The Financial Labor Supply Accelerator

Jeffrey R. Campbell and Zvi Hercowitz

February 19, 2009

- (a) (#) (2) (2) 2 900

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerate

February 19, 2010 1 / 1

Introduction

- Literature
 - Previous work: Fortin (1995), Del Boca and Lusardi (2003)
 - Our contributions:
 - · Intertemporal substitution model with borrowing constraints
 - PSID data before and after financial changes in early 1980s
- The rest of the talk:
 - Motivating evidence from the PSID
 - The model
 - · Quantitative implications of the model
 - Calibration parameters of high and low equity requirement regimes
 Impulse responses
 - Impuise response
 - Regression coefficients from model-generated data.
 - Comparison with additional results from PSID data
- Concluding remarks macroeconomic implications

4 m x 4 m x 4 2 x 4 2 x 2 x 3 x 4 9 4 0 4 0 4

Evidence on Hours Worked/Mortgage Debt Comovement The Data Used

- PSID: Households with two adults, head's age ≤ 65, top 2 percentiles
 of dividend and interest income excluded
- · Debt: at the time of the interview, around April
- Hours worked: sum of head's and wife's annual hours from previous calendar year
- Mortgage debt deflated by head's hourly wage (and so expressed in hours of work).
- Regress hours worked and mortgage on year dummies, head's age, age², school years and race.
- Examine comovement of residuals.

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerator

February 19, 2010 3 / 23

Evidence on Hours Worked/Mortgage Debt Comovement

Regressions of Hours Worked on Debt/Wage

	1968–1979	1980-1989	1990-1999	2000-2005
Using Current Wage				
Raw Data	0.091	0.083	0.054	0.040
Filtered Data	0.075	0.067	0.044	0.037
Using Lagged Wage				
Raw Data	0.083	0.084	0.053	
Filtered Data	0.066	0.065	0.042	

- A partial equilibrium version of Campbell and Hercowitz (2009)
- An impatient infinitely lived household faces a collateral constraint subject to minimum equity requirements.
- Typical features of household loan contracts in the United States 90% of total household debt
- We use the model to compare regimes with different equity requirements.

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerate

February 19, 2010 5 / 2

The Model - Setup

Preferences:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ (1-\theta) \ln C_t + \theta \ln S_t + \omega \ln (1-N_t) \right\}, \quad 0 < \beta < 1.$$

 $\beta R < 1$.

Budget constraint:

$$C_t = W_t N_t + RA_t + \left(1 - \delta\right) S_t - A_{t+1} - S_{t+1}, \quad 0 < \delta < 1 \quad \left(\Psi_t\right)$$

Exogenous wage process:

$$\log W_t = \rho \log W_{t-1} + \varepsilon_t, \quad 0 < \rho \leq 1, \; \mathit{Var}\left(\varepsilon_t\right) = \sigma^2$$

A simple specification of collateral value:

$$V_t = (1 - \pi) S_t, \quad 0 < \pi < 1$$
 (1)

· Borrowing constraint:

$$A_{t+1} \ge -V_{t+1}$$
 $(\Psi_t \Gamma_t)$

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerator

The Model - Setup (cont')

• (1) implies

$$V_{t+1} = (1 - \delta) V_t + (1 - \pi) (S_{t+1} - (1 - \delta) S_t)$$

• We postulate instead:

$$V_{t+1} = (1 - \phi)V_t + (1 - \pi)(S_{t+1} - (1 - \delta)S_t), \quad (\Psi_t \Xi_t)$$

where $\phi > \delta$

We also impose that

$$S_{t+1} \ge (1 - \delta)S_t$$
, $(\Psi_t \Omega_t)$

4 m x 4 m x 4 m x 4 m x 2 x 4 m x 4

ampbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerat

ebruary 19, 2010 7 / 23

The Model – First-Order Conditions

Consumption:

$$\Psi_t = \frac{(1-\theta)}{C_t}$$

Assets:

$$\Gamma_t = 1 - \beta R \mathbb{E}_t \frac{\Psi_{t+1}}{\Psi_t}$$

Collateral value:

$$\Xi_t = \Gamma_t + \beta (1 - \phi) \mathbb{E}_t \frac{\Psi_{t+1}}{\Psi_t} \Xi_{t+1}$$

Durable goods:

$$\begin{array}{ll} 1 - \Omega_t - \Xi_t \left(1 - \pi\right) & = & \frac{\beta \theta}{\left(1 - \theta\right)} \frac{C_t}{S_{t+1}} + \beta \left(1 - \delta\right) \mathbb{E}_t \frac{\Psi_{t+1}}{\Psi_t} \\ & \times \left(1 - \Omega_{t+1} - \left(1 - \pi\right) \Xi_{t+1}\right) \end{array}$$

Hours of work:

$$\omega/(1-N_t) = \Psi_t W_t$$

Steady State

• From the Euler equation:

$$\Gamma = 1 - \beta R > 0$$

Then, from the collateral value condition:

$$\Xi = \frac{\Gamma}{1 - \beta \left(1 - \phi\right)} > 0$$

 From the collateral value accumulation equation and the assumption that the borrowing constraint binds:

$$\frac{-A}{S} = \frac{(1-\pi)\,\delta}{\phi}$$

• Using these, we can show that when $\pi \downarrow$ or $\phi \downarrow$:

4 D F 4 DF F 4 E F 4 E F 8 9 Q (6

February 19, 2010 9 / 23

Financial Factors and Labor Supply

• Assumptions: (1) The borrowing constraint always binds, (2) $\phi = \delta$, (3) Household investment always exceeds zero.

$$-A_{t+1} = (1 - \pi) S_{t+1}
C_t + \pi S_{t+1} = W_t N_t + R \left(\pi - \frac{R - 1 + \delta}{R}\right) S_t$$
(2)
$$\pi = \frac{\beta \theta}{(1 - \theta)} \frac{C_t}{S_{t+1}} + \beta \frac{C_t}{C_{t+1}} R \left(\pi - \frac{R - 1 + \delta}{R}\right)$$
(3)

- $W_t \uparrow \text{ and } \pi = (R 1 + \delta) / R$
 - (2), (3) and $1-N_t=\omega/(1-\theta)\times (C_t/W_t)\Rightarrow C_t$ and S_{t+1} move proportionally to $W_t\Rightarrow N_t$ constant
- $W_t \uparrow \text{ and } \pi > (R-1+\delta)/R$
 - ullet C_t and S_{t+1} adjust gradually
 - $\bullet \Rightarrow W_t/C_t \uparrow \Rightarrow N_t \uparrow$

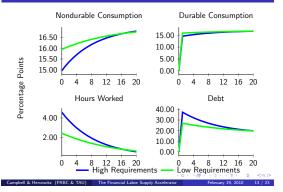
Quantitative Implications of the Model

- Calibration
- Impulse responses
- · Regressions using the model's data

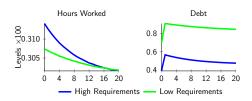
Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerator

rebruary 19, 2010

11 / 23


Calibration

- Length of the period: one year
- Adopted from Campbell & Hercowitz (2009). Durable goods are housing and vehicles


	π	φ	δ	θ	β	R	ω
High Equity Req.	0.16	0.126	0.04	0.37	1/1.06	1.04	1.93
Low Equity Req.	0.11	0.074					

• Calibration of the wage process based on Meghir and Pistaferri (2004). Variance and serial correlation of labor income growth: 0.0613 and -0.118. We set $\rho=1$, $\sigma=0.17$.

Impulse Responses

Impulse Responses Absolute Changes

Regressions Using the Model's Data

- · Simulation of panel for each regime
- PSID

1969-1997: 5.75 observations per household

1984-1997: 5.36

Model's sample size: 6 years × 2000 households

Regression Coefficients of Hours Worked on Debt - Model

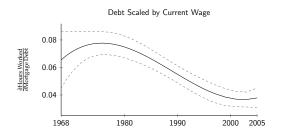
High Equity Requirements	0.112
Low Equity Requirements	0.075

- CO F CO F CE F CE F E - 400

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerator

February 19, 2010

15 / 23

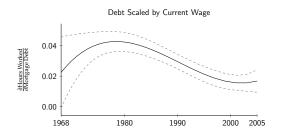

Comparison with the Evidence

- Estimate regression coefficients of annual hours worked on mortgage debt with PSID data
- Data:
 - N_t | total annual hours (sum of head's and wife's)
 - W_t head's real hourly wage (yearly average)
 - B_{t+1} | real mortgage balance at the time of interview t+1
 - Control variables: year dummies, head's age, age squared, schooling groups, and race dummies
 - Period 1968-2005, debt deflated by current wage,
 - Period 1969-1997, debt deflated by lagged wage. (Nominal variables deflated by consumption price index from NIPA.)
- We do not impose, ex-ante, sample periods to match the theoretical regimes – year-specific coefficients

Estimated Regression Coefficients 1969-1997

Estimated Regression Coefficients 1968-2005

Estimated Regression Coefficients – Fixed Effects 1969–1997


- CD F CB F CE F CE F E - 490.0

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerate

February 19, 2010

19 / 23

Estimated Regression Coefficients – Fixed Effects 1968–2005

F-Statistics for Coefficient Equality with 1982

		1969-1997		1968-2005		
F-Statisti		F-Statistic	p-value	F-statistic	p-value	
	1983	1.41	0.24	21.26	0.00	
	1984	1.83	0.18	22.54	0.00	
	1985	2.35	0.13	23.54	0.00	
	1986	2.99	0.08	24.35	0.00	
	1987	3.80	0.05	25.03	0.00	
	1988	4.84	0.03	25.64	0.00	
	1989	6.21	0.01	26.24	0.00	
	1990	7.99	0.00	26.87	0.00	
	1991	10.29	0.00	27.57	0.00	
	1992	13.04	0.00	28.38	0.00	
	1993	15.83	0.00	29.31	0.00	
	1994	17.74	0.00	30.43	0.00	
	1995	17.77	0.00	31.75	0.00	
	1996	15.87	0.00	33.33	0.00	
	1997	13.02	0.00	35.23	0.00	
	1999			40.09	0.00	
	2001			46.21	0.00	
	2003			50.58	0.00	
	2005			43.88	0.00	

Campbell & Hercowitz (FRBC & TAU) The Financial Labor Supply Accelerate

February 19, 2010

21 / 23

F-Statistics for Coefficient Equality with 1982

	1969-1	.997	1968-2005	
	F-Statistic	p-value	F-statistic	p-value
1968			0.28	0.59
1969	1.54	0.21	0.10	0.75
1970	1.47	0.23	0.00	0.94
1971	1.30	0.25	0.05	0.83
1972	1.04	0.31	0.29	0.59
1973	0.70	0.40	0.81	0.37
1974	0.37	0.54	1.71	0.19
1975	0.13	0.72	3.05	0.08
1976	0.01	0.91	4.89	0.03
1977	0.02	0.90	7.19	0.01
1978	0.11	0.74	9.81	0.00
1979	0.28	0.60	12.57	0.00
1980	0.49	0.48	15.23	0.00
1981	0.75	0.39	17.62	0.00

Concluding Remarks: Macroeconomic Implications

- Households: A persistent wage increase generates a liquidity shortage: "financial labor supply accelerator."
- Firms: The usual financial accelerators is triggered by an increase in the availability of funds.
- · Difference: allocation of time
- Productivity shocks: likely to trigger both mechanisms simultaneously
- Main macroeconomic implication: Possible link with the "great moderation" early 1980s – 2007

