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This paper develops a simple model of firm entry, competition, and exit in oligopolis-
tic markets. It features toughness of competition, sunk entry costs, and market-level de-
mand and cost shocks, but assumes that firms’ expected payoffs are identical when en-
try and survival decisions are made. We prove that this model has an essentially unique
symmetric Markov-perfect equilibrium, and we provide an algorithm for its computa-
tion. Because this algorithm only requires finding the fixed points of a finite sequence
of contraction mappings, it is guaranteed to converge quickly.

KEYWORDS: Demand uncertainty, dynamic oligopoly, firm entry and exit, sunk costs,
toughness of competition.

1. INTRODUCTION

IN THIS PAPER, WE PRESENT A MODEL of firm entry, competition, and exit in oligopolistic
markets. It features toughness of competition, sunk entry costs, and market-level demand
and cost shocks. We allow firms to use mixed strategies and close the model by focusing
on symmetric Markov-perfect equilibria. The model’s key simplifying assumption is that
firms’ expected payoffs are identical when entry and survival decisions are made. Using
this and the equilibrium implications of mixed strategies for payoffs, we construct an algo-
rithm for equilibrium computation that calculates the fixed points of a finite sequence of
low-dimensional contraction mappings. Since it relies only on contraction mappings, the
algorithm is guaranteed to calculate an equilibrium. We prove that adding a competitor
cannot increase incumbents’ equilibrium continuation values. This result in turn ensures
that the symmetric equilibrium calculated by our algorithm is essentially unique. The al-
gorithm converges sufficiently quickly to be embedded in a nested fixed point estimation
procedure and used for large-scale computational experiments.
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Our model can be viewed as a special case of Ericson and Pakes’s (1995) Markov-
perfect industry dynamics framework. Ericson and Pakes focused on symmetric equilibria
in pure strategies, but Doraszelski and Satterthwaite (2010) showed that such equilib-
ria might not exist in their original framework. To address this problem, Gowrisankaran
(1999) added privately-observed firm-specific shocks to the costs of continuation; and
Doraszelski and Satterthwaite provided sufficient conditions for such an augmented
framework to have a symmetric equilibrium in pure strategies. Research following Ericson
and Pakes (summarized by Doraszelski and Pakes (2007)) has generally adopted this aug-
mented version of their framework.

We instead return to Ericson and Pakes’s original complete-information approach. We
show that the firm-specific shocks that guarantee existence of an equilibrium in pure
strategies in the augmented framework obscure a useful consequence of firms employ-
ing mixed strategies. In equilibrium, firms earn the value of the outside option (zero)
whenever they nontrivially randomize over exit and survival. Therefore, symmetric equi-
librium payoffs to incumbents contemplating survival equal either zero or the value of all
incumbents choosing certain continuation. This insight allows us to calculate continuation
values from some nodes of the game tree without knowing everything about the game’s
subsequent play. Combining this insight with a demonstration that continuation values
weakly decrease with the number of active firms yields the contraction mappings that we
use both to calculate the equilibrium and to demonstrate its uniqueness. In contrast, there
is no guarantee that the augmented Ericson and Pakes framework has a unique equilib-
rium; and computing even one of its equilibria can be onerous.

Earlier research similarly exploited the structure of specific games to enable their the-
oretical and computational analysis. Abbring and Campbell (2010) considered a dynamic
oligopoly model like ours, but assumed that incumbent firms make continuation decisions
sequentially in the order of their entry. Moreover, they restricted attention to Markov-
perfect equilibria in which older firms always outlive their younger rivals, which they
called “last-in first-out” dynamics. Our equilibrium characterization and computation rely
neither on sequential timing assumptions nor on a restriction to last-in first-out dynam-
ics.

Another strand of the literature applied backward induction to compute the equilibria
of dynamic directional games (e.g., Cabral and Riordan (1994), Judd, Schmedders, and
Yeltekin (2012)). Iskhakov, Rust, and Schjerning (2016) systemized this familiar proce-
dure into an algorithm for computing all these games’ equilibria. In the games considered,
the state space can be partially ordered using primitive restrictions on state transitions:
State B comes after state A if state B can be reached from state A but not the other way
around. Their algorithm iterates backwards through this partially ordered set of states.
Transitions from states considered in a given iteration to states considered in later itera-
tions are impossible, so the algorithm can calculate equilibrium outcomes and continua-
tion values recursively. Our algorithm similarly iterates over an ordered partition of our
game’s state space. However, our game is not directional, and in each iteration, transitions
to states not yet visited by our algorithm are possible. Instead of exploiting the direction-
ality of state transitions hardwired into the primitives of Iskhakov, Rust, and Schjerning’s
framework, we rely on the fact that the expected symmetric equilibrium payoff in any
survival subgame in which firms exit with positive probability must be zero. This allows
us to order state D after state C if state D can be reached from state C but the opposite
transition requires firms to choose exit with positive probability.
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Period ¢ Entry Stage (Sequential Moves) Period ¢ Survival Stage (Simultancous Moves)
Start with IV; incumbents and demand Start with Ng; active firms
state Y; (or initialize (Ny,Y;) if t = 1). with names fi, fa, ..., fng,-

Incumbents earn (N, Yl).l Post-entry value: vg(Ngy,Y:) l

@ (t,1) earns 0. o f1 earns 0.

(t,1) pays o(N; + 1, Y}).

e b
Period ¢ i
Survival Stage,
(t,2) pays (N, +2,Y;). (t,2) earns 0. Np, = N,
fo earns 0.
P.eriod t Tl %
Survival Stage, Dl
Ngy = Ny +1 :
(t.3) pays @(N; + . Y). (t.5) carns 0.
g, earns 0.
Period ¢ Period t
Survival Stage, Survival Stage, T~ )
Npy=Ni+] Npi=Ni+j—1 2 ;
[ Neyr ~ B(aé‘,aé’,,,,,ag\m) ]
Post-survival value: vg(Nyy1,Y;)
Assumptions:
( Yeu ~ G(JY) )
e Ji <o0:V(n,y) e Nx Y, —co <E[r(n, Y)Y =y] <#.
e dneN:Vn>nand Vy €Y, m(n,y) <0. Period ¢ + 1
e V(n,y) e Nx Y, n(n,y) > w(n+1y). Entry Stage

e V(m,y) e Nx Y, 0<p(my) <epm+1ly).

e Firms discount future profits with factor p € [0,1).

FIGURE 1.—The model’s recursive extensive form.

2. THE MODEL

Consider a market in discrete time indexed by t € N= {1, 2, ...}, in which firms make
entry and exit decisions. In period ¢, firms that have entered in the past and not yet exited
serve the market. Each firm has a name fe F=F,U (N x {1,2,...,]}). Initial incum-
bents have distinct names in g, while potential entrants’ names are from N x {1,2, ..., j}.
The first component of a potential entrant’s name gives the period in which it has its only
opportunity to enter the market, and the second component gives its position in that pe-
riod’s queue of j < oo firms. Aside from the timing of their entry opportunities, the firms
are identical.

Figure 1 details the actions taken by firms in period ¢ and their consequences for the
game’s state at the start of period ¢ + 1. We call this the game’s recursive extensive form.
For expositional purposes, we divide each period into two subperiods, the entry and sur-
vival stages. Play in period ¢ begins on the left with the entry stage. If t = 1, nature sets
the number N, of firms serving the market in period 1 and the initial demand state Y;.
If ¢ > 1, these are inherited from the previous period. We use ) to denote the support
of Y,. Although we consistently refer to Y, as “demand,” it can encompass any market
characteristics that may affect, but are not affected by, firms’ decisions. For instance,
Y, may be vector-valued and include cost shocks. It follows a first-order Markov pro-
cess.

Each incumbent firm earns a profit w(N,, Y,) from serving the market, and all firms
value future profits and costs with the discount factor p € [0, 1). We assume that
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Al. 37 <ocosuchthatV(n,y) eNx Y, —co < E[w(n, Y)Y =yl < 7;

A2. IneN:Vn>nandVye ), m(n,y) <0; and

A3. V(n,y) eNx Y, m(n,y)>m(n+1,y).

Here and throughout, we denote the next period’s value of a generic variable Z with Z,
random variables with capital Roman letters, and their realizations with the correspond-
ing small Roman letters. The first assumption ensures that expected discounted profits
(values) in all entry or survival decision nodes are bounded from above. Because firms
will, in equilibrium, limit losses by exiting, this will allow us to restrict our analysis of
equilibrium values to the space of bounded functions. We will use the second assump-
tion to bound the number of firms that will participate in the market simultaneously. It
is not restrictive in empirical applications to oligopolistic markets. The third assumption
requires the addition of a competitor to reduce weakly each incumbent’s profit. That is,
what Sutton (1991) labeled the toughness of competition must dominate any complemen-
tarities between firms’ activities.

After incumbents earn their profits, entry may occur. The period ¢ entry cohort consists
of firms with names in {¢} x {1, ..., j}. These firms make their entry decisions sequentially
in the order of their names’ second components. We denote firm f’s entry decision with
aé € {0, 1}. A firm in the jth position of the current period’s entry queue that enters pays
the sunk cost (N, + j, Y,). This satisfies

A4, VmeNandVye Y, 0 < o(m,y) <e(m+1,y).

If o(m,y) < ¢(m + 1,y), then the (m + 1)th firm faces an economic barrier to entry
(McAfee, Mialon, and Williams (2004)). A firm choosing not to enter earns a payoff of
zero and never has another entry opportunity. Such a refusal to enter also ends the entry
stage, so firms remaining in this period’s entry cohort that have not yet had an opportunity
to enter never get to do so.

The total number of firms in the market after the entry stage equals Ng,, which
sums the incumbents with the actual entrants. Denote their names with fi, ..., fy,,. In
the survival stage, these firms simultaneously choose probabilities of remaining active,

i INE,. 1 . . .
ag,...,ag ' €[0,1]." Subsequently, all survival outcomes are realized independently
across firms according to the chosen Bernoulli distributions. Firms that exit earn a payoff
of zero and never again participate in the market. The N,,; surviving firms continue to
the next period, ¢ + 1.2 To end the period, nature draws a new demand state Y,,, from the
Markov transition distribution G(-|Y;).

The timing of our game is similar to that in Ericson and Pakes (1995). Like them, we
allow for sequential entry.> Moreover, like Ericson and Pakes, and unlike Abbring and
Campbell (2010), we assume simultaneous survival decisions. Because we allow for mixed
survival rules, this may lead to excessive exits. Since entry precedes exit, potential en-

'We do not explicitly model the firms’ randomization devices. A more complete development would assign
each active firm an independent uniformly-distributed random variable and have each firm choose a set of
realizations that direct it to survive. In this extension, a survival probability equal to 1 could indicate either
that the firm chooses to exit never or that it chooses to exit whenever its random variable falls into a particular
nonempty set of measure zero. Throughout this paper, we will assume the former and interpret a5 = 0 and
as =1 as dictating certain exit and survival.

2The assumption that entrants immediately contemplate exit might seem strange, but exit immediately fol-
lowing entry never occurs in equilibrium. Furthermore, this timing assumption removes an unrealistic possibil-
ity. If entrants did not make these continuation decisions, then they could effectively commit to continuation.
This would allow an entrant to displace an incumbent only by virtue of this commitment power.

3See their page 60: “We assume that, in each period, ex ante identical firms decide to enter sequentially
until the expected value of entry falls sufficiently to render further entry unprofitable.”
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trants cannot take immediate advantage of such “exit mistakes” and thereby outmaneu-
ver incumbents. This is not so relevant to Ericson and Pakes, who restrict strategies to be
pure (at the expense of losing equilibrium existence; see Doraszelski and Satterthwaite
(2010)). To establish the robustness of our results to the game’s timing assumptions, we
considered a variant of our model in which at most one firm enters each period and entry
and survival decisions are all taken simultaneously. In this paper’s Supplemental Material
(Abbring, Campbell, Tilly, and Yang (2018)), we demonstrate that this alternative game
has a unique equilibrium in which potential entrants never displace incumbents; and we
provide an algorithm for its rapid calculation.

3. EQUILIBRIUM

We assume that firms play a symmetric Markov-perfect equilibrium, a subgame-perfect
equilibrium in which all firms use the same Markov strategy.

3.1. Symmetric Markov-Perfect Equilibrium

A Markov strategy maps payoff-relevant states into actions. When a potential entrant
(¢, j) makes its entry decision in period ¢, the payoff-relevant states are the number of
firms committed to activity in the next period if firm (¢, j) chooses to enter, M; = N, +
j, and the current demand Y,. We collect these into the vector (M;,Y,) e H =N x V.
Similarly, we collect the payoff-relevant state variables of a firm contemplating survival in
period ¢ in the H-valued (Ng,, Y;). Since survival decisions are made simultaneously, this
state is the same for all active firms. A Markov strategy is a pair of functions ag : H —
{0,1} and as : H — [0, 1]. The entry rule ar assigns a binary indicator of entry to each
possible state. Similarly, ag gives a survival probability for each possible state. Since time
and firms’ names themselves are not payoff-relevant, we henceforth drop the subscript ¢
and the superscript j from the payoff-relevant states.

In a symmetric Markov-perfect equilibrium, a firm’s expected continuation value at a
particular node of the game can be written as a function of that node’s payoff-relevant
state variables. Two of these value functions are particularly useful for the model’s equi-
librium analysis: the post-entry value function, vg, and the post-survival value function,
vs. The post-entry value vg(Ng, Y) equals the expected discounted profits of a firm in a
market with demand state Y and Ny firms just after all entry decisions are made. The
post-survival value vg(N’, Y) equals the expected discounted profits from being active
in the same market with N’ firms just after the survival outcomes are realized. Figure 1
shows the points in the survival stage when these value functions apply.

A firm’s post-survival value equals the expected sum of the profit and post-entry value
that accrue to the firm in the next period, discounted to the current period with p:

vs(n',y) = pEo, [m(n', Y') + vp(Np, Y')IN' =n', Y =y]. (1)

Here, E,, is an expectation over the next period’s demand state Y’ and post-entry num-
ber of firms N. This expectation operator’s subscript indicates its dependence on az. In
particular, given N’ = r’, N, is a deterministic function of ag(-, Y’). Note that Assump-
tion Al implies that vg is bounded from above. This ensures that the expectation in the
right-hand side of (1) exists.*

4 At this point in our model’s development, we cannot exclude the possibility that it equals —oo.
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Because the payoff from leaving the market is zero, a firm’s post-entry value in a state
(ng, y) equals the probability that it survives, as(ng, y), times the expected payoff from
surviving:®

Ve(ng, y) = as(ng, y)Eq [US(N/, Y)|NE =ng, Y= y]- ()

The expectation E,; over N’ takes survival of the firm of interest as given. That is, it
takes N’ to equal 1 plus the outcome of nz — 1 independent Bernoulli (survival) trials
with success probability as(ng, y). Its subscript makes its dependence on ag explicit. It
conditions on the current value of Y because this influences the survival probability’s
value.

If a strategy (ag, as) forms a symmetric Markov-perfect equilibrium with payoffs
(vg, vs), then no firm can gain from a one-shot deviation from its prescriptions:®

ag(m, y) € arg max (B, [ve(Ne, NIM =m, Y =y] = ¢(m,y)) and  (3)
as(n, y) € arg max aly [vs(N', y)INg = ng, ¥ = y]. ©

Together with Assumption A2, (3) and (4) bound the long-run number of firms in equi-
librium.

LEMMA 1—Bounded Number of Firms: In a symmetric Markov-perfect equilibrium,
ag(n,y)=0and as(n,y) <1foralln>nandye).

The Appendix provides this lemma’s proof. Intuitively, firms cannot survive for sure
with n > 7 firms because this would give them negative payoffs. To see this, note that if all
firms continue for sure, each would earn a negative profit one or more times (due to our
assumption that 7 (n, y) < 0 for all n > 7). In the first future period in which firms leave
with positive probability, (4) requires the post-entry value to equal zero. Therefore, con-
tinuing for sure with n > 7 yields a negative expected payoff. Any firm could avoid this by
exiting instead, so as(n, y) < 1 and vg(n, y) = 0. Because no firm would be willing to pay
a positive sunk cost to enter a survival subgame with zero expected payoff, az(n, y) = 0.

In equilibrium, the market can have more than 7 active firms only if the initial num-
ber of active firms, N;, exceeds 7. Because these firms exit with positive probability until
there are 72 or fewer of them, N, must eventually enter {0, 1, ..., 71} permanently. Conse-
quently, the equilibrium analysis hereafter focuses on the restrictions of ag, vg, as, and vy
to {1,2,...,n} x Y C H. Extending an equilibrium strategy on this restricted state space
to the full state space is straightforward.

Lemma 1 implies that setting the number of potential entrants per period (j) to exceed
n guarantees that at least one potential entrant per period refuses an entry opportunity.
In this sense, the model becomes one of free entry, as in Ericson and Pakes (1995). This
is a standard and convenient assumption in applications without an identifiable and finite
set of potentially active firms. The remaining development of our model imposes this free
entry assumption (j > 7).

In the Supplemental Material (Abbring et al. (2018)), we show that (3) and (4) are
not only necessary, but also sufficient for (ag, as) to be an equilibrium strategy. Proofs

SWe define the right-hand side of (2) to equal zero if the firm collects a payoff of zero by exiting for sure
(as(ng,y)=0),even if E, [vs(N', y)INg =ng, Y =y] = —oo.
%We define the maximands in the right-hand sides of (3) and (4) to equal zero if a = 0.
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of this “one-shot deviation principle” (e.g., Fudenberg and Tirole (1991, Theorem 4.2))
typically make assumptions on payoffs that bound from both above and below the value
gains from deviating in the distant future from any strategy, whether that strategy satisfies
(3) and (4) or not. Our model does not satisfy these assumptions, because it imposes
no lower bound on profits.” Conditions (3) and (4) do, however, imply a lower bound
(corresponding to the outside option of zero) on the values in the survival and entry nodes
in equilibrium (including vg). Because the expected discounted profits in these decision
nodes are bounded from above under any strategy profile, the gains from deviating from
a strategy (ag, as) that satisfies (3) and (4) are bounded from above. Using this, we adapt
existing proofs of the one-shot deviation principle.

Before proceeding to characterize the equilibrium set, we wish to note and dispense
with an uninteresting source of equilibrium multiplicity. If a potential entrant is indiffer-
ent between entering and staying out, we may be able to construct one equilibrium from
another by varying only that choice. Similarly, an incumbent monopolist can be indiffer-
ent between continuation and exit, and we can possibly construct one equilibrium from
another by changing that choice alone. To avoid such uninteresting caveats to our results,
we follow Abbring and Campbell (2010) by focusing on equilibria that default to inactiv-
ity. In such an equilibrium, a potential entrant that is indifferent between entering or not
stays out,

Ea,i[vE(NE,YHM:Wl,Y:)’]:Qo(m,y) = aE(may)z(),

and an active firm that is indifferent between a/l possible outcomes of the survival stage
exits,

vs(l,y)=---=vs(ng,y)=0 = as(ngy) =0.

The restriction to equilibria that default to inactivity does not restrict the game’s strat-
egy space. Hereafter, we require the strategy underlying a “symmetric Markov-perfect
equilibrium” to default to inactivity. When Y follows a continuous distribution, an exact
indifference between activity and inactivity occurs with probability zero. For this reason,
the restriction to equilibria that default to inactivity is very weak.

3.2. Existence, Uniqueness, and Computation

A key step in the equilibrium analysis uses the assumption that the per period profit
weakly decreases with the number of competitors to show that the same monotonicity
applies to the post-survival value functions.

LEMMA 2—Monotone Equilibrium Payoffs: In a symmetric Markov-perfect equilibrium,
vs(n', y) weakly decreases with n' forall y € Y.

The Appendix contains Lemma 2’s proof. It says that no endogenous complementarity
between firms arises in equilibrium. To appreciate its implications, consider a one-shot

"The absence of a lower bound on profits is important when we bring the model to the data as we do in
Abbring, Campbell, Tilly, and Yang (2017), where we provide a full econometric development of the model
presented here. There, y is vector-valued and includes two elements, a demand state that is observed by the
econometrician and a cost shock that is unobserved by the econometrician. These cost shocks serve as the
model’s econometric error. Permitting profits to be unbounded from below (and therefore permitting cost
shocks to become arbitrarily large) is critical for ensuring that the model is statistically nondegenerate.
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simultaneous-moves survival game played by n active firms. In it, each of the n’ survivors
earns vg(7n', y), where vy is the post-survival value in a symmetric Markov-perfect equi-
librium of our dynamic game, and each exiting firm earns zero. A survival probability
as(ng, y) is a symmetric Nash equilibrium strategy of this one-shot game if and only if it
satisfies (4). Thus, a survival rule ag from a symmetric Markov-perfect equilibrium gives
a symmetric Nash equilibrium survival probability as(ng, y) for each one-shot game de-
fined by nz € {1,...,7} and y € Y. The converse also holds good: A collection of Nash
equilibrium survival probabilities from survival games can be assembled into a survival
rule.

This one-shot game has many equilibria in the trivial case that vg(1,y) = --- =
vs(ng, y) = 0. In this case, our restriction to equilibria that default to inactivity re-
quires as(ng, y) = 0. In the more interesting case where vs(#n’, y) # 0 for at least one
n €{l,...,ng}, Lemma 2 guarantees that the one-shot game has a unique symmetric
Nash equilibrium. To show this, we distinguish three mutually exclusive subcases:

e (1, y) <0. Lemma 2 implies that vg(n’, y) <0 for all »’ > 1. Therefore, exiting for
sure is a weakly dominant strategy. Since vs(#’, y) # 0 for at leastone n’ € {1, ..., ng}, we
also know that vg(ng, y) < 0. This makes exiting for sure the unique best response to any
positive symmetric continuation probability, so there is only one symmetric equilibrium.
Init, ag(ng, y) =0.

e vs(ng,y) > 0. Lemma 2 implies that vg(#’, y) > 0 for n’ < ng. Therefore, continuing
for sure is a weakly dominant strategy. Since vg(n', y) # 0 for at leastone n’ € {1, ..., ng},
we also know that vg(1, y) > 0. This makes continuing for sure the unique best response
to any continuation probability less than 1, so there is only one symmetric equilibrium. In
it, as(nE, y) =1.

e v5(1,y) > 0> vg(ng, y). No symmetric pure strategy equilibrium exists, because the
best response to all other firms continuing for sure is to exit for sure, and vice versa. In
a mixed strategy equilibrium, firms must be indifferent between continuation and exit.
By the intermediate value theorem, there is some a € (0, 1) that solves the indifference
condition

n/

ng
Z (nE_ 11)51"/1(1 — a)”E*"/vs(n/, y) =0,

n'=1

where the left-hand side gives the expected value from survival when all other ny — 1
firms survive with probability a and the right-hand side gives the value from exit. This
establishes existence of a mixed strategy equilibrium. Lemma 2 and this case’s precondi-
tions together guarantee that the left-hand side strictly decreases with a. Therefore, there
is only one symmetric mixed strategy equilibrium.

For future reference, we state this equilibrium uniqueness result as the following corol-

lary.

COROLLARY 1: Fix np € {1,...,n} and y € Y, let vs be the post-survival value function
associated with a symmetric Markov-perfect equilibrium, and suppose that vs(n', y) # 0 for
at least one n' € {1, ..., ng}. In the one-shot survival game in which ng firms simultaneously
choose between survival and exit (as in the survival stage of Figure 1), each of the n' survivors
earns vs(n', y), and each exiting firm earns zero; there is a unique symmetric Nash equilib-
rium, possibly in mixed strategies.

When the individual payoff from joint continuation is positive, this unique Nash-
equilibrium strategy from Corollary 1 guarantees that firms survive for sure and re-
ceive this payoff. In all other states, each firm is either indifferent between surviving
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and exiting or prefers to exit for sure; and following the strategy gives each of them
an expected payoff of zero. The post-entry payoff is always zero in the trivial case with
vs(1,y) =--- =vs(ng, y) = 0 excluded by Corollary 1. Thus, the following holds.

COROLLARY 2: If vg and vy are the post-entry and post-survival value functions associated
with a symmetric Markov-perfect equilibrium, then

UE(”E,}’) ZmaX{()) vS(nE7y)}'

Note that Corollary 2 in combination with Lemma 2 implies that vz (ng, y) also weakly
decreases with ng.

We proceed to demonstrate equilibrium existence constructively using Algorithm 1.
Equilibrium uniqueness follows from this as a byproduct. Denote the candidate equilib-
rium values that the algorithm calculates with vr and vg, and the corresponding candidate
equilibrium strategy with (ag, as).

First, consider states with 72 firms. By Lemma 1, there will be no entry in a period
starting with 72 firms. With (1), this implies that any possible candidate equilibrium post-
survival value must satisfy

vs(7,y) = pE[ﬂ'(ﬁ, Y/) + VE(ﬁ, Y’)|Y :y].
With Corollary 2, this constrains the candidate post-entry value to satisfy
ve(it, y) =max{0, pE[7 (7, Y') + vg (R, Y)Y = y]}. (3)

The right-hand side of (5) defines a contraction mapping on the space of bounded func-
tions on ), with a unique fixed point v (1, -). This v (7, -) is the only possible equilibrium
post-entry value in a state with 7 firms. Moreover, any entry rule that (i) is consistent with
it, (ii) is one-shot deviation proof as in (3), and (iii) defaults to inactivity must dictate en-
try into a market with 2 — 1 incumbents if and only if the payoff from doing so is positive.
Thus, the algorithm sets

Here, 1[x] = 1 if x is true and equals 0 otherwise.

With vg (i1, -) and ag (%, -) calculated, the algorithm proceeds with the recursive con-
struction of vg(n, -) and ag(n, -) for n decreasing from 7 — 1 to 1. For a given n, the algo-
rithm has already calculated vg(n*, -) and ag(n*,-) forn* =n+1,n+2,..., 1. Suppose
that vz(n*, -) and az(n*) weakly decrease with n* (which, by Lemma 2 and Corollary 2,
they will if v is indeed an equilibrium post-entry value). Then,

pn,y)=n+ Y ap(m,y)

m=n+1

equals the number of firms that will be active in a period that starts with n firms after all
that period’s potential entrants have followed the candidate entry rule. Together, (1) and
Corollary 2 require the candidate post-entry values to satisfy

ve(n, y) = maX{O, pIE[ﬂ'(n, Y’) + VE(/.L(I’I, Y’), Y/)|Y = y]} (6)
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ALGORITHM 1.—Equilibrium calculation.
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Given vg(n*,-) forn* =n+1, ..., i, the right-hand side of (6) defines a contraction

T.(f)(y) =max{0, pE[7(n, Y') + 1[u(n, Y') = n]f(Y)
+1[u(n, Y') > nlvp(u(n, Y'), Y)Y =y]}

with a unique fixed point v¢(n, -). This is the only possible post-entry value. Finally, a firm
in state (n, y) enters if and only if vz (u(n, y), y) > ¢(n, y). Again supposing that v (n*, y)
and ag(n*, y) weakly decrease with n*, and using that ¢(n*, y) weakly increases with n*,
this entry rule can be simplified to

()

ap(n,y)=1[ve(n, y) > e(n,y)].

Once the algorithm’s recursive part is complete, it has constructed a candidate post-
entry value and entry rule. With (1), these imply a unique candidate post-survival value
vs. After computing vg, the algorithm ends by setting the candidate survival rule ay to
a value consistent with vy and the analysis leading up to Corollary 1. Specifically, it sets
as(ng, y) =0 for all (ng, y) such that vs(ng, y) =--- =vs(1, y) = 0 (the algorithm sub-
sumes this in the case that vg(1, y) < 0) and finds an equilibrium to Corollary 1’s one-shot
survival game for all other (ng, y). If the candidate is actually an equilibrium, then Corol-
lary 1 guarantees that this candidate survival rule exists and is unique. This is indeed so.

THEOREM 1—Equilibrium Existence and Uniqueness: There exists a unique symmetric
Markov-perfect equilibrium. The equilibrium strategy and corresponding equilibrium payoffs
are those computed by Algorithm 1.

4. CONCLUSION

This paper’s theoretical and computational results enable our model’s empirical ap-
plication. Since its key simplifying assumption imposes homogeneity of expected profits
when firms make their entry and continuation choices, it is best suited for investigations
that can be usefully undertaken while abstracting from persistent heterogeneity among
competing firms. Examples of such studies include Bresnahan and Reiss’s (1994) and
Dunne, Klimek, Roberts, and Xu’s (2013) estimations of oligopolists’ sunk costs with
panel data on firm counts and demand from cross sections of markets. In Abbring et al.
(2017), we proposed a simple procedure for empirically determining whether or not our
model can be usefully applied to such data from a given industry. This decomposes the
industry’s Herfindahl-Hirschman Index (HHI) into its value with equally sized firms and
a residual that we label the contribution of heterogeneity. Our procedure tests whether this
heterogeneity measure contributes to forecasts of the number of active firms. If not, then
our model can accommodate observed heterogeneity with transitory firm-specific distur-
bances. We applied this procedure to data from Motion Picture Theaters in 573 Microp-
olitan Statistical Areas in the United States. We found that heterogeneity’s contribution
to the HHI makes economically trivial contributions to Poisson regressions’ forecasts of
the number of firms serving that industry.

Our companion paper also demonstrates the practicality of applying our model to such
data by estimating Motion Picture Theaters’ sunk costs and the toughness of competition
between them. The model’s maximum likelihood estimation requires calculating a sepa-
rate equilibrium for each market in the data for each trial value of its parameters, but this
required only about thirty minutes using two Intel Xeon E5-2699 v3 CPUs (released by



732 ABBRING, CAMPBELL, TILLY, AND YANG

Intel in 2014) on a single machine with C++ code. We were also able to conduct many pol-
icy experiments, which calculated the effects of large demand shocks and counterfactual
competition policies. This experience leads us to conclude that structural investigations
of oligopoly dynamics based on this paper’s model can be done with few computational
resources.

APPENDIX: PROOFS

PROOF OF LEMMA 1: First, we will prove that ag(n,y) <1 forall ye ) and n > n.
Consider a period #* survival subgame with N . = n > 71 firms and demand state Y. = y.
Define the random time 7 as the first period weakly after #* in which firms choose exit
with positive probability, with 7 = oo if they never do:

T= min({t >t":1as(Ng,, Y,) < 1} U {oo}).

Suppose that ag(n,y) =1, so 7 > t*. By definition, exit occurs only in or after period
7, s0 we know that N, = Ny, > nforte {r +1,..., 7}. (Recall from Footnote 1 that
we take ag(-) =1 to dictate sure survival, not merely almost-sure survival.) Since n > n,
this together with Assumption A2 implies that w(N,,Y,) <0 for t e {#* +1,...,7}. If
T = 00, then the incumbent firms receive an infinite sequence of strictly negative payoffs.
If instead 7 < oo, then the incumbent firms receive a finite sequence of strictly nega-
tive payoffs followed by the post-entry value from playing the period 7 survival subgame
ve(Ng.-, Y,), which equals zero by (2), (4), and the definition of 7. Therefore, the period
t* post-survival value satisfies vg(n, y) < 0. Since a period ¢* incumbent firm can raise its
payoff to zero by choosing certain exit, the supposition that as(n, y) = 1 must be incorrect.

Next, we will prove that ag(n, y) =0 for all y € ) and n > n. Consider the decision of
the first potential entrant, firm (#*, 1), in a period ¢* entry subgame that starts with N =
n—1>n—1incumbents and demand state Y, = y. Note that this firm pays ¢(n, y) >0
upon entry. In return, it earns a post-entry value of zero (as proven above). Therefore, it
maximizes its payoff by staying out of the market and earning zero: ag(n, y) =0. Q.E.D.

PROOF OF LEMMA 2: It suffices to prove that vs(n', y) > vs(n’+ 1, y) for all »’ > 1 and
y € Y. To this end, consider a subgame beginning immediately after period ¢*’s survival
outcomes are realized with N.,; = n’ and Y. = y. We call this the original subgame. Now
consider a second period ¢* subgame starting at the same point but with one additional
firm. We refer to this as the perturbed subgame and use N;" and N/, to denote the initial
and post-entry numbers of firms in this perturbed subgame in period ¢. Finally, define
the random time 7+ as the first period weakly after #* + 1 in which firms in the perturbed
subgame choose exit with positive probability, with 7" = oo if they never do:

rr=min({r > +1:a5(Nf,, V) <1} U{o0}).

There is no exit before period 7" in the perturbed subgame. Furthermore, we know that
the period 7" post-entry value in that subgame equals zero. Therefore, we can write

T
vs(n' +1,y) = TIEIC}OE|: Z p’_’*]l[t <tt|7(N/, Y)Y = yj|.
t=t*+1

Since 77 is a consequence of equilibrium choices, we know that vg(n' + 1, y) > —oo.
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Now consider an incumbent firm in the original subgame that (possibly) deviates after
the period #* survival stage by choosing to survive for sure as long as ¢t < 7+ and to exit
for sure if t = 7*. Let N, denote the number of firms serving the market during period
t in the original subgame with this deviation. Since the original strategy was part of a
subgame-perfect equilibrium, vg(#’, y) exceeds the expected payoff from following this
deviating strategy. That is,

T
vs(n',y) = Tlim E|: Z pH']l[t < T+]7T(N,, Y)Y, = y:|.
t=1r*+1

To show that the limit on the right-hand side is well defined, note that N, < N;" for all ¢ <
7*. Otherwise, the two subgames would have potential entrants in the same states making
different entry choices. This would violate either the presumption that the equilibrium
strategy is Markov or that it defaults to inactivity. This and Assumption A3 imply that
7(Ny, Y) > w(NF,Y,) forallt =t +1,...,7". Combining this with vg(n' + 1, y) > —oc0
gives the desired result.

Because the difference of two convergent sequences’ limits equals the limit of the se-
quences’ difference, we can write

vs(r', y) —vs(n' +1,)

T
> lim E[ > ot < (m(NL Y) — 7(N], Y)Y = yi|.
t=t*+1

Each term in the partial sum on the right-hand side is nonnegative, so we conclude that
vs(n',y) —vs(n' +1,y) > 0. Q.E.D.

PROOF OF THEOREM 1: The proof is divided into three parts. First, we show that the
candidate post-survival value from Algorithm 1 satisfies Lemma 2’s monotonicity require-
ments. Second, we use this to demonstrate that the candidate strategy indeed forms an
equilibrium. Third, we demonstrate equilibrium uniqueness.

Fix n e {1,2,...,n — 1} and suppose that we know that vg(n +1,-) > --- > vg(n, -).
Evaluating 7, at f*(-) =vp(n+1, ) gives

T.(f*)() = max{0, pE[7(n, Y') + f*(Y")
+1[w(n Y) > n](ve(u(n. Y), Y') = (Y)Y =]}

> max{0, pE[7(n+1,Y") + f*(Y) (8)
+1[u(n, V) > n 1] (e(u(n, Y1), V) = f1Y)IY =])

=max{0, pE[m(n+1,Y") + f*(Y') )
+1p(n+1,Y)>n+1](ve(u(n+1,Y),Y) - f(Y)Y =]}

=vg(n+1,-).

The inequality in (8) follows from Assumption A3 and the assumed f*(Y') = vg(n +
1, Y’"). Since vg(n*, Y’) weakly decreases with n* for n* > n, so does ag(n*, Y'). Therefore,
w(n,Y)=pnmn+1,Y’") whenever u(n, Y') > n+ 1. This gives us (9). The final equality
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follows again from f*(Y') = vg(n+ 1, Y’). The operator T, is a monotone contraction
mapping, so T,(f*)(-) = ve(n + 1, -) implies that its fixed point, vz(n, -), weakly exceeds
ve(n + 1, ). Recursively applying this argument for n decreasing from 7 — 1 to 1 proves
that vp(1, ) > ve(2,-) -+ > ve(n, -). With Assumption A3 and the now established fact
that w(#’, -) weakly increases with #’, this monotonicity implies that

Vs(n’, ) = pE[’n'(n/, Y/) + VE(M(n’, -), Y’)IY = ]

weakly decreases with #'. This is the desired monotonicity result.
For the second part, we first verify that ar, vs, and v satisfy (3) and (1). Since vg(ng, )
weakly decreases with ng, ag(m, y) weakly decreases with m, so that

Eop [ve(Ng, NIM =m, Y = y] =vg(n(m, y), y). (10)

Thus, to verify (3), it suffices to show that vg(u(m,y),y) > ¢(m,y) if and only
it vg(m,y) > o(m,y). If ve(u(m,y),y) > ¢(m,y), then, because wu(m,y) > m and
ve(ng, y) weakly decreases with ng, ve(m,y) > vg(u(m,y),y) > ¢(m,y). Conversely,
if vg(m, y) > @(m, y), then vg(u(m, y),y) > ¢(u(m,y), y) so that, by Assumption A4,
ve(u(m,y),y) > ¢(m, y). This establishes that oz and v satisty (3). Using (10), it is easy
to verify that ag, vs, and vg satisfy (1).

Next, consider (4) and (2). For states (ng, y) such that vs(1,y) =--- =vs(ng, y) =0,
(4) imposes only the trivial requirement that as(ng, y) € [0, 1]. Algorithm 1’s selection
of as(ng, y) = 0 (subsumed in the case vs(1, y) < 0) satisfies this. For all other states,
Algorithm 1 sets ag(ng, y) to the symmetric Nash equilibrium of Corollary 1’s ng-player
one-shot survival game with payoffs vg(#’, y) from survival with n’ =1, .. ., ng firms, which
satisfies (4). (If vs(ng, y) =0 < vs(1, y), it sets as(ng, y) to the unique mixing probabil-
ity that makes firms indifferent, which indeed equals 1 as in Corollary 1’s equilibrium.)
Equation (2) requires vg(#n, y) to equal the expected payoff to this game, max{0, vs(n, y)},
which is true by construction. We conclude that («p, ag) indeed forms an equilibrium.

We end by demonstrating equilibrium uniqueness. First, Section 3.2’s argument im-
plies that any vg(7, -) equals the unique fixed point vg (7, -) of T;. With (3), this gives a
unique ag(n, -) that defaults to inactivity, a(n, -). Next, repeat the following argument for
n decreasing from 72 — 1 to 1. For given n, suppose that we have uniquely determined
vg(n*, ) =vg(n*, ) and ag(n*, ) = ag(n*, ) forn*=n+1, ..., n. Then, Section 3.2’s ar-
gument (which uses (10)) implies that any vg(#n, -) equals the unique fixed point vg(n, -)
of T,. With (3), this gives a unique ag(n, -) that defaults to inactivity. By the argument
following (10), ag(n, -) = ag(n, -). This establishes that v = v and ap = ag. With (1),
these imply a unique value of vg, vs. Finally, Corollary 1 and the requirement that the
strategy defaults to inactivity together imply that there is a unique ag corresponding to
this post-entry value, as. QE.D.
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