
 
 

Correlation and Asset Correlation  
in the Structural Portfolio Model 

 
 
 
 
 

Jon Frye 
Federal Reserve Bank of Chicago 

230 South LaSalle Street 
Chicago, IL 60604 

Jon.Frye@chi.frb.org 
312-322-5035 

 
 
 

April 24, 2008 
Journal of Credit Risk, Volume 4 Number 2, Forthcoming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jon Frye is a Senior Economist at the Federal Reserve Bank of Chicago. He is deeply indebted to Ed 
Pelz for his assistance and many contributions, and to an anonymous referee for suggestions and 
guidance. He also thanks Irina Barakova, Ethan Cohen-Cole, Steve Durfey, Matt Foss, Brian 
Gordon, Michael Gordy, Paul Huck, Tom Jacobs, Jose Lopez, Paul Sternhagen, Kevin Yang and for 
comments on previous versions. Any errors that remain are the unaided contribution of the author. 
The views expressed are the author’s and do not necessarily represent the views of the management 
of the Federal Reserve Bank of Chicago or the Federal Reserve System. 

 1



Correlation and Asset Correlation in the Structural Portfolio Model 
 

Abstract 
 

 
 
To forecast the default distribution of a credit portfolio, a risk manager often relies on a 
structural model that contains a measure of correlation. Quite frequently, the manager 
sets correlation in the model equal to asset correlation. This common practice, it is argued 
here, may be in error.  
 
Correlation in the portfolio model would be identical to asset correlation under a set of 
assumptions. This study examines each assumption in detail. Relaxing each creates a 
potential for difference. The potential is realized in studies that estimate correlation based 
on default data; those estimates tend to be less than asset correlation. The estimation 
presented here rejects uniform values of correlation greater than 10.8%. It is shown by 
example that the difference of correlation values appears to be great enough to produce 
misleading statements of risk.  
 
Keywords: Asset correlation, portfolio credit risk model, structural credit model, default 
model, Merton model. 
 
JEL classifications: G32, G21, G28
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Introduction 
 
This study calls attention to the common practice that correlation in the structural credit 
portfolio model is treated as identical to asset correlation. Though often treated as the 
same, the two concepts are different: correlation in the model ties together events of 
default, while asset correlation is defined without reference to default. This difference in 
concept makes possible a meaningful difference in values.  
 
The risk manager might have an inkling that something is not quite right. To calibrate 
probability of default (PD), he optimizes using historical default rates. That is, for PD 
estimates, default data comes into play. In the portfolio model, PDs and correlations 
produce forecasts of joint default rates. These forecasts, also, could be compared to 
historical data, but the naïve risk manager relies on asset correlation without checking the 
result. Some risk managers are more careful than this, but not all.  
 
The identification of correlation as asset correlation traces back to the assumptions made 
by the model. These assumptions are examined in the next three sections, which relax 
each one in turn. If the assumptions of the model do not hold, correlation and asset 
correlation differ in concept. 
 
Later sections turn from the difference in concept to a difference of value. A review of 
the literature shows that estimates of correlation based on default data tend to be less than 
asset correlation. Based on default data, the present study rejects with customary 
confidence a value of uniform correlation greater than 10.8%. Thus, the statistical 
estimate of correlation based on default data is significantly less than values of asset 
correlation that have appeared in credit portfolio models.  
 
If a credit model employs overstated correlation, it overstates risk. This would be the case 
for any exposure, but the next-to-last section shows that some exposures are more 
affected than others. Therefore, if a manager uses the wrong value of correlation, he can 
be led to engage in the wrong transactions. 
  
 
The basic structural portfolio credit model  
 
The basic model is based on the insights that Robert Merton put forth over thirty years 
ago. Since then, numerous advances have been proposed and some have been adopted for 
particular purposes. For risk control of a large portfolio, however, the basic model is still 
the most common.  
 
The purpose of the model is to forecast the distribution of loss. Since our interest is the 
distribution of the default rate, we safely ignore exposure amount, loss given default, 
maturity, and "marked to market" credit losses not stemming from default.  
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Everything essential for now can be seen in a portfolio having exposures to only two 
firms. We assume that the two probabilities of default, PD1 and PD2, are known. Then 
the joint default rate, PDJ, completely determines the distribution of the default rate: 
 

Pr [ Default rate = 100% ] =  PDJ 
(1) Pr [ Default rate = 50% ]  =  PD1 + PD2 - 2 PDJ  

Pr [ Default rate = 0% ] =  1 - PD1 - PD2 + PDJ 
 
The task of the portfolio model is to determine PDJ. To do so, it makes three 
assumptions: 
 

• A firm defaults if and only if it is in "asset shortfall"— that is, if the value of its 
assets is less than the value of its liabilities. There is an "iron-clad link" between 
the shortfall event and the default event. 

• The value of liabilities is known in advance.  
• Asset returns obey the bivariate normal probability distribution in which asset 

correlation is known in advance. 
 
Given these assumptions, standardized asset returns have a bivariate normal distribution: 
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We use "asset correlation" specifically to refer to r in Expression (2); r is the correlation 
between asset returns.  
 
In the model, a firm defaults if the random value of its assets is less than the fixed value 
of its liabilities. Asset value is a monotonic function of the standardized asset return. 
Therefore, a firm defaults if its standardized asset return is less than a threshold that is 
equal to Φ-1(PD), where Φ-1(·) denotes the inverse standard normal cumulative 
distribution function.  
 
Both firms default if both standardized asset returns are less than their respective 
thresholds. Therefore, the joint default rate equals the joint density of standardized 
returns integrated up to the appropriate limits: 
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where φ(·,·,r) denotes the bivariate standard normal probability density function with 
correlation equal to asset correlation. This calculation is also called the Gauss copula 
evaluated at (PD1, PD2, r), where 
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We refer to these expressions and their generalizations to larger portfolios as the "basic 
structural portfolio credit model" or simply as the "basic model," to distinguish it from 
more elaborate structural models that have been put forth. The basic model parameters 
are PD's and asset correlations. There is a strictly monotonic increasing relation between
asset correlation 

 
and the joint default rate; greater asset correlation implies greater PDJ 

nd vice versa.  

ween two events of 
efault. We take note that it is a strictly increasing function of PDJ:  

(5) Default correlation = 

a
 
A related concept is "default correlation", which is the correlation bet
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Though the concept of default correlation may be more familiar than PDJ, we put PDJ 

to the spotlight because it is a more direct consequence of the model.  

 
y 

 

e sections consider the effect on joint default of each of the model assumptions 
 turn. 

hortfall and default are different 

-
efault events may depend on factors besides the comparison of assets and liabilities.  

tions 
ies and the value of asset 

orrelation can be known when the model is employed.  

 

cash for strategic reasons. When a firm defaults on a financial obligation, this does not 

in
 
To return, the model makes three assumptions. Taken together, the assumptions depict an
uninterrupted flow from asset correlation to asset values to default events and ultimatel
to joint default events. It might seem intuitive, apparent even, that interruptions to the
flow would produce a different, likely lesser, joint default rate. Still, the use of asset 
correlation in credit models is so common that the matter will be aired out in detail. The 
next thre
in
 
 
S
 
The model assumes the iron-clad link, but the real world is more complicated. Borrowers 
have many interdependent options. The exercise of one of them, the option to default on a 
particular obligation, might not accord with a simple theory. The same can be said for the 
options of actual and potential suppliers of credit, equity, skills, and other productive 
resources, each of whom can influence an occurrence of default. Some default and non
d
 
There are two events of interest: "default without shortfall" and "shortfall without 
default". To focus on these events, this section does not challenge the other assump
made by the model, namely, that both the value of liabilit
c
 
"Default without shortfall" resembles a generalization of technical default. It probably 
includes most defaults reckoned as technical, such as when a covenant violation or an 
operational error triggers a declaration of default, and also includes other cases. A firm 
that is not in asset shortfall might default on an obligation because it does not have cash,
because it cannot raise cash (as in a liquidity crunch), or because it chooses to retain its 
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necessarily imply that its asset value is less than its liability value, despite the iron-clad 
link that is present in the theory.  
 
"Shortfall without default" resembles a generalization of lender forbearance. In lender 
forbearance, a lender (probably a bank) provides the firm with enough additional cash or 
credit to enable it to elude default. Other scenarios might also lead to shortfall without 
default. A firm in asset shortfall might have on hand the cash required to pay small 
obligations. It might obtain the cash from its operations, from an asset sale, from its 
closely-associated ("sugar daddy") enterprise, or from equity investors who hope that the 
firm will soon prosper. Therefore, the fact that a firm fulfills an obligation does not 
guarantee that its asset value is greater than its liability value.  
 
The question at hand is whether these events, which constitute breaks in the theoretical 
iron-clad link, increase or decrease the joint default rate (holding fixed PD1 and PD2). 
The straightforward approach would be to assemble data on the asset shortfall of firms 
and to measure its dependence on the asset returns or defaults of other firms. But the 
event of asset shortfall—the cornerstone of the basic model—is rarely observed. In part, 
this is because the asset value of a firm is rarely observed. Instead, the asset values most 
commonly used in credit research are inferred from equity market variables and from 
option pricing theory. The theory accepts that equity owners exercise the option to default 
if and only if a firm is in asset shortfall. Thus, available data on asset values assume that 
the iron-clad link is valid. To discover the effect of breaks in the iron-clad link would 
require a different approach.  
 
A theoretical approach might attempt to infer qualitative effects from the behaviors of 
participants in the default event. To take an example, consider the event of lender 
forbearance. Presumably, only the behavior of the bank lender matters, since the troubled 
firm does not wish to default. The issue becomes the relationship of the bank's behavior 
to the asset values of firms besides the troubled one. If there is such a relationship, one 
would expect the bank to behave differently in economic booms than in downturns. But 
the difference of behavior is not clear, and one can argue that the difference might work 
either way.  
 
Suppose that there is a period of economic downturn in which many firms are in shortfall 
and a bank faces the prospect of elevated credit loss. To limit the loss, a bank might 
withhold additional credit from a troubled firm, that is, during downturns the bank might 
deny forbearance more frequently than it does in boom periods. On the other hand, the 
bank might amplify its loyalty to a customer during a stressful period, hoping to be 
rewarded later by that customer and by new customers who observe this loyal behavior. 
Arguments for either view might be put forward in a specific situation. The balance of 
arguments, and the bank's action, would depend on the bank, the firm, the downturn, and 
the spirit of the times. All one can say is that forbearance might rise or fall in an 
economic downturn. If the probability of forbearance is related to the asset returns of 
other firms, it isn't clear whether the relationship is increasing or decreasing.  
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To summarize the preceding paragraphs, one would like to know the effect of breaks in 
the iron-clad link on the joint default rate. One would like to use available asset data, but 
the current data presume that the iron clad link is valid. One would like to reason about 
the behaviors of people, but the behaviors depend on conflicting motives. It seems that no 
clear conclusion can be reached.  
 
Given this situation, it seems unlikely that available evidence could reject a statistical null 
hypothesis of random causation. The null hypothesis is not neutral when with respect to 
correlation. We show that if asset correlation is positive and if the iron-clad link is broken 
purely at random, then there is a decline in the joint default rate.  
 
A pedagogic model shows this effect. Of firms in asset shortfall some fraction randomly 
eludes default. Of firms not in asset shortfall, some fraction randomly undergoes default. 
We begin with the definitions: 
 
 p* = Pr [ Asset shortfall ] 
(6) pT = Pr [ Default | No asset shortfall ] 
 pF = Pr [ No default | Asset shortfall ] 
 
<<Exhibit 1 goes about here>> 
 
Exhibit 1 shows a first step that determines the value of assets and a second that 
determines default. If the first step produces no shortfall, default occurs at rate pT 
(suggesting "technical" default). If the first step produces asset shortfall, there may still 
be no default. The relevant rate is pF (suggesting "forbearance"). Combining the two 
routes, the probability of default equals 
 
(7)  PD = p* – p* pF + (1 – p*) pT  
                   = p* – Pr[Shortfall without default] + Pr[Default without shortfall] 
 
The object of interest is the effect on the joint default rate. If only one of the variables on 
the right hand side of Expression (7) were to change, the effect would be obvious. More 
default without shortfall would imply more default in general and more joint default in 
particular. But, as before, the value of PD is assumed to be known; what is at stake is not 
the rate of default but its cause. In the comparison to be performed, an increase in default 
without shortfall is accompanied by some combination of more shortfall without default 
and less shortfall overall. The value of PD is unaffected.  
 
Consider the effect on the joint default rate in the special case that Firm 2 defaults 
entirely at random. Then, p2* = 0 and p2

T = PD2; the joint default rate equals PD1 PD2. If 
asset correlation is positive, this is less than PDJ shown in Expression (3). In this special 
case, default without shortfall causes a reduction in the joint default rate.  
 
There is a rather strong intuition that this special case would generalize for non-trivial 
values of pT and pF. Suppose first that pT

1 = pF
1 = pF

2 = 0, and compare a world in which 
pT

2 = 0 to one in which 0 < pT
2 < PD2. In the second world, the default of Firm 2 might 
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stem from asset shortfall or it might be completely random. Both types of default would 
contribute to the frequency of joint defaults. The intuition is that the second type of 
default produces fewer joint defaults than the first.  
 
Sidebar 1 gives rigor to this intuitive argument. It shows that holding PD1 and PD2 fixed, 
any increase in any the four rates {pT

1, pF
1, pT

2, pF
2} causes a reduction in the joint 

default rate. This includes the increase from zero to positive. Therefore, if the iron-clad 
link is broken randomly, there is a reduction in joint default. Sidebar 1 also shows that for 
a large uniform portfolio sensitive to a single risk factor, an increase in either pT or pF 
causes a reduction in value-at-risk.  
 
Future research might reject the null hypothesis that is the basis of the pedagogic model. 
Suppose it is shown that p2

F is negatively correlated with the asset return of Firm 1. Then, 
Firm 2 would be more likely to obtain forbearance when Firm 1 is in shortfall than 
otherwise. This would depress the joint default rate even more than when p2

F is specified 
independently. On the other hand, it might be discovered that p2

F is positively correlated 
with the asset return of Firm 1. If this dependence were strong enough, its effect on the 
joint default rate could overcome the first-order reduction that was demonstrated. It may 
seem a remote possibility, but there may be some connection between the defaults of 
firms that is stronger than connection provided by asset correlation, though it is as yet 
undiscovered.  
 
Frequently, the correlation parameter in a basic credit portfolio model is referred to as 
"asset correlation." Frequently, specialists have used asset correlation in the structural 
model to predict the distribution of the default rate, as if this had been shown to give 
good results. But the events described here drive a wedge between assets and default, and 
therefore between the joint default rate and the forecast made by the basic model. If the 
events are significant in real-world default, a model that uses asset correlation may 
misstate risk. Unless there is an undiscovered connection between defaults, the 
misstatement would be an overstatement.  
 
 
Liabilities vary randomly  
 
The model assumes that the value of liabilities is known in advance. To focus on this 
assumption, this section temporarily accepts the assumption that asset correlation is 
known in advance, and it temporarily reinstates the iron-clad link. That is, default is to be 
determined solely by the condition of asset shortfall.  
 
The shortfall condition is more complicated when liabilities vary. First, the appropriate 
comparison is between the level of assets and the level of liabilities, not between the 
return of assets and a fixed threshold. For example, if assets equal 100 and liabilities 
equal 50, default would occur with an asset return of -50% and a liability return of 0%, 
and it would also occur with an asset return of -75% and a liability return of -50%. 
Second, the appropriate comparison is between the total economic value of all a firm's 
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assets and the total economic value of all its liabilities, even though the failure to pay 
would probably involve a financial liability. 
 
Among all a firm's liabilities, many do not have value that is known when the model is 
employed. The value of a long-dated financial liability would depend on the interest rates 
that were in force at the model horizon or the time of default. The face amounts of some 
liabilities change, for example, pension liabilities depend on random factors such as the 
age at death. Still other liabilities arise at random: tax laws change, lawsuits are filed, and 
so forth. At the time the portfolio model is employed to assess risk, a substantial fraction 
of the total economic value of liabilities might be considered random to some degree. 
 
The attempt to analyze the effect of the randomness of liabilities on the joint default rate 
strikes an immediate difficulty. Generally speaking, data on the economic value of a 
firm's liabilities do not exist at present. The most accessible data are the face amounts of 
financial liabilities that appear on the balance sheet, which can contribute little to the 
topic at hand. It remains to be seen whether fair value accounting per FAS 155 and FAS 
156 will improve the situation.  
 
Theorizing in the absence of good data, we first introduce variance into liability values, 
and then introduce covariance with other random variables. Variance by itself—that is, 
liabilities that vary independently—acts as a fresh source of idiosyncratic risk. A firm 
that would otherwise experience asset shortfall might be spared from default by a 
downward fluctuation of liabilities, and an upward fluctuation might cause the default of 
an otherwise healthy firm. Sidebar 2 shows this rigorously. If each firm's liability value is 
statistically independent, the joint default rate is less than the forecast made by the basic 
structural model. This conclusion holds irrespective of the marginal distribution of 
liability values. 
 
The reduction of the joint default rate might be overcome by dependencies between the 
values of assets and liabilities. The following few paragraphs make the case that, though 
this might happen in practice, it cannot be predicted in theory.  
 
When one introduces dependences, one imagines that correlations are positive in each 
case. One imagines positive correlation between a firm's assets and its own liabilities for 
mechanical and strategic reasons. Mechanically, when a firm issues or retires debt, both 
assets and its liabilities have substantial changes in the same direction. Strategically, if a 
firm's assets grow enough it is apt to issue more debt to finance still more growth. One 
imagines positive correlation between the liabilities of different firms, since to some 
degree they are shaped by the same forces, for example, the introduction of new 
medicines that increase the medical insurance liabilities at many firms. Finally, one 
imagines positive correlation between the liabilities of one firm and the assets of another, 
because a firm would find it easier to expand its liabilities when other firms prosper.  
 
In the simple case where there are only two firms, the four variables of interest have six 
positive correlations: asset correlation plus the five additional correlations involving a 
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liability value. With respect to the joint default rate, the positive correlations of liabilities 
have contrary effects. The contrary effect of two of them is shown next.  
 
Into the basic model introduce the correlation between a firm's liabilities and its own 
assets. In the basic model, Firm 2 defaults if its assets fall below a threshold. If 
correlation is present, the fall must be greater, on average, to achieve the same PD2. If the 
correlation with the assets of Firm 1 is to be unaffected, the assets of Firm 1 would fall 
further, on average. Therefore Firm 1 is more likely to default at the same time that Firm 
2 defaults. The joint default rate is greater than in the basic model. 
 
Instead, into the basic model introduce correlation between a firm's liabilities and the 
assets of another firm. Suppose the liabilities of Firm 2 are correlated with the assets of 
Firm 1. This correlation has no effect on default of Firm 1. If the assets of Firm 1 decline, 
the liabilities of Firm 2 tend to decline. This gives the assets of Firm 2 more room to fall, 
on average, before triggering default. The joint default rate is less than in the basic model. 
 
Since the correlations pull different ways, the net effect is ambiguous until more is 
known. Adding to the ambiguity, correlation by itself is very unlikely to provide a 
complete description of the complex dependencies among the four variables of interest. 
Correlations would be sufficient to describe jointly normal variables, but neither the 
value of assets nor the value of liabilities is plausibly normal. For example, the values of 
both assets and liabilities jump when debt is issued or retired. Parameters in place of or in 
addition to correlation may be required to describe the richness of the dependencies. 
 
To summarize, when liabilities are allowed to vary independently, there is a reduction in 
the joint default rate. If dependencies are allowed, nothing really can be said; the net 
effect might be to further reduce the joint default rate, to partly offset the initial 
reduction, or to overmatch the initial reduction and produce a joint default rate that is 
greater than forecast by the basic model. The matter could be resolved by the right kind 
of data.  
 
 
Asset correlation is a conditional variable  
 
The model assumes that asset correlation is known when the model is run. To focus on 
this assumption, this section reverts to the idea that default occurs if and only if assets fall 
below a fixed value of liabilities. This section argues that asset correlation cannot always 
be known in advance, because it depends on whether firms default. If this argument is 
accepted, the basic model with asset correlation becomes extremely problematic.  
 
Suppose that for a pair of firms, asset correlation equals 25% if neither defaults, 5% if 
exactly one of them defaults, and 1% if they both default. A practitioner using the basic 
model would not know in advance which correlation to use. A naïve practitioner might 
use historically observed asset correlation, which would most probably approximate the 
no-defaults level of 25%.  
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This stylized example may resemble the actual situation. The correlation that would be 
appropriate for a firm might depend on whether or not the firm becomes distressed during 
the model horizon. Compared to a firm that is not in distress, the correlation of a firm in 
financial distress is different because the firm is in distress. Like any firm, a distressed 
firm may or may not obtain additional funding, it may or may not agree with unions on 
cost-saving measures, its customers may or may not remain loyal, and so forth. But for 
the distressed firm, these idiosyncratic events have relatively greater effect on the firm's 
value, and may in fact trigger the default event. Because idiosyncratic influences are 
relatively more important to the distressed firm, its assets exhibit less correlation with 
other firms.  
 
Separately, as a firm deteriorates it experiences increasing costs of distress. It may begin 
to pay greater spreads, to give better terms, to lose customers, and so forth. These new 
costs reduce the return on the firm's assets. This reduction is unrelated to the returns on 
assets of other firms. As a mechanical matter, there is an increase in the fraction of asset 
variance stemming from idiosyncratic causes, and this produces a decline in correlation.  
 
This intuition is investigated empirically using Moody's KMV CreditMonitor data on 
asset values. For each month from August 1993 to September 2006, we calculate the 
monthly asset return of each firm as follows: 
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where ASGi,t and LIABi,t are the values of the assets and liabilities of Firm i at time t. 
The difference of liabilities in the numerator isolates Expression (8) from purely 
financial transactions such as the issuance or retirement of debt. The numerator expresses 
the change in the equity belonging to the owners of the firm.  
 
Prior to each known default, we take the correlation between the asset return of the 
defaulting firm and the asset return of every other firm, using a three-month horizon to 
promptly detect changes over time. Centered eighteen months prior to default, we 
calculate 750,713 asset correlations averaging 8.03%. The calculated estimator is biased 
for small samples; its mean equals ρ - ρ (1-ρ2)/2(N-1). With N = 3 and ρ < 15%, this 
equals approximately 0.75 ρ. To correct, we divide each correlation by 0.75 and produce 
the values shown in Exhibit 2. 
 
<<Exhibit 2 goes about here>> 
 
In Exhibit 2, asset correlation remains fairly constant until about five months before 
default, when it begins to fall. A basic model using a pre-distress value of asset 
correlation would overstate the strength of the connections to firms that actually default. 
In turn, the model would seem to overstate the joint default rate.  
 
In passing, we note that the marginal distribution of asset returns is irrelevant to the joint 
default rate. Though the marginal distribution of assets affects PD, we have assumed that 
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PD is known. Converting PD's into a joint default rate is exclusively the task of the 
copula that links the marginal distributions. The fixed asset correlation of the Gauss 
copula cannot handle the systematic variation of correlation that is highlighted in this 
section.  
 
The basic model requires that asset correlation remain fixed at the historically observed 
level, but intuition and evidence suggest that if a firm becomes distressed, its asset 
correlation tends to decline. If this occurs, the joint default rate would be less than 
forecasted by the basic model using historically observed asset correlation.  
 
Summarizing, we have listed the assumptions made by the basic structural portfolio 
model, and we have relaxed each in turn. If the iron-clad link is broken at random, or if 
liabilities vary independently, there is a reduction in the joint default rate, though 
dependencies could modify this provisional conclusion. Intuition and data suggest that 
asset correlation tends to decline if a firm deteriorates toward default. All this means that 
there can be a difference between the joint default rate and the rate calculated by the 
basic model, and it suggests that the former might be less than the latter. 
 
 
Estimates of correlation 
 
Empirical evidence shows a difference in correlation values. A review of this evidence is 
provided by Chernih, Vanduffel, and Henrard. Exhibit 3 reproduces the centerpiece of 
their comparison of the two approaches.  
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 Exhibit 3. 
 
 

Estimates of correlation and asset correlation 
Source: Chernih, Vanduffel, Henrad, 2006 

 

 Source Study Data Source Results 
 Gordy (2002) S&P 1.5% - 12.5% 
 Cespedes (2000) Moody's 10% 
 Hamerle et al. (2003a)  max of 2.3% 
 Hamerle et al. (2003b) S&P 1982 - 1999 0.4% - 6.04% 
 Frey et al. (2001) UBS 2.6%, 3.8%, 9.21% 
 Frey & McNeil (2003) S&P 1981 - 2000 3.4% - 6.4% 
 Dietsch & Petey (2004) Coface 1994 - 2001 0.12% - 10.72% 
  AK 1997 - 2001  
 Jobst & de Servigny (2004) S&P 1981 - 2003 intra 14.6%, inter 4.7% 
 Duellmann & Scheule (2003) DB 1987 - 2000 0.5% - 6.4% 
 Jakubik (2006) BF 1988 - 2003 5.7% 
 Table 1: Asset correlations from default data  
    
 Source Study Data Source Results 
 Duellmann et al. (2006) KMV 10.1% 
 KMV (2001) Undisclosed 9.46% - 19.98% 
 Fitch (2005) Equity intra 24.09%, inter 20.92% 
 Lopez (2002) KMV Software 11.25% 
 Table 2: Asset correlations from asset value data 
     

 
The authors' Table 1 shows estimates of "asset correlations from default data".1 Among 
the studies there is a diversity of estimates. In part, this is because different studies focus 
on different countries, use different data, employ different models, and have different 
criteria for determining the value of correlation that provides the best match between the 
data and the model. The author's Table 2 shows "asset correlations from asset value data". 
Again there is a diversity of estimates, due at least in part to differences in approach and 
data source.  
 

                                                 
1 Since these estimates do not depend on firms' asset values or returns, the nomenclature "asset correlation", 
though consistent with common usage, is distracting.  
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Despite the diversity within each table, there is a rather clear distinction between them. 
Estimates derived from asset data tend to be 10% or greater, and estimates derived from 
default data tend to be 10% or less.  
 
To check for statistical significance in a particular set of data, we use a sample drawn 
from Moody's data to estimate correlation and confidence intervals. We begin by 
assuming that the default of Firm i is determined by a standard normal latent variable Zi. 
If all the assumptions of the basic model were true, then Zi would be none other than 
Firm i's standardized asset return, but the latent variable formulation does not require this. 
Firm i defaults if and only if Zi is less than the default threshold for Firm i: 
 
(9) . )( ii PDZ 1−< Φ
 
We assume that a single systematic factor Y imparts correlation to the latent Zi and 
correlation is constant in time:  
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Since all firms in a rating grade are treated as statistically identical, Expression (11) can 
be viewed as the conditionally expected default rate within rating grade i in year t. Any 
firm in grade i has probability of default equal to PDi and any pair of firms in grade i has 
correlation equal to ρi. 
 
Turning now to the data, suppose that in a given year and grade we observe d defaults 
among n rated firms. This event would be assigned a probability by the binomial model 
with parameters n and p: 
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The value of pi,t would equal the year's conditionally expected rate, which according to 
Expression (11) can be any number between 0 and 1. Averaging the all values of pi,t, the 
probability ultimately assigned to the event di,t is  
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(13)
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Assuming each year of data represents an independent observation, the product over time 
of Expression (13) is the likelihood function of all the data in a rating grade: 
 
(14)   
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We maximize Expression (14) using the default rates observed annually 1983-2003 for 
U.S. non-financial obligors in each of eight Moody's rating grades: Baa3, Ba1, Ba2, Ba3, 
B1, B2, B3, and "C", which we use to designate the union of grades C, Ca, Caa and the 
"notches," Caa1, Caa2, and Caa3. The resulting estimates appear in Exhibit 4.  
 

Exhibit 4. 
Maximum likelihood estimates  

and asymptotic confidence bounds for ρ 
       

Rating Total ML estimates 95% Confidence 
Grade d n PD ρ LB UB 

       
Baa3 11 2,000 0.54% 23.9% 2.6% 69.1% 
Ba1 13 1,794 0.72% 2.0% 0.0% 24.9% 
Ba2 11 1,660 0.67% 5.3% 0.0% 34.0% 
Ba3 69 2,908 2.22% 8.3% 2.9% 20.2% 
B1 113 3,240 3.55% 5.8% 1.5% 15.3% 
B2 155 2,195 7.58% 10.0% 3.8% 22.6% 
B3 210 1,839 12.06% 8.9% 4.0% 18.7% 
C 279 1,627 13.90% 6.5% 2.3% 16.2% 

       

Ba3-C 826 11,809 --- 5.4% 2.9% 10.8% 
 
Exhibit 4 also shows confidence intervals based on the Chi-square distribution of the 
asymptotic likelihood ratio. The confidence intervals are wide, and this is especially the 
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case for the three best grades. They tell very little about the value of correlation, perhaps 
because the grades encompass few defaults and relatively few ratings.  
 
All the confidence intervals share a range of overlap. This suggests the hypothesis that a 
uniform value of correlation would describe the distribution of default for any pair of 
firms. The last row of Exhibit 4 reports an estimate of correlation that is constrained to be 
uniform for rating grades Ba3 through C, which maximizes the likelihood: 
 
(15)  
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Taking this as the most informative model, the 95% confidence interval is still wide, 
2.9% to 10.8%, but it is much narrower than the confidence intervals that treat each rating 
grade as separate. The upper bound distinguishes this estimate of correlation from some, 
but not all, estimates of asset correlation. For example, the preliminary version of the 
U.S. version of Basel II minimum capital requirement for wholesale exposures refers to 
asset value correlation in the range of 12% to 24%.2 Though we can distinguish 
correlation from asset correlation, without more information we do not know the source 
of the difference. Any of the mechanisms that have been discussed, or others, might be 
responsible in isolation or in concert. 
 
Among the studies cited by Chernih et. al., the closest comparison to the foregoing would 
be Gordy and Heitfield, who also fit the binomial model to a sample taken from Moody's 
data, but at the full-letter grade level. Their unrestricted model produces grade-specific 
estimates of 8.3% (Baa), 11.1% (Ba), 6.7% (B), and 6.3% (Caa), and a uniform estimate 
of 7.9%. Their simulations indicate that for the binomial model and a single risk factor, 
the downward bias of maximum likelihood estimates is apt to be less than 10% of the true 
value of correlation. Their appendix touches on the convergence problems that plague 
studies like theirs and this one. Demey, Jouanin, Roget, and Roncalli fit the binomial 
model to S&P data and obtain an overall correlation of 8.3%, which in a correction note 
they refine to 6.3%. Servigny and Renault proceed in much the same spirit as the 
discussion of PDs and PDJs; they utilize counts of events of default and events of joint 
default; and they comment on the difference between their correlation estimates and those 
derived from the equity market. Their estimates of default correlation have no direct 
comparison to the estimates of correlation and asset correlation discussed here. 
 
If the basic structural model, its application, and the data were perfect, a statistical 
estimate of correlation based on default would equal asset correlation. It seems, though, 
                                                 
2 It should be noted that the statistical estimate being discussed reflects the distribution of default rates, 
while the regulatory standard reflects a contribution to bank capital, which is a different and broader 
concept. There can be no direct inference from one to the other. 
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that the two differ. The conclusion is that jointly normal asset returns are not the whole 
story when it comes to understanding and modeling the distribution of default. As a 
consequence, a model that relies solely on asset correlation can misstate risk.  
 
 
Incentives 
 
This section shows that the difference highlighted above can have a meaningful effect on 
a comparison of the risk of two transactions. An example is the comparison between a 
$80,000,000 exposure to a firm having PD equal to 0.1%, and a $2,000,000 exposure to a 
firm having PD equal to 10%. To keep the focus on default, each transaction is assumed 
to have maturity of one period and loss given default equal to 100%. 
 
We compare the one-year 99.9th percentile Value-at-Risk for these two transactions in 
Exhibit 5. Value-at-Risk equals Expression (11) with yt set equal to Φ-1(0.001) = -3.09.  
 
<<Exhibit 5 goes about here>> 
 
Greater correlation implies greater Value-at-Risk, but it affects the transactions 
differently. A risk manager using uniform correlation equal to the maximum likelihood 
estimate of 5.4% perceives the transactions as having nearly equal risk. A manager using 
uniform correlation equal to 24% perceives the first transaction as more than twice as 
risky as the second. A manager using 24% for the first transaction and 12% for the 
second perceives the first transaction as over three times as risky as the second. The 
comparison between the two transactions is more sensitive to correlation at the 99.99th 
percentile and less sensitive at the 99th percentile.  
 
If value-at-risk affects incentives through pricing or compensation, the manager using an 
overstated value of correlation has the incentive to favor exposure to poorer-quality 
borrowers.  
 
 
Conclusion 
 
This study has two goals. The first goal is to explain the widely known but poorly 
understood fact that researchers who estimate correlation with credit models and default 
data tend to find lower values than found by researchers who use data on firms' asset 
values. The second goal is to suggest that for the purpose of predicting the distribution of 
the default rate, historical default rates may provide a better guide than asset correlation 
and a chain of assumptions.  
 
Users of the basic structural credit portfolio model have often assumed that correlation 
equals asset correlation. This Credit Forum contribution critiques this assumption. Firms 
that "should" default may not default, firms that "should not" default may do so 
nonetheless, firms may default (or may refrain from default) because random liability 
values as well as random asset values, and asset correlation may decline for firms that 
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deteriorate toward default. All these features have an effect on the joint default rate. 
Though there might be undiscovered connections that increase the joint default rate, the 
prima facie evidence suggests a reduction.  
 
When researchers estimate correlation, estimates based on credit models and credit data 
tend to be, in fact, less than estimates based on asset returns. The statistical estimate 
presented here has an upper bound of 10.8%, which in turn is less than some estimates of 
asset correlation used in credit models. When it comes to fitting the historical distribution 
the default rates analyzed here, those values of asset correlation are rejected.  
 
Logically, the event of default depends on more than accounted for in the basic structural 
portfolio model; more than asset correlation influences the joint default rate. This can, 
and apparently does, lead to a difference between the value of asset correlation and the 
value of correlation that provides the best match between the model and default data. The 
difference in quantities can be practically important for the management of credit risk.  
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Sidebar 1. In the pedagogic model, increases in pT or pF reduce the joint default rate. 
 
Certain mild assumptions are required. Asset correlation is assumed positive. The asset 
shortfall rates p*1 and p*2 are assumed less than 50%. A firm in asset shortfall is assumed 
to be more likely to default than a firm that is not in asset shortfall: 
  
(A) 1 - pF > pT . 
 
In the pedagogic model, asset correlation and asset shortfall rates determine the joint 
shortfall rate, much as asset correlation and PDs determine PDJ in the basic structural 
model. Using the compact notation of the Gauss copula, we have for example 
 
(B) Prob [ Both firms experience asset shortfall ] = G(p*1, p*2, r). 
 
The probability of joint default depends on events in each of four states of joint shortfall, 
and in the pedagogic model this can be stated without conditioning: 
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The model is symmetric in the two firms. We focus on Firm 1. Hold asset correlation 
fixed and take the total differential of Expression (C): 
  

(D)  F
F

T
T dp

p
PDJdp

p
PDJdp

p
PDJdPDJ 1

1
1

1
1

1 ∂
∂

+
∂

∂
+

∂
∂

= *
* . 

 
To hold PD fixed, take the total differential of Expression (7) and set it equal to zero. 
This implies that dp*1 must obey the following relation to the other differentials: 
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If the differentials obey Expression (E), PD1 is unchanged. We substitute this expression 
into Expression (D), write explicit derivatives, symbolize G = G(p*1, p*2, r), and simplify 
to obtain the following. 
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Next we demonstrate that the coefficients C1 and C2 are negative. This demonstration has 
the immediate consequence that any increase in p1

Tor p1
F produces a reduction in PDJ. 

Three intermediate results are useful. The proofs are omitted. 
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Expression (G) says that the joint shortfall rate with positive correlation exceeds the joint 
shortfall rate with independence. Expression (H) is a statement about the change in the 
joint shortfall rate given a change in the shortfall rate of Firm 1. If asset correlation were 
zero, the value of the partial derivative would equal p2*. Expression (H) says that when 
asset correlation is positive, the partial is greater than p2*. Expression (I) says that the 
joint shortfall rate is a concave function of an individual shortfall rate. Making these 
substitutions, coefficient C1 is negative: 
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Coefficient C2 is handled in two steps. First, it would be equal to zero if p*1 were equal to 
zero: 
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Second, its derivative with respect to p*1 is less than zero: 
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Therefore, C2 is negative as well as C1. Referring back to Expression (F), a greater rate of 
either pT

1 or pF
1 produces a reduction of PDJ. In particular, if either or both pT or pF have 

non-zero values, the joint default rate is less than in the basic structural model. 
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A similar approach produces a similar result for the asymptotic portfolio sensitive to a 
single risk factor. We symbolize the systematic risk factor by Y. The conditionally 
expected shortfall rate default rate equals  
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where the sign of the systematic risk factor Y is such that greater levels of Y cause greater 
rates of default. The conditionally expected default rate depends on shortfall rates as in 
Expression (7) in the text: 
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We take the total differential of Expression (N). Again, we hold PD fixed by imposing 
the relation of Expression (E). This produces  
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It can be shown numerically that both C1 and C2 are negative for combinations that are 
encountered in practice. At the 99.9th percentile, Y takes the value 3.09, and both 
coefficients are negative for p* > 0.01% and r < 60%. Within this region, when PD and 
asset correlation are held fixed, any increase in either pT or pF causes a decline in the 
default rate at the 99.9th percentile. In particular, non-zero values of either pT or pF 
produce "stress" default rates that are less than produced by the basic structural model. 
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Sidebar 2. Independent variation of liabilities reduces the joint default rate. 
 
In this Sidebar, default depends on a comparison between the value of assets and the 
value of liabilities. Given a firm's asset return, there would no longer be certainty 
regarding the default event, but only a conditional probability of default. We place no 
restrictions on the distribution of liabilities, but we assume that the value of a firm's 
liabilities is independent of other variables. Among other things, this assumption implies 
that the conditional probability of default is monotonic: a greater value of assets can 
never imply a greater probability of default.  
 
In the basic model, the conditional probability of default is an indicator function equal to 
1.0 when the asset return is below the threshold and equal to zero otherwise. The 
unconditional probability of default equals the expected value of the indicator function: 
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If liabilities vary independently, the conditional probability of default, h(·), it is 
monotonic. We assume that that h(·) is not constant, so that default is not completely 
divorced from the firm's asset return. We hold its expected value equal to PD: 
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To contrast, Expression (A) says that default is a knife-edge event in which a threshold 
determines default, while Expression (B) loosens the connection from a single threshold 
to a zone of increasing danger. If a second firm has conditional default rate function j(·), 
the joint default rate is equal to  
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We will show that the joint default rate in Expression (C) is no greater than the joint 
default rate in Expression (3). To do this, we show that Expression (C) increases when 
the function h(·) is replaced by a function h*(·) that is "more like" the indicator function. 
Such replacements are possible unless h(·) is the indicator function itself. A similar 
argument applies to the j(·) function. The conclusion is that if h(·) and j(·) are anything 
but indicator functions, the joint default rate in Expression (C) is less than the joint 
default rate in Expression (3). Therefore, if liabilities vary independently, the joint default 
rate is less than in the basic structural model. 
 
To construct the function h*(·), begin with these steps: 

• Select x1 and x2 such that x1 < x2, h(x1) < 1, and h(x2) > 0 
• Select H2 ≤ Min [h(x2), (1-h(x2)) φ(x1) / φ(x2)] 
• Set H1 = H2 φ(x2) / φ(x1) 
• Select a small increment Δx 
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Construct h*(x) as follows: In the region (x1, x1 + Δx), set h*(x) = h(x) + H1. In the 
  

hen h(·) is replaced by h*(·), there is no effect on PD1:  

(D) 

 
hen h(·) is replaced by h*(·), there is an increase in PDJ. To see this we first perform 

) 

region (x2, x2 + Δx), set h*(x) = h(x) – H2. For all other values of x, set h*(x) = h(x).
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 is sufficient to show that the integral is positive. First, we center on the point where the 

(F) 

It
two "bell" curves cross by making the substitution z = y - r (x1 + x2)/2. Partitioning the 
limits of integration, the integral can be written 
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hanging the variable of the first integration from z to –z, we have C
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 the second integral in Expression (G), there are two instances of the φ(·) function. The 

 

(H)    

In
second instance has greater value, because z, r and (x2 - x1) are positive. The difference 
of φ(·)'s in the second integral is therefore negative. It is also equal to the negative of the
difference of φ(·)'s in the first integral, because of the symmetry of the φ(·) function. 
Therefore we can recombine as follows: 
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 Expression (H), the difference of φ(·)'s is positive over the range of integration (except 

e have shown that if the conditionally expected default rate functions h(·) and j(·) 
lt. 

ecast 

In
at z = 0, where the difference is zero). The difference of j(·)'s is non-negative, because j(·) 
is monotonic decreasing, and the difference of j(·)'s is positive for some values of z, 
because j(·) is not constant. Therefore the integral in Expression (H) is positive, the 
integral in Expression (E) is positive, and PDJ* > PDJ. 
 
W
become "more like" indicator functions, there is an increase in the rate of joint defau
Therefore, any departures from the indicator function produce less joint default. 
Independent variation of liabilities causes the joint default rate to be less than for
with the basic structural model using asset correlation. 
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Exhibit 1.
Asset shortfall and default are different

No shortfall No Default

       Pr[ No asset shortfall ] = 1 - p*          Pr[ No default | Shortfall ] = p F

Firm
        Pr[ Asset shortfall ] = p*          Pr[ Default | No shortfall ] = p T

Asset shortfall Default
 

 
 
 

Exhibit 2.
Correlation of asset returns as default approaches
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Exhibit 5.
Value-at-risk for two transactions
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