may be differentially priced over a player’s career. As the first column of table 5 shows,

cumulative WAR is indeed priced differentially throughout a player’s career. During the pre-arbitration

stage of a player’s career, a one win-above-replacement increase in career WAR through the previous season

leads, on average, to a statistically significant earnings increase in the current season of 10-12 percent. For

a player in the arbitration-eligible portion of his career, this increases slightly to 14 percent. Finally, players

with six or more years of MLB service time see an average increase in earnings of 4-5 percent for each

additional unit of career wins-above-replacement.

To understand the pricing pattern demonstrated in this result, it is useful to consider the bargaining

position of the player. The pre-arbitration period corresponds to a player’s first three years of service time,

measured by days spent on the 25-man roster of any MLB team. Unless released or traded, players are

bound to the team that drafted them during this period. The vast majority of these players earn either a

minimum salary determined by collective bargaining between MLB and the MLB Players Association or a

somewhat higher salary on a season-by-season basis that is at the discretion of the team. Performance and

salary are therefore likely to be only somewhat correlated during this time. Furthermore, even if a player

were to sign a long-term contract during this time, they lack the bargaining power they would have if their

21A year of service is defined as 172 days during a season on an MLB roster. Because we don’t observe this number directly,
we approximate these thresholds by simply counting the number of seasons in which each player appears in our sample. This
means it is possible that some arbitration-eligible players are counted as pre-arbitration or as free agent-eligible. However, our
regression results are qualitatively similar when we use game appearances as a proxy for whether a player completed a year of
service in this calculation.
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services were being priced by the entire league, an economic situation referred to as monopsony.

If a player still has not signed a long-term contract after three years of service, they become eligible for

salary arbitration, whereby the player and team submit proposed salaries to an independent third party that

makes a binding determination on the player’s salary, largely on the basis of similar player performances.22

Though players still have limited bargaining power during this period, the slight increase in the return to

cumulative WAR that we observe is consistent with their improved bargaining position afforded by the

arbitration process. When a player has not signed a long-term contract after accruing six or more years of

MLB service time, he becomes eligible to sign with any team as a free agent.

Once a player enters free agency, it is much more common for him to sign a multi-year contract. Multi-

year contracts add a further complication to our regression, since their pricing reflects a weighted combination

of both past and expected future performances. This could largely explain the smaller coefficient that we

find on cumulative fWAR during free agency. However, the competitive landscape of free agency may also

force teams to consider a broader range of factors as they submit contract offers to players. In fact, our

estimated regression coefficients on cumulative pcWAR suggest that a player’s chemistry-related skills are

perhaps one of the additional things considered.

The specifications marked (1) in table 5 show that cumulative pcWAR is also priced differentially throug-

hout a player’s career. The effect on earnings of a one win-above replacement increase in career pcWAR is

large, negative, and statistical significant (with the exception of pre-arbitration players on a bWAR basis)

in the pre-arbitration and arbitration-eligible periods. This suggests that the lack of competitive pressure

in these years allows teams to avoid compensating players for their chemistry-related skills. However, this

effect reverses once a player becomes eligible for free agency, as the same increase in pcWAR now leads to

a small salary gain that is only statistically significant on an fWAR basis.

It may seem counterintuitive that the marginal return to a unit increase in cumulative pcWAR is roughly

on par or higher than that for a unit increase in cumulative WAR during free agency. However, as a relatively

scarce resource (its standard deviation is nearly 15 times smaller than cumulative fWAR or bWAR), it makes

sense that cumulative pcWAR is priced as such on the margin. That said, it could also just as easily be the

case that what we find reflects a team’s pricing of some of pcWAR’s underlying correlates. For instance,

if MLB teams follow the conventional wisdom that high-performing players will have the biggest chemistry

effects, they may simply pay more for individuals who they expect will rank highly in the future on metrics

such as fWAR and bWAR. The coefficient on cumulative pcWAR would then reflect this fact.

22While three years is the general cut-off for salary arbitration, players that that are in the top 22% of service time among
those with more than two but less than three years of service become eligible for arbitration a year early. This “Super Two”
cutoff is designed to prevent teams from delaying a player’s call up from the minor leagues by a few weeks to avoid salary
arbitration (FanGraphs, 2017).
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To investigate this possibility, we run an alternative earnings regression that instead considers separately

our Intangibles measure (i.e. ξ) and the observed component of pcWAR (i.e. pcWAR − ξ). These results,

marked as specifications (2) in table 5, show that the two individual components of cumulative pcWAR are

indeed priced differently in free agency (i.e. their coefficients have opposite signs) and in a similar fashion

across fWAR and bWAR. A player with positive career Intangibles would be undervalued relative to his

contribution to the team; and, conversely a player with negative career Intangibles would be overvalued. In

contrast, the observed component of cumulative pcWAR for either player would still be appropriately valued.

This result suggests an important application for our metrics. Though teams appear to value their players’

chemistry-related skills, they clearly “misprice” their Intangibles. This is most likely because they are not

easily observed and, therefore, difficult to evaluate in an efficient enough manner in which to price them.

6 Conclusion

In this paper, we outlined a methodology for quantifying how a player may influence his team’s performance

outside of his direct contribution measured by advanced individual performance metrics like wins-above-

replacement. We introduced in the process WAR−, WAR+, tcWAR, and pcWAR as new advanced metrics

that quantify the indirect effects of players on their teammates and team performance while providing an

intuitive analog to FanGraph’s and Baseball Reference’s well-documented fWAR and bWAR metrics. With

these new metrics, we then outlined the importance of accounting for player interactions in explaining team

performance differentials unexplained by WAR.

With tcWAR, we further demonstrated that team chemistry is difficult to preserve, making it an as-

pect of team performance that must be closely monitored and constantly managed. We also examined the

organizational aspects of team chemistry, ranking organizations on their ability to reinforce positive or mini-

mize negative interactions between teammates, as well as preserve team chemistry over time. Furthermore,

we showed how tcWAR’s mean-reverting properties could be used to improve upon PECOTA pre-season

projections of team wins.

At the player level, we found more persistence in the aspects of team chemistry, particularly for star

players, and we documented how pcWAR could be used to guide team decision-making for its own players and

in trades and free agency by separating out the player-specific and team-related elements of chemistry. We

also developed convenient “rules-of-thumb” for general managers to follow when considering team chemistry

in roster construction, demonstrating that star and older players tend to make for good teammates and that

the rate of development of chemistry-related skills varies by position.

By conditioning on a large set of observable team and player characteristics, we were also able to isolate
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a player’s chemistry Intangibles, defined by whether or not their pcWAR value exceeds or falls short of these

characteristics. This allowed us to quantify what we call the “David Ross Effect,” so named after the back-up

catcher who consistently outperformed his observable characteristics for much of his career. Furthermore,

we demonstrated that MLB teams have in the past placed too low of a value on the Intangibles aspect of

chemistry than the value of a win would suggest is appropriate.

These results paint a clear picture of the role of team chemistry in MLB. Despite having a large influence

on team outcomes, our analysis suggests that most of the predictable component of this factor year-to-year is

concentrated in the star players that are already heavily sought after in the free agent market. Alternatively,

the players whose intangibles are likely to be underpriced are also those whose intangibles are less likely to

be persistent from year-to-year. Given these facts, it’s understandable why general managers in MLB are

reluctant to place too much of an emphasis on the indirect aspects of player performance (Olney, 2018).

That said, our analysis also casts doubt on a simple strategy of stockpiling star players as being an effective

way to maintain a team’s production in favor of a more nuanced view of team chemistry.

Our efforts in this paper were largely descriptive. In future work, we plan to extend our methodology

in order to allow for better prediction. For instance, it may also be possible to predict the organizational

elements of team chemistry by including a team’s field and front office staff in our model. Furthermore, our

analysis largely leveraged the playing time of individual players to explain teammate interactions and their

impact on team performance. As a consequence, what is still left to understand is how to separately isolate

the effect of players on their teammates and team performance through their off-the-field interactions.
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7 Appendix

7.1 Data

Our data comprise 26,170 player-season observations consisting of 5,199 players over the 1998-2016 seasons.

Nearly all players who participated in an MLB game during the 1998-2016 seasons appear in our analysis.

The only exceptions are players who appeared in a game but failed to record an at-bat or an out. WAR data

come from the online databases at fangraphs.com and baseballreference.com, and lineup information was

constructed using the game-by-game data maintained at chadwick-bureau.com. PECOTA projections were

taken from baseballprospectus.com. All additional player, team, and performance information come from

the databases maintained by Sean Lahman at seanlahman.com. While the Lahman database allows us to

observe performance data by team for players that change teams within a season, FanGraphs only publishes

fWAR at the season level of observation. In these cases, we divide a player’s season fWAR proportionally

by his appearances for his respective teams, following the appearance weighting described in the main text.

Thus, our dataset includes multiple observations within seasons for such players corresponding to each team

on which they appear. This is not a problem for Baseball Reference’s bWAR data.

The regression analysis presented in sections 4.1 and 4.3 uses several additional covariates that we con-

struct from FanGraphs and the Lahman database. Our position indicators correspond to the position that

the Lahman database indicates as the primary position for each player. Age is simply defined as the diffe-

rence between the season year and the player’s birth year. Team and league indicators are pulled directly

from the Lahman database, while we generate running totals for a players’ appearances in MLB and with

their current team to control for experience and team tenure. Finally, manager indicators correspond to

each team’s manager on opening day, thus ignoring managerial changes during the season.

7.2 Estimating the Spatial Factor Model

In matrix form, a spatial factor model can be written as

Y = ΩFΛ + Ωε (18)

where Y is an IT × N matrix of outcomes, Ω is an IT × IT matrix of spatiotemporal weights, F is an

IT × K matrix of common factors, Λ is an K × N matrix of factor loadings, and ε is an IT × N matrix

of idiosyncratic determinants of Y . This equation can be viewed as the reduced form of a panel spatial
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autoregression, or SAR. To see this, consider the following representation of a panel SAR

Y = ρAY + υ (19)

where Y is a IT ×N matrix of outcomes, A is a IT × IT network matrix, ρ is a scalar parameter, and υ is

an IT × IT matrix of residuals. Re-arranging the elements of equation 2, it can be rewritten

Y = (I − ρA)−1υ.

Defining Ω ≡ (I − ρA)−1 and assuming the approximate common factor structure υ = FΛ + ε, equation 2

is shown to be equivalent to equation 1.

Estimation then proceeds in two stages. In the first stage, we obtain an estimate of ρ by maximum

likelihood after imposing that the rows of the adjacency matrix A sum to 1 and restricting its value to

fall between -1 and 1. Combined, these normalizations satisfy the sufficient condition for Ω to ensure that

(I − ρA) be strictly diagonally dominant, i.e. |1− ρAii| ≥
∑

j 6=i |−ρAij | . Given our estimate of ρ, we then

proceed with spatial principal components analysis in the second stage assuming two common factors and

appropriate scale and sign normalizations on Λ. For the latter, we scale the factor loadings such that Λ′Λ = I;

while for the former, we restrict the non-unit vector columns of Λ to sum to zero.

Factor loading restrictions are handled in estimation by the expectation-maximization (EM) algorithm

developed in Dempster et al. (1977), Shumway and Stoffer (1982), and Watson and Engle (1983) extended

to include factor loading restrictions by Reis and Watson (2010). To get a sense of how the EM algorithm

operates in our case, consider the following: If the factors were known, then the factor loadings could be

consistently estimated by a weighted least squares (WLS) regression of the form

Λ̂ = (F ′Ω′ΩF )−1(F ′Ω′Y ). (20)

Similarly, if the factor loadings were known, the factors are consistently estimated by

F̂ = (Ω−1Y Λ′)(Λ′Λ)−1. (21)

Given an unrestricted initial estimate of Λ or F and scale normalization, the EM algorithm iterates between

these two WLS regressions until the sum of squared errors for equation 1 is minimized, imposing the factor

loading restrictions at each iteration.

While the approximate factor structure we assume here is necessary for the EM algorithm to run, we
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can still use it to obtain the exact factor structure of our model by setting a convergence criterion which

brings the sum of squared errors arbitrarily close to zero for a given number of common factors. This is

achieved quite easily with our two factor model using a criterion which stops the algorithm when successive

differences in the sum of squared errors are less than 1e−6.
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Table 1: Team Wins Regressions: 1998-2016
FanGraphs Baseball Reference

(1) (2) (1) (2)
Team Wins Team Wins Team Wins Team Wins

Team WAR 0.996 0.941
(0.017) (0.029)

Team WAR− 1.030 0.933
(0.014) (0.024)

Constant 47.691 48.150 49.569 51.404
(0.649) (0.538) (1.071) (0.890)

R2 0.799 0.887 0.804 0.876
Pseudo R2 0.789 0.873 0.793 0.867

Observations 570 570 570 570
Bootstrapped bias-corrected and accelerated standard errors clustered on team shown in

parentheses based on 500 replications. Pseudo R2 is calculated as the average from a

57-fold cross-validation with recursive estimates of WAR− included in specifications (2).
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Table 2: Defensive and Lineup Position Weights
FanGraphs Baseball Reference Tango et al. (2007)

Defensive Position d d Lineup Position l
Catcher 0.214 0.200 1 0.212
First Base 0.036 0.046 2 0.187
Second Base 0.143 0.150 3 0.162
Third Base 0.143 0.142 4 0.136
Shortstop 0.179 0.183 5 0.111
Left Field 0.071 0.067 6 0.086
Center Field 0.143 0.146 7 0.061
Right Field 0.071 0.067 8 0.035
Pitcher/DH 1/0 1/0 9 0.010

All weights are separately normalized to sum to one across fielders/pitchers and hitters.
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Table 3: Team Win Projection Regressions: 2008-2016
FanGraphs Baseball Reference

(1) (2) (1) (2)
PECOTAt Team Winst PECOTAt Team Winst

PECOTAt−1 0.537 0.560
(0.071) (0.069)

Team WARt−1 0.246 0.207
(0.050) (0.041)

tcWARt−1 0.260 0.374
(0.123) (0.114)

Team Winst−1 0.363 0.315
(0.076) (0.073)

PECOTAt 0.306 0.288
(0.113) (0.117)

Projected tcWARt 16.653 13.554
(2.245) (1.619)

Constant 29.140 54.450 28.772 53.024
(4.360) (5.528) (4.391) (5.818)

R2 0.587 0.371 0.576 0.419

MAE(PECOTA)–MAE(Model) 1.251 1.487
(0.426) (0.505)

Observations 240 270 240 270
Bootstrapped bias-corrected and accelerated standard errors clustered on team shown in parentheses

based on 500 replications. Recursive estimates of tcWAR are used in specifications (1) and recursive

one-step ahead projections in specifications (2). The mean absolute error (MAE) gain over PECOTA

is based on a Diebold-Mariano test of equal MAE using 240 out-of-sample predictions of team wins.
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Table 4: pcWAR Regressions
FanGraphs Baseball Reference

(1) (2) (1) (2)
pcWARt pcWARt pcWARt pcWARt

pcWARt−1 ∗ (WARt−1 < 1) 0.128 0.044 0.104 0.045
(0.015) (0.008) (0.013) (0.007)

pcWARt−1 ∗ (1 ≤WARt−1 < 4) 0.375 0.168 0.302 0.161
(0.022) (0.013) (0.024) (0.013)

pcWARt−1 ∗ (WARt−1 ≥ 4) 0.576 0.244 0.521 0.211
(0.041) (0.019) (0.046) (0.020)

WARt−1 < 1 -0.043 -0.043
(0.001) (0.002))

1 ≤WARt−1 < 4 -0.020 -0.037 -0.029 -0.046
(0.002) (0.002) (0.003) (0.002)

WARt−1 ≥ 4 -0.039 -0.117 -0.049 -0.133
(0.014) (0.008) (0.018) (0.009)

WARt 0.094 0.108
(0.001)) (0.001)

MLB Experiencet -5.67e-5 -7.16e-5
(4.13e-6) (4.11e-6)

Team Experiencet -5.79e-5 -7.18e-5
(5.98e-6) (7.26e-6)

League Fixed Effects X X
Team Fixed Effects X X
Manager Fixed Effects X X
Age-Position Interactions X X

R2 0.214 0.795 0.147 0.815

Players 4,112 4,112 4,112 4,112
Observations 20,735 20,735 20,735 20,735
Bootstrapped bias-corrected and accelerated standard errors clustered on player shown in parentheses

based on 500 replications. Age-Position interactions include up to quartic terms in age. WARt−1 < 1

coefficient is absorbed in the position indicators to prevent multicollinearity in specifications (2).
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Table 5: Player Salary Regressions
FanGraphs Baseball Reference

(1) (2) (1) (2)
log(Salary) log(Salary) log(Salary) log(Salary)

FA0∗Career WAR 0.10*** 0.09*** 0.12*** 0.10***
(0.02) (0.01) (0.02) (0.01)

FA1∗Career WAR 0.14*** 0.13*** 0.14*** 0.13***
(0.01) (0.01) (0.01) (0.01)

FA2∗Career WAR 0.04*** 0.02** 0.05*** 0.02***
(0.01) (0.01) (0.01) (0.01)

FA0∗Career pcWAR -0.20 -0.31**
(0.16) (0.14)

FA1∗Career pcWAR -0.50*** -0.54***
(0.06) (0.05)

FA2∗Career pcWAR 0.12** 0.01
(0.06) (0.05)

FA1∗Career (pcWAR− ξ) -0.46*** -0.44***
(0.07) (0.07)

FA2∗Career (pcWAR− ξ) 0.47*** 0.31***
(0.07) (0.06)

FA1∗Career ξ -0.31*** -0.38***
(0.09) (0.08)

FA2∗Career ξ -0.35*** -0.37***
(0.08) (0.07)

Contract Status Indicator (FA) X X X X
FA-Team Experience Interactions X X X X
Position Indicator X X X X
Age-Position Interactions X X X X
Position-MLB Experience Interactions X X X X
Position-MLB Experience2 Interactions X X X X
Player Fixed Effects X X X X

R2 0.86 0.86 0.86 0.86

Players 4,117 4,117 4,117 4,117
Observations 18,114 18,114 18,114 18,114

*** p<0.01, ** p<0.05, * p<0.1

Select variable estimates reported. Specifications include a contract status indicator (FA) and its interaction

with years with current team along with a position indicator and its interactions with age, games of MLB

experience, and experience squared in addition to player fixed effects. FA0 interactions with pcWAR− ξ
and ξ are absorbed to prevent multicollinearity in specifications (2). Bootstrapped bias-corrected and

accelerated standard errors clustered on player shown in parentheses based on 500 replications.
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Figure 1: Hypothetical Complementarity of Select Player Relationships
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Figure 2: Team Productivity Residuals
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Figure 3: Organizational Chemistry Rankings
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Figure 4: Team Chemistry and Wins-above-Replacement
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Figure 5: Team Chemistry Wins-above-Expected
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Figure 6: WAR− and WAR+ vs. WAR
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Figure 8: pcWAR Player Rankings
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Figure 9: Player Chemistry Wins-Above-Expected
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Figure 10: Age-Position Player Chemistry Profiles
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Figure 11: Intangibles Player Rankings
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Figure 12: David Ross’ Chemistry Profile
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