This appendix derives the LGD functions in Table 1 and proves that the model of Tasche can
represent functions no steeper than Frye-Jacobs.

Throughout, it is assumed that cDR has a Vasicek Distribution. A Vasicek variable is a
transformation of a normal variable:
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where E[V] = u is the mean. If the default rate has the Vasicek distribution y is equal to PD, and

if the loss rate has the Vasicek Distribution u is equal to EL. Equation (1) leads directly to the
inverse CDF:
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Inverting Equation (2) gives the CDF:
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The inverse of Equation (1) is used several times in what follows:

, TP vl = 74
/p

Applying change-of-variable to (1) produces the Vasicek PDF, which is referred to in the section
titled “Exact Regression”:
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Frye (2000)

Frye’s Equation (4) states the recovery of an individual loan as a function of the systematic risk
factor designated X:

Turning to the recovery side, the recovery equation is similar to asset
equation (1). Recovery in default ] depends on the systematic factor X and
also on an idiosyncratic factor, ZJ-, which affects only the recovery in de-

fault J:
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The expectation conditioned on X = x eliminates the last term. Frye’s X = -Z. Then,
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Pykhtin

Pykhtin’s Equation (16) expresses cLoss as a function of the systematic factor Y:
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where in his notation
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The first factor of Pykhtin (16) is cDR. Table 1 transcribes the second factor taking note that
Pykhtin’s Y = - Z.

Tasche

Tasche’s Equation (2.6b) expresses cLoss as a function of the systematic risk factor:
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where p = PD, Tasche’s X = Z, and Tasche’s z is an idiosyncratic risk factor. Using Equation (4)
to restate the lower limit of integration,
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Tasche specifies Fp[-] as the Beta Distribution with a = ELGD (1-v)/v and b = (1-ELGD) (1-v)/v.
Making this substitution and again using Equation (4),
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Tasche’s LGD function is Equation (8) divided by cDR.

Giese

Giese’s Equation (11) is a direct specification of cLGD as a function of Giese’s p, which equals
cDR:
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Hillebrand

Hillebrand’s Equation (11) expresses a function of cLGD as a function of two systematic factors:
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where (D‘l(E(LGD‘Z)) is the response variable, ®*(PD(Y)) the
predictor variable and X the residual.

The residual systematic factor is integrated out in Table 1.



Proof that Tasche[v = 1] = Frye-Jacobs

Tasche’s Equation (2.5) says that loss on a loan depends on two random factors. The systematic
factor is X = Z, and the idiosyncratic factor is &.
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(2.5) can be equivalently written as the product of the indicator function of the default event
1
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When v — 1, the variance of the Beta Distribution approaches its maximum; then, a Beta
Distribution approaches a Bernoulli Distribution. In the limit Fp and Fp* are step functions, and
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Transcribing this,
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This condition is never less restrictive than the first condition, because EL < PD. Therefore the
first condition can be dropped:
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Using Equation (4) to introduce cDR,
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Taking the expectation,
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Dividing (12) by cDR equals the Frye-Jacobs LGD function.



