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ALEX is a mixed-frequency Bayesian vector autoregressive model (MF-BVAR) capturing
the co-movement in 107 monthly and quarterly indicators of U.S. economic activity that
can be used to forecast the near-term path of U.S. gross domestic product (GDP).1 ALEX
was designed to efficiently process the daily flow of information for the major monthly and
quarterly statistical releases that are tracked by public sector and private sector analysts in
order to understand the real-time evolution of U.S. GDP. Many of its variables themselves
serve as source data used by the U.S. Bureau of Economic Analysis in its GDP calculations.

It is important to note, however, that ALEX is a reduced-form statistical model. It
should not be confused with modern structural macroeconometric models, such as dynamic
stochastic general equilibrium (DSGE) models. In some cases, these models produce vector
autoregressive representations like ALEX, but they embody more than just statistical as-
sumptions about the nature of their data series. Furthermore, ALEX’s forecasts are purely
model based. No judgment or economic theory is used to adjust them. Even the priors
used to estimate ALEX are data driven, as the hyperparameters are selected using empirical
Bayesian methods.

Similar models have been used in the past to forecast both U.S. and regional economic
activity with varying degrees of success.2 A predecessor to ALEX, for instance, was shown
in Brave, Butters, and Justiniano (2019) to be equally accurate on average in producing
forecasts of U.S. real GDP growth zero to two quarters ahead and more accurate three to four
quarters ahead in comparison with surveys of private sector forecasts. ALEX incorporates
many additional variables relevant for U.S. GDP that are used by forecasters to form more
accurate current-quarter real GDP growth forecasts in order to improve upon these earlier
results.

In what follows, we describe the state-space framework and priors used to estimate ALEX
and demonstrate how point and density forecasts for GDP can be constructed from it.

1The name ALEX is a tribute to our dear departed colleague Alejandro Justiniano, or Alex to many of
his friends, who was instrumental in its development.

2See, e.g., the models used by the Center for Research on the Wisconsin Economy (CROWE) to forecast
the U.S. and Wisconsin economies and the Schorfheide and Song model for the U.S.
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1 Estimating a mixed-frequency VAR

Here, we explain in detail the construction of the state-space system facilitating the con-
struction of the set of conditional distributions that can be used to estimate a mixed-
frequency Bayesian vector autoregressive model, such as ALEX.

1.1 Building the state-space system

We consider an n-dimensional vector yt of macroeconomic time series of differing frequencies
(i.e., some monthly variables and some quarterly variables).3 Because of the mixed-frequency
nature of the series in yt, not all of the variables within it are observed every period. There-

fore, we partition y
′
t =

[
yq

′

t ym
′

t

]
such that the first nq elements collect the vector yqt of

quarterly variables (such as real GDP), which are observed only once every three periods in
a monthly model. In turn, we let ymt be made up solely of monthly variables (such as real
personal consumption expenditures), with dimension nm = n− nq.

To describe the monthly dynamics of this system, we let xq
t denote the monthly latent

variables underlying the quarterly series, yqt . We combine these latent variables with the

indicators observed at a monthly frequency in x
′
t =

[
xq′

t xm′
t

]
. Clearly, each element of xm

t

corresponds to the element of ymt when observed. In contrast, some aggregated combination
of past xq

t monthly realizations will equal yqt when the quarterly variables are observed. In
general, the aggregation for some series i is deterministic and given by

yqt (i) = Gi(x
q
t (i), x

q
t−1(i), ..., xq

t−s(i))

for some predetermined horizon s.4 An example of Gi(·), common for measures of economic
activity in levels, is the three-month average of xq

t , such that

yqt (i) =
xq
t (i) + xq

t−1(i) + xq
t−2(i)

3
. (A1)

With the mapping of xt to yt determined, the vector xt and its monthly dynamics are
summarized by the vector autoregression of order p given by

xt = c + φ1xt−1 + ... + φpxt−p + εt, εt ∼ i.i.d.N(0,Σ), (A2)

where each φl is an n-dimensional square matrix containing the coefficients associated with
lag l.5 The companion form of this monthly VAR together with a measurement equation for
yt delivers the common two-equation state-space system given by

yt = Ztst, (A3)

st = Ct + Ttst−1 + Rtεt, (A4)

3A complete list of the 107 time series used in ALEX can be found in table A1.
4We follow the approach of Mariano and Murasawa (2003) and treat the quarterly observations of GDP

and its subcomponents as the quarterly average of the monthly realizations. This leads to the interpretation
that the underlying monthly variable is annualized.

5ALEX uses a lag order of three.
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with the vector of observables, yt, defined previously, and the state vector, st, defined as

s′t =
[
x′t, . . . , x′t−p, ζ

′
t

]
,

which includes both lags of the time series at the monthly frequency and ζt, a vector of
accumulators. For all quarterly indicators, the accumulator is defined by equation (A1).

Given the additional variables in the state (the accumulators, ζt), the transition matrix
is an np + nq square matrix. In the transition matrix, the entries of the first n rows are the
concatenation of the coefficients associated with each lag φ = [φ1,φ2, ...,φp]. The last nq

rows are made up of two separate components. The first component involves a (time-varying)
scaled version of the coefficients associated with the quarterly time series and corresponds to
the current monthly contribution to the accumulator series. The second component involves
a deterministic series of fractions (e.g., 0, 1/2, and 1/3 for the regular average) that loads onto
the lagged value of the accumulator and corresponds to a running total of past contributions
of monthly realizations within the current quarter. The remaining entries of this matrix
correspond to ones and zeros to preserve the lag structure. The VAR intercepts sit at the
top of Ct, and scaled versions of intercepts are in rows associated with each accumulator. The
rest of Ct has zeros. Finally, each Rt corresponds to the natural selection matrix, using the
same deterministic series of fractions used in Tt augmented to accommodate the additional
accumulator variables in the state.6

In periods in which all of the indicators are observed, the selection matrix Zt is composed
solely of n selection rows made up of zeros and ones. Specifically, for these periods the Zt

matrix is given by

Zt =

[
0 0 . . . Inq

0 Inm . . . 0

]
,

where the identity matrix in the first nq rows of Zt corresponds to the mapping of the
accumulators to the quarterly variables and where the identity matrix in the last nm rows of
Zt corresponds to the mapping of the monthly (base-frequency) time series to their observed
counterparts in yt.

The row dimension of Zt varies over time because of the changing dimensionality of the
observables. For the months in which only monthly time series are observed, the last nm rows
of Zt will be included. Furthermore, toward the end of the sample, not all of the monthly
indicators will be available, depending on their release schedule, and a further subset of these
last nm rows will be used.

1.2 Gibbs sampling procedure

With the model cast in a state-space framework, we can now estimate the full set of para-
meters and latent states given by Θ = {φ, c,Σ, {xlatent

t , ζt}Tt=1}. With the history of data
in the estimation sample through time t ≤ T denoted as Y1:t, inference on Θ concerns the
VAR parameters {φ, c,Σ}, the latent monthly variables {xlatent

t }Tt=1 (of the quarterly time

6For further details on the construction of accumulator variables, see the classic examples in Harvey
(1989).
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series as well as any missing monthly variables), and the accumulators {ζ}Tt=1 conditional on
Y1:T . To conduct inference, Schorfheide and Song (2015) propose a two-block Gibbs sampler
that, conditional on a presample Y−p+1:0 used to initialize the lags, generates draws from the
conditional posterior distributions:

P (φ, c,Σ|X1:T , Y−p+1:T ) (A5)

and

P (X1:T |Y−p+1:T ,φ, c,Σ), (A6)

where we stack {xlatent
t , ζt}Tt=1 into the matrix X1:T .

The first density, given in equation (A5), is the posterior of the VAR parameters condi-
tional on all data and the latent variables. With a suitable choice of priors, sampling from
this distribution is reduced to taking a draw from a straightforward multivariate regression.
The second density, given in equation (A6), corresponds to the Kalman smoothed estimates
of the latent variables. A draw from this distribution is obtained via the simulation smoother
of Durbin and Koopman (2012). Hence, the estimation of ALEX iterates between taking
draws from these two conditional posterior distributions.

2 Implementing the Minnesota prior

The use of informed priors (through Bayesian methods) has been shown to improve the fore-
casting performance of high-dimensional VARs (Litterman, 1986). We appeal to this tradi-
tion, and use a modified version of the traditional Minnesota prior when estimating ALEX.
An important feature of the Minnesota implementation in our case is that the informed
prior over the large dimensional parameter vector is characterized by a very small number
of hyperparameters that are readily interpretable (Doan, Litterman, and Sims, 1984). Addi-
tionally, a well-developed literature has established values for these hyperparameters that
can typically be taken “off the shelf” in practice (e.g., Bańbura, Giannone, and Reichlin,
2010; Carriero, Clark, and Marcellino, 2015; and Giannone, Lenza, and Primiceri, 2015).

In setting the hyperparameters of ALEX, we elect to take an empirical Bayesian approach
rather than calibrating them to their traditional values. Taking such an approach requires the
maximization (with respect to the hyperparameters) of the marginal data density (MDD),
which has been shown to lead to superior out-of-sample forecasts (Geweke, 2001) and in
some settings has an analytical form that often further facilitates estimation (Del Negro and
Schorfheide, 2011).7

2.1 Shrinkage through dummy observations

We address the curse of dimensionality of the VAR parameters (φ,Σ) by using the following
informative prior distributions on (φ,Σ). Generally speaking, the priors we use combine a

7In the mixed-frequency setting, a modification is required that utilizes the output from the Gibbs sampler
and the modified harmonic mean—see, e.g., Schorfheide and Song (2015) and Brave, Butters, and Justiniano
(2019).
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slightly modified version of the well-known Minnesota prior (Litterman, 1986) with a set of
priors that guide the sum of autoregressive lags as well as the co-persistence of the variables
in the model. In particular, the modified Minnesota prior that we use belongs to the normal-
inverse Wishart family, to preserve conjugacy, and takes the following form:

Σ ∼ IW (ψ, d),

φ|Σ ∼ N(Γ ,Σ⊗Ω).

We follow the convention of the Minnesota prior for single-frequency BVARs, so the matrix
Γ consists solely of zeros and ones, which has the effect of shrinking the VAR system toward
independent random walks or white noise. A small set of hyperparameters (λ0, λ1, λ2, λ3,
and λ4) then contributes to the characterization of the covariance matrix Ω, and is collected
in the hyperparameter vector λp. Regarding the prior for Σ, the hyperparameter matrix ψ
is assumed to be diagonal, and the degrees of freedom hyperparameter d is chosen such that
the prior for Σ is centered at ψ/n, where n is the total number of series in ALEX and ψj

is the corresponding entry on the main diagonal of ψ. We collect these ψj entries into the
other component of the hyperparameters, λΣ, for which we use empirical Bayesian methods
to select.

The hyperparameter λ0 controls the precision of the prior on the VAR intercepts, or
constant, c.8 The overall tightness of the prior is controlled by λ1, and is subsequently
referred to as the tightness. As λ1 → ∞, the posterior distribution is dominated by the
prior; conversely, as λ1 → 0, the posterior coincides with the ordinary least squares (OLS)
estimates of the VAR. The second element of the prior is λ2, the decay hyperparameter,
which governs the rate at which coefficients at distant lags are shrunk further toward zero.

Forecast performance has been shown to improve with two additional priors concerning
the persistence and co-persistence of the variables in the VAR. These additional priors are
designed to prevent initial transients and deterministic components from explaining an im-
plausible share of the long-run variability in the system (Sims and Zha, 1998; and Sims,
2000). The first form of shrinkage is usually known as the sum of coefficients prior, and
expresses the belief that the sum of own-lag autoregressive coefficients for each individual
variable should be one. This is governed by λ3, with larger values implying (as shown ear-
lier) a tighter prior. The second form of shrinkage is known as the co-persistence prior and
reflects the belief that if the sum of all VAR coefficients is close to an identity matrix, then
the intercepts should be small (or conversely, if the VAR is stationary, then intercepts are
not close to zero). The strength with which this prior is imposed is increasing in λ4. In
both cases, a hyperparameter set to zero corresponds to the exclusion of that prior from the
system, while approaching infinity corresponds to a system that strictly adheres to the prior.

To operationalize these priors, we use the data augmentation approach often used in the
BVAR context (e.g., Bańbura, Giannone, and Reichlin, 2010; and Schorfheide and Song,
2015). The set of dummy observations that implements the forms of shrinkage we consider
is given by

8Bańbura, Giannone, and Reichlin (2010) set this value to a very small number. Carriero, Clark, and
Marcellino (2015) set this hyperparameter to 1. We take a more agnostic stance, instead putting a hyperprior
on this hyperparameter and letting the optimization of the MDD include λ0.
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Yd =



λ1diag(ψ1δ1, . . . ,ψnδn)
0n(p−1)×n
· · ·

diag(ψ1, . . . ,ψn)
· · ·

01×n
· · ·

λ3diag(δ1ȳ1, . . . , δnȳn)
· · ·
λ4ȳ


, Xd =



λ1Jp ⊗ diag(ψ1, . . . ,ψn) 0np×1

· · · · · ·
0n×np 0n×1

· · · · · ·
01×np λ0

· · · · · ·
(11×p)⊗ λ3diag(δ1ȳ1, . . . , δnȳn) 0n×1

· · · · · ·
(11×p)⊗ λ4ȳ λ4


.

(A7)
The first block corresponds to the tightness and decay components of the prior governed
by λ1 and λ2, respectively; and where Jp = diag(1λ2 , . . . , pλ2), ȳ is an n-dimensional vector
of sample means, and the n-dimensional vector ψ = (ψ1, . . . ,ψn)′ has as its i-th element a
nonnegative number that is proportional to the residual variance for that series. The series-
specific scalars δi reflect the centers of the prior for the first-order own-lag autoregressive
coefficients and are set to 1. The second block ensures the prior for the residual variances
is appropriately centered, and the third block represents the prior for the intercepts with
λ0. The sum of coefficients component of the prior is governed by λ3, where once again the
series-specific scalars δi correspond to the centers of the prior for the first autoregressive
coefficients and are set to 1.9 Finally, λ4 controls beliefs regarding the co-persistence of the
system.

Regarding the covariance matrix, Σ, it can be shown that these dummy observations
combined with an improper prior of the form P (Σ) ∝ |Σ|−n+1

2 imply an inverse Wishart
(IW) prior density centered at ψ

n
, where the diagonal matrix ψ is fully characterized by

the vector ψ described previously. This is because the degrees of freedom resulting from
multiplying that prior and the “likelihood” of the dummy observations is given by T ∗ − k,
where T ∗ is the number of dummy observations and is equal to k+n+ 1 +n and k = np+ 1.
As such, the mean of the IW is equal to

ψ

T ∗ − k − n− 1
=
ψ

n
.

This suggests caution should be exercised if one wishes to center the prior of the residual
variances at presample estimates, which must be scaled by n when using the full complement
of priors. It is also noteworthy that if not all four priors are active, then the mean of the
implied inverse Wishart prior may not even be well defined.

2.2 Selecting hyperparameters and constructing forecasts

As noted earlier, we take an empirical Bayesian approach to selecting the hyperparameters
(λp, λΣ). Our approach to accomplishing this is to first estimate a bivariate MF-BVAR

9Although it is not written this way here, one can separate the centers for the first autoregressive coefficient
and the sum of all autoregressive coefficients. We make use of this fact in ALEX for some series where it is
more reasonable to center the former at 0 and the latter at 1.
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with a related monthly variable that is not included in ALEX for each quarterly variable.10

Treating the posterior high-frequency estimates of the quarterly variables as well as the
other monthly variables of the model as data, we then proceed to optimize the MDD of this
generated data set—which is known in closed form, as shown by Del Negro and Schorfheide
(2011)—using numerical methods. While feasible to implement in real time, our approach
is still more computationally demanding than the common practice of fixing the full set
of required hyperparameters to prespecified values. It is, however, more practical than
the two-step approach considered in Brave, Butters, and Justiniano (2019), which uses a
selection of the optimal hyperparameters from this procedure to characterize the contours
that surround them so that an informed grid can be set up to maximize the true MDD
in a second step.11 That said, as in Brave, Butters, and Justiniano (2019), we facilitate
the elicitation of hyperparameters by imparting a set of hyperpriors (Giannone, Lenza, and
Primiceri, 2015). Table A1 displays the values of the hyperparameters selected by this
procedure and used in the estimation of ALEX.

For each iteration of the Gibbs sampler during estimation, forecasts for GDP are gen-
erated recursively for the current month up to one year into the future. We report the
median of these samples as a point forecast and assess uncertainty with the associated den-
sity forecast by constructing 90% and 70% coverage intervals.12 This procedure captures
three forms of model uncertainty: parameter, state, and shock uncertainty. Parameter un-
certainty concerns the estimation of the model’s coefficients on past values of its variables.
State uncertainty addresses the mixed-frequency nature of the model, incorporating the fact
that for quarterly variables we do not directly observe their monthly evolution and must infer
it from the model. Shock uncertainty simply deals with the stochastic nature of the model
and the way we draw shocks from the model’s implied Normal distributions to simulate over
the forecast horizon events that are not captured by the model’s historical dynamics. Figure
A1 shows examples of point and density forecasts for the level of U.S. real GDP using data
available on October 20, 2020. For comparison, the figure also shows the consensus forecast
and averages of the top ten and bottom ten forecasts from the October 9, 2020, Blue Chip
Economic Indicators survey. Addressing model uncertainty in ALEX in this way produces
very similar results to the level of forecaster disagreement in the Blue Chip survey, as shown
in the figure.

10Each bivariate MF-BVAR uses the same lag order (three) as ALEX and also proper, standard priors.
11Brave, Butters, and Justiniano (2019) use the informed grid found in the first step to maximize the

MDD according to the modified harmonic mean with respect to the hyperparameter elements within λp,
whereas the hyperparameters with λΣ are held constant from this first step. Given the size of ALEX,
we skip this second step where it quickly becomes computationally infeasible to construct the appropriate
modified harmonic mean.

12Given that the data series in ALEX are approximately normally distributed, the mean and median
projections of the model are roughly identical.
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Table A1. Posterior estimates of ALEX hyperparameters

Tightness (λ1) Decay (λ2) Sum of coefficients (λ3 ) Co-persistence (λ4)

1.0299 1 24.4934 6.9129

Series description Transformation Frequency
Standard deviation of

intercept (ψj/λ0)

National Income and Product Accounts

1 Real Gross Domestic Product LN Q 0.0004
2 Real Gross Domestic Income LN Q 0.0004
3 Real Personal Consumption Expenditures LN M 0.0005
4 Real Business Fixed Investment LN Q 0.0009
5 Real Residential Investment LN Q 0.0032
6 Real Government Consumption Expenditures and Gross Investment LN Q 0.0006
7 Real Exports of Goods and Services LN Q 0.0014
8 Real Imports of Goods and Services LN Q 0.0018
9 Real Private Inventories LN Q 0.0002

Employment, Unemployment and Hours

10 Total Nonfarm Payroll Employment LN M 0.0003
11 Civilian Employment-to-Population Ratio LV M 0.0002
12 Labor Force Participation Rate LV M 0.0002
13 Civilian Unemployment Rate LV M 0.0003
14 Median Duration of Unemployment (Weeks) LN M 0.0114
15 Initial Unemployment Insurance Claims (Mils.) LN M 0.0055
16 Continuing Unemployment Insurance Claims (Mils.) LN M 0.0034
17 Aggregate Weekly Hours of Production and Nonsupervisory Employees on Nonfarm Payrolls LN M 0.0006

Industrial Production (IP) and Capacity Utilization

18 Total Industry Capacity Utilization LV M 0.0004
19 Real Gross Value of Business Equipment LN M 0.0019
20 Real Gross Value of Consumer Goods LN M 0.0011
21 Real Gross Value of Nonindustrial Supplies LN M 0.0009
22 Real Gross Value of Defense and Space Equipment LN M 0.003
23 IP: Consumer Energy Products LN M 0.0032
24 IP: Electric and Gas Utilities LN M 0.0026
25 IP: Computers, Communications Equipment, and Semiconductors LN M 0.0024
26 IP: Nonenergy Materials LN M 0.0009
27 IP: Motor Vehicle Assemblies LN M 0.0101
28 IP: Mining LN M 0.0025
29 IP: Oil and Gas Well Drilling LN M 0.007
30 Baker Hughes Active Rig Count (Thous.) LN M 0.0052

Sales, Orders, and Inventories

31 Real Manufacturing and Trade Sales LN M 0.0009
32 Real Personal Consumption Expenditures (PCE) Control Group Retail Sales LN M 0.0008
33 Real Retail Sales excluding Autos, Building Supplies, and Gas Stations LN M 0.0007
34 Real Motor Vehicle Sales LN M 0.0047
35 Light Vehicle Sales LN M 0.0057
36 Medium and Heavy Truck Sales LN M 0.0121
37 Consumer Dollars as a Percent of Auto Sales LV M 0.0026
38 Business New Light Vehicle Purchases LN M 0.0076
39 Real Retail Sales of Building Materials, Garden Equipment and Supply Dealers LN M 0.0037
40 Real Retail Sales of Furniture and Household Appliances LN M 0.0027
41 Real Food Service Sales LN M 0.0021
42 Real Manufacturers’ New Orders of Consumer Goods LN M 0.0014
43 Real Manufacturers’ Unfilled Orders of Consumer Goods LN M 0.0058
44 Real Manufacturers’ Shipments of Consumer Goods LN M 0.0013
45 Real Manufacturers’ New Orders of Construction Materials and Supplies LN M 0.0024
46 Real Manufacturers’ Unfilled Orders of Construction Materials and Supplies LN M 0.0015
47 Real Manufacturers’ Shipments of Construction Materials and Supplies LN M 0.0021
48 Real Manufacturers’ New Orders of Information Technology LN M 0.0075
49 Real Manufacturers’ Unfilled Orders of Information Technology LN M 0.0025
50 Real Manufacturers’ Shipments of Information Technology LN M 0.004
51 Real Manufacturers’ New Orders of Nondefense Capital Goods LN M 0.009
52 Real Manufacturers’ Unfilled Orders of Nondefense Capital Goods LN M 0.0012
53 Real Manufacturers’ Shipments of Nondefense Capital Goods LN M 0.0025
54 Real Manufacturers’ New Orders of Nondefense Capital Goods excluding Aircraft LN M 0.0038
55 Real Manufacturers’ Unfilled Orders of Nondefense Capital Goods excluding Aircraft LN M 0.0009
56 Real Manufacturers’ Shipments of Nondefense Capital Goods excluding Aircraft LN M 0.0022
57 Real Manufacturers’ New Orders of Defense Capital Goods LN M 0.0366
58 Real Manufacturers’ Unfilled Orders Defense Capital Goods LN M 0.0021
59 Real Manufacturers’ Shipments of Defense Capital Goods LN M 0.0086
60 Real Manufacturing and Trade Inventories LN M 0.0005
61 Total Business Inventories-to-Sales Ratio LV M 0.002
62 Ward’s Domestic Auto Inventories LN M 0.0051

LN: Natural Logarithm, LV: Level, M: Monthly, Q: Quarterly
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Series description Transformation Frequency
Standard deviation of

intercept (ψj/λ0)

Private Construction and Real Estate

63 Real Private Nonresidential Construction Spending LN M 0.0035
64 Real Private Business Construction Spending LN M 0.0045
65 Dodge Report Construction Contracts Square Footage LN M 0.0193
66 Completed Housing Units LN M 0.0128
67 Real Private New Residential Construction Spending LN M 0.0025
68 Single-family Housing Starts LN M 0.0107
69 Multi-family Housing Starts LN M 0.0342
70 Housing Permits LN M 0.0102
71 Shipments of Manufactured Homes LN M 0.0094
72 Real Payrolls of Residential Remodelers LN M 0.0038
73 Real Value of Home Sales LN M 0.0059
74 Months’ Supply of Existing Single-family Homes LV M 0.0008
75 Pending Home Sales LN M 0.0049

International Trade and Government Spending

76 Real Balance of Trade in Goods (Census) LV M 0.0042
77 Real Exports of Goods (Balance of Payments, or BOP) LN M 0.0032
78 Real Exports of Services (BOP) LN M 0.0032
79 Real Imports of Goods (BOP) LN M 0.0033
80 Real Imports of Services (BOP) LN M 0.0028
81 Real Imports of Capital Goods excluding Autos LN M 0.0048
82 Real Imports of Motor Vehicles and Parts LN M 0.0104
83 Real Imports of Industrial Supplies and Materials LN M 0.0077
84 Real Imports of Energy-related Petroleum Products LN M 0.0163
85 Real Exports of Agricultural Products LN M 0.0107
86 Trade-weighted Exchange Value of the Dollar: Broad Index LN M 0.0025
87 Real Federal Outlays from Monthly Treasury Statement LN M 0.0155
88 Real Wage and Salaries of Government Employees LN M 0.0006
89 Real State and Local Public Construction Spending LN M 0.0043
90 Real Federal Public Construction Spending LN M 0.0128

Household and Business Surveys

91 Number of Households LN M 0.0005
92 University of Michigan Survey of Consumers Expectations Index LV M 0.0102
93 Institute for Supply Management (ISM) Purchasing Manager’s Composite Index LV M 0.0025
94 ISM Manufacturing Production Index LV M 0.0054
95 ISM Manufacturing New Orders Index LV M 0.0055
96 ISM Manufacturing Supplier Deliveries Index LV M 0.005
97 ISM Manufacturing Inventories Index LV M 0.0063
98 ISM Manufacturing New Export Orders Index LV M 0.0049
99 ISM Manufacturing Imports Index LV M 0.0045
100 Federal Reserve Bank of Philadelphia Manufacturing Index (ISM basis) LV M 0.0054

Household and Business Balance Sheets

101 Real Personal Income Less Transfer Payments LN M 0.001
102 Real Average Hourly Earnings of Production and Nonsupervisory Employees on Nonfarm Payrolls LN M 0.0006
103 Personal Savings Rate LV M 0.0012
104 Real Household Net Worth LN Q 0.0014
105 Real Private Software Industry Revenue LN Q 0.0011
106 Real Healthcare Industry Revenue LN Q 0.0012
107 Real Corporate Net Cash Flow LN Q 0.0039

LN: Natural Logarithm, LV: Level, M: Monthly, Q: Quarterly
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Figure A1. Point and density forecasts for real gross domestic product

BEA U.S. GDP data
ALEX forecast (as of October 20, 2020)
ALEX 90% coverage interval
ALEX 70% coverage interval
Blue Chip consensus forecast with averages of the 
top ten and bottom ten forecasts (as of October 9, 2020)
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Note: See the text for further details on ALEX and its coverage intervals.
Sources: Authors’ calculations; and U.S. Bureau of Economic Analysis (BEA) and Wolters Kluwer’s Blue
Chip Economic Indicators data from Haver Analytics.
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