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Is there evidence of the new economy in U.S. GDP data?

Introduction and summary

Economic theory suggests that temporary cyclical fluc-
tuations in real gross domestic product (GDP) ad-
versely affect the economic well-being of households.
For example, when the economy experiences a cycli-
cal downturn, companies lay off workers with result-
ing negative consequences for the workers and their
families. Thus, it is not surprising that cyclical fluctua-
tions in GDP receive a lot of attention from policymak-
ers. Indeed, there is considerable empirical research
that shows that cyclical fluctuations in GDP play an
important role in the practical conduct of U.S. mone-
tary policy.1 In general, the U.S. Federal Reserve (Fed)
tightens monetary policy (increases interest rates)
when the cyclical component of GDP rises and loosens
monetary policy (reduces rates) when the cyclical
component of GDP falls.

Unfortunately, economists cannot observe the
cyclical component of GDP. This is because observed
GDP is made up of two unobserved components. The
first, called the trend component, refers to the upward
sloping part of GDP. For example, figure 1, panel A
plots the trend component of GDP under the assump-
tion that it is a constant linear trend (green line). The
second, called the cyclical component, refers to the
fluctuations around the trend component. Figure 1,
panel B plots the cyclical component of GDP that is
related to the constant linear trend plotted in panel A.

Economists typically identify the policy-impor-
tant cyclical component by first making assumptions
that allow them to isolate the trend component and
then backing out the cyclical component. In general,
the biggest challenge in isolating the trend component
is estimating its slope. The slope of the trend compo-
nent is determined by the trend growth rate of GDP
(that is, the growth rate of output that would exist if
there were no cyclical fluctuations in GDP). Higher
trend growth rates imply a steeper trend component.

The debate over the true value of the trend growth
rate received a lot of attention in the late 1990s from
economic analysts and policymakers. Analysts argued,
based on strong observed growth of labor productivi-
ty (GDP per worker), that the trend growth rate of
GDP had increased significantly. If an increase in the
trend growth rate had occurred, this type of structur-
al change would have meant that economists could
no longer rely on their longstanding rules of thumb
about the relationship between observed GDP and
the unobserved cyclical component in formulating
policy. This led to speculation by the analysts that the
U.S. was a new economy in the late 1990s, in which
all the old rules about actual, trend, and cyclical fluc-
tuations of GDP no longer held true.

In this article, I test whether there was in fact
significant change in the trend growth rate of U.S.
GDP over the new economy era. I do so by applying
both long-established and newer techniques of ex-
tracting the trend component of U.S. GDP data and
then testing to see if the implied trend growth rate of
U.S. GDP (that is, its average slope) over the new
economy era is significantly higher than the implied
trend growth rate of U.S. GDP over the preceding
productivity slowdown era.

Irrespective of the method used to extract the trend
component, I find that the implied annual trend growth
rate of U.S. GDP was about 3 percent over the produc-
tivity slowdown period, which is considerably higher
than the typical 2.5 percent estimate based on produc-
tivity data, and about 3.25 percent over the new econ-
omy era. Although I find a positive difference between
the new economy and productivity slowdown era esti-
mates, it is not statistically significant. I conclude
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FIGURE 1

Linear trend model with constant growth rate

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department
of Commerce, Bureau of Economic Analysis, 1961–2003, National Income
and Product Accounts.
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that, at least in terms of GDP data, the U.S. was the
same old economy in the late 1990s.

A simple linear trend model of GDP

An economy is like a biological organism in that
it grows exponentially over time. For example, in the
simple case of an economy that is growing at the con-
stant rate µ per time period, the size of this economy
measured by GDP at time t is given by

1) Xt = Φeµt,

where Xt denotes the level of GDP at time
t and Φ is a constant. Economists gener-
ally do not work with the level of GDP,
but instead prefer to work with the log of
GDP (log GDP). The main reason for this
transformation is that growth rate calcu-
lations using log GDP are linear, while
similar calculations using the level of GDP
are non-linear. For example, if we take the
log of both sides of equation 1 and denote
log GDP at time t by xt, it follows that:

2) xt = A + µt,

where A = log(Φ). In this simple case, log
GDP is a linear function of a constant A
and a time trend t with coefficient µ. If
we were to plot this relationship with the
value of log GDP on the vertical axis and
time along the horizontal axis, the intercept
of log GDP with the vertical axis would
be A and the slope of log GDP as we move
along the horizontal axis would be µ. An
increase in A would shift up log GDP by
a constant amount across all periods, so
economists call changes in the constant a
level shift. Raising the growth rate of GDP
µ increases the slope of log GDP across
all periods, so economists call changes in
the growth rate a slope change. Models
that economists actually use to explain the
evolution of GDP over time essentially
build on this simple model by allowing
for some type of variation in the constant
and slope.

Allowing for cyclical variation around
the trend

The first significant departure from
the simple linear trend model described

by equation 2 is that log GDP can be additively de-
composed into a trend component τ t and a cyclical
component ct as follows:

3)  xt = τ t + ct.

The trend component captures the upward slop-
ing part of GDP (which was explained in the simple
model in equation 2 by a linear trend), while the cy-
clical component captures fluctuations around the trend
component (this component was ignored in equation 2).

However, economists do not observe either the
trend or cyclical component of GDP. Economists typi-
cally proceed along one of three paths in estimating
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these unobserved components. First, they estimate the
trend component directly and determine the cyclical
component as the difference between observed log
GDP and the estimated trend component. Second, they
estimate the cyclical component directly and determine
the trend component as the difference between ob-
served log GDP and the estimated cyclical compo-
nent. Or, finally, they jointly estimate the trend and
cyclical components.

Estimating a constant growth rate model of GDP
Early attempts at estimating the trend component

took the direct approach by assuming, as in the simple
example above, that log GDP had a linear trend with
constant slope µ:

4) τ t = A + µt,

where t denotes the linear trend, A is a constant, and
the t subscript denotes the date at which the trend is
being measured. Just as in the simple model discussed
above, the slope coefficient µ is the trend growth rate
of GDP. The cyclical component is simply the differ-
ence between the linear trend and log GDP as follows:

5) ct = xt – (A + µt).

All the elements of this decomposition are plotted
in figure 1. Starting with figure 1, panel A, the black
line is log GDP xt, while the green line is the estimat-
ed linear trend, ˆˆ ˆt Aτ = +µ , where Â  and µ̂  are esti-
mated using ordinary least squares.2 According to my
estimate of the linear trend model, the constant annu-
al growth rate of GDP over the entire sample of quar-
terly GDP data from 1961:Q1 to 2003:Q4 was 3.16
percent. Figure 1, panel B plots the implied cyclical
component ct, which is multiplied by 100 so that it
can be interpreted as a percentage deviation from the
trend component. This figure shows that this relative-
ly simple method of estimating the trend component
produces a cyclical measure of GDP that has turning
points that line up closely with the National Bureau
of Economic Research’s (NBER) peak and trough
dates, captured by the gray bars.

Estimating a time-varying growth rate model
of GDP

Virtually all the recent research aimed at estimating
the trend growth rate of GDP has focused on whether
it changed significantly over the so-called new econ-
omy era from 1995:Q4 to present. Much of this in-
vestigation was fueled by the spectacular increase in
the observed trend growth rates of labor productivity
(GDP per worker) in the mid-1990s. To understand

why this is important, we need to review the way that
the trend growth rate of GDP is typically estimated.
Economists have long recognized that the trend growth
rate of GDP is the sum of the trend growth rate of la-
bor productivity and the trend growth rate of employ-
ment. This led to the popular bottom-up approach in
estimating trend GDP growth, whereby researchers
estimate the trend growth rate of productivity and the
trend growth rate of employment directly and simply
add these components together to get the implied trend
growth rate of GDP. Gordon (2003) and many others
have used this approach and argued on the basis of
their estimates that there was a significant variation
in the trend growth rate of GDP over the new econo-
my era.

In particular, Gordon found that the trend growth
rate of labor productivity rose significantly from an
annual growth rate of 1.5 percent estimated over the
productivity slowdown era from 1973:Q1 to 1995:Q3
to 2.5 percent over the new economy era. Under the
typical assumption that the trend growth rate of em-
ployment is 1 percent, which is based on a constant
long-run labor force participation rate and trend growth
of the labor force of 1 percent, Gordon concluded
that the implied trend growth rate of GDP over the
productivity slowdown era was 2.5 percent and that
there was a significantly higher implied trend growth
rate over the new economy era of 3.5 percent.

In contrast to these researchers, I take a more di-
rect approach to testing whether the trend growth rate of
GDP changed over the new economy era. I use the tech-
niques used by Gordon (2003) and others to estimate
the trend growth of productivity directly to estimate
the trend growth of GDP directly. A possible advan-
tage of this approach is that it does not require auxiliary
assumptions about the trend growth of employment,
since it uses the same method to estimate the trend
growth rate of both productivity and employment.

Following Gordon’s approach to estimating the
trend growth rate of productivity, I allow the parame-
ters that govern the slope of the trend component of
GDP to vary over the sample. If this exercise shows
there has been a statistically significant variation in
the parameters that govern the slope of the trend be-
fore and after the new economy era, this would imply
that we are indeed in a new economy. Alternatively, if I
find that variation in the slope over these periods is
not statistically significant, this would support the
conclusion that the U.S. was the same old economy
in the latter half of the 1990s.
A simple time-varying linear trend model of GDP

A useful starting point on this path is the time-
varying (discrete jump) linear trend model that was
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FIGURE 2

Linear trend model with time-varying growth rate

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas indicate
National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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widely used in the 1970s. This model al-
lows the constant and slope of the trend
component to vary over discrete intervals:

6)  τ t = Ai–j + µi–jt,

where Ai–j is the constant and µi-j is the
trend growth rate over the time interval
from i to j.3 Following the productivity
trend growth literature, I allow for varia-
tion in trend component parameters over
three periods: the productivity slowdown
era from 1973:Q1 to 1995:Q3, the new
economy era from 1995:Q4 to 2003:Q4,
and the pre-slowdown era from 1961:Q1
to 1972:Q4.

My estimates of the discrete jump
linear trend model, reported in table 1
on the previous page, suggest that the
trend growth rate of GDP was 3.88 per-
cent in the pre-productivity slowdown
era, well above the productivity slow-
down estimate of 2.94 and new economy
era estimate of 3.39.4 More importantly,
I find that the difference between the new
economy and the productivity slowdown
trend growth rate estimates is statistically
significant, which suggests that the U.S.
was a new economy post 1995:Q3.

Figure 2 reveals the impact on the
cyclical component of allowing for a
time-varying trend growth rate. Differ-
ences between trend components are
inversely related to differences between
cyclical components: As the trend com-
ponent shifts up, the cyclical component
decreases. Although the difference be-
tween the constant (dark green line) and
discrete jump (light green line) trend
components in figure 2 appears to be
small, the percentage point difference
between the constant (dark green line)
and discrete jump (light green line)
growth rate cyclical components is quite
large. For example, the cycle in 1996:Q1
is –2.7 percent for the constant trend
growth rate model and –0.9 percent for
the discrete-jump trend growth rate mod-
el. A variation of this size would likely generate a
different policy response from the Fed, which high-
lights the importance to policymakers of estimating
the true trend growth rate.

A more important experiment for the current ex-
ercise is a comparison of the cyclical component as-
suming no change in the trend growth rate (dashed
green line, which shows what the discrete jump
growth rate cyclical component would have been if
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FIGURE 3

Band-pass filter trend and cyclical components

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Depart-
ment of Commerce, Bureau of Economic Analysis, 1961–2003, National
Income and Product Accounts.
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the trend growth rate were held constant
at its 1995:Q3 level over the post
1995:Q3 new economy period) and the
cyclical component when the trend
growth rate is allowed to change (light
green line). This figure appears to sup-
port the new economy theory, because it
shows that the policy-important cyclical
component that incorporates changes in
the trend growth rate of GDP lies every-
where below the same cyclical compo-
nent assuming no change. This suggests
that the Fed would have responded to the
change in growth rates over the new
economy era by tightening monetary
policy less aggressively than if it had
maintained the growth rate of the pro-
ductivity slowdown era.5

Does GDP have a linear trend?

Developments in the field of econo-
metrics during the 1980s called into
question the usefulness of the simple lin-
ear trend model for policy analysis.
Armed with new and powerful statistical
techniques, economists such as Nelson
and Plosser (1982) explored the trend
properties of economic time series and
discovered that many U.S. time series,
including GDP, had stochastic rather
than deterministic trends as in the linear
trend models.6 Stochastic trends are more
general than the deterministic linear
trend models described above. The pri-
mary difference is that they allow for
significant variation in the level of the
trend component. In other words, the
constant term A in the linear model is a
random variable in the stochastic trend
model. This development meant that the
widely used linear trend models were misspecified.

Economists reacted to this challenge by develop-
ing new approaches to modeling economic time series
with stochastic trends, known as frequency domain
and unobserved component techniques. These methods
revealed that the simple linear trend models (includ-
ing the discrete jump linear trend model estimated above)
were poor representations of the data. In particular,
they provided misleading results on the nature of the
trend and cyclical components of GDP. In light of this
finding, economists have largely relied on frequency
domain and unobserved component techniques to isolate
the trend and cycle components of economic time series.

Frequency domain estimates of the trend and
cyclical components

Frequency domain techniques were made popu-
lar by the modern business cycle literature starting in
the 1980s. According to this paradigm, fluctuations
in the data at the so-called business cycle frequencies
of between 18 months and eight years are considered
cyclical movements, ct, while long-run fluctuations
occurring at frequencies of greater than eight years
make up the trend component τ t. The main advantage
of this approach over unobserved component meth-
ods is that it can isolate the noisy short-run move-
ments of economic time series that are a nuisance to
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Band-pass filter trend growth rates
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Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department
of Commerce, Bureau of Economic Analysis, 1961–2003, National
Income and Product Accounts.
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policymakers. Fluctuations in the data
occurring at frequencies of less than 18
months are regarded as noise, η t. Using
this approach, log GDP is the sum of
three components, trend, cycle, and noise:

xt = τ t + ct + ηt.

The most convenient way of extract-
ing these three components from time
series data is via an approximate band-
pass filter (BPF). Approximate BPFs are
essentially centered moving averages.
The problem with these approximate
filters is that the filtered data ends up
being much shorter than the unfiltered
time series, because the moving average
requires a significant amount of data at
the beginning and end of the sample, up
to three years in the case of quarterly
GDP data. My analysis of the trend growth
rate of GDP relies on the approximate
BPF method developed by Christiano
and Fitzgerald (2003), which is designed to filter the data
over the entire sample, thus preserving the sample size.

Figure 3 on page 17 plots the trend and cyclical
component of GDP generated by a BPF. The most
obvious difference from figure 2 is that the BPF cy-
clical component is considerably smoother than its
linear trend counterparts. This reflects the fact that
the BPF cycle does not include the highly irregular
noise component. Another advantage of the frequen-
cy domain approach over the unobserved component
method is that it can endogenously identify changes
in the trend growth rate. Figure 3 shows that, in con-
trast to the discrete-jump linear trend model, the slope
changes of the BPF trend are numerous and smooth.
The extent of these growth rate changes is revealed
in figure 4, which plots the implied annual growth
rate of the BPF trend component (green line).

Given the variation in the implied trend growth
rate, I test for significant change in the trend growth
rate of GDP by testing if the average growth rate of
the BPF trend component over the new economy era
is significantly higher than the average growth rate of
the BPF trend component over the preceding produc-
tivity slowdown era (black line). I find that the average
BPF trend growth rates are 2.98 for the productivity
slowdown period and 3.26 percent for the new econ-
omy era. In contrast to the discrete-jump linear trend
model, the difference between these estimates is not
statistically significant, which suggests that the U.S.
was the same old economy in the late 1990s.

Unobserved component techniques
Another group of economists led by Watson

(1986) took a completely different route to decom-
posing GDP into its trend and cyclical components
by applying unobserved component (UC) techniques.
In contrast to the frequency domain approach, UC
methods require strong assumptions about the exact
form of the trend and cyclical components. Watson’s
initial UC model of log GDP responded directly to
the work of Nelson and Plosser (1982) by allowing
log GDP to have a stochastic trend. In particular,
Watson’s model assumed that the trend component
of log GDP was a random walk with drift.

The random walk with drift assumption meant
that the trend component τ t depended on its most re-
cent past observation τ t–1, a random component ετt,
and a constant term, typically called drift µ:

7) τ t = µ + τ t–1 + ετt.

In the absence of random fluctuations (ετt = 0), the
trend component grows at a rate equal to the drift µ.
However, the trend component does not always grow
at the trend growth rate because positive random
fluctuations lead to trend growth in excess of the drift,
while negative random fluctuations cause the trend to
grow by less than the drift. It is important to note that
while fluctuations in the random component ετt have
a permanent effect on the level of the trend component,
they do not have a permanent effect on the trend
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FIGURE 5

Univariate unobserved component model
with constant drift

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Depart-
ment of Commerce, Bureau of Economic Analysis, 1961–2003, National
Income and Product Accounts.
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growth rate. Therefore, the long-run or
trend growth rate of GDP is measured by
the drift term µ.

Watson’s model assumes the cycli-
cal component is a second order autore-
gression, which means that the current
cyclical component ct depends on its
most recent past two observations ct–1, ct–2,
and a random component εct:

8) ct = φ1ct–1 + φ2ct–2 + εct.

The cyclical component is assumed
to be a stationary process, which means
that random shocks to the cycle εct have no
permanent effect on the level of the cycle
or log GDP. This requires that φ1 + φ2 < 1.
Finally, the noise component cannot be
identified, so log GDP xt is assumed to
be the sum of the trend and cyclical com-
ponents.

Watson’s UC model of log GDP is
often referred to as a univariate UC mod-
el because although there are many un-
observed components, there is only one
observed component. The unobserved
components are the trend, cyclical, ran-
dom trend, and random cycle compo-
nents, while the observed component is
log GDP. The unobserved components
are identified by assuming that the ran-
dom trend ετt and random cycle εct com-
ponents are uncorrelated.

Table 1 reports the trend growth rate
estimates from Watson’s univariate UC
model with a constant drift.7 Despite ad-
ditional data, the move to chain-weight-
ed real GDP indexes, and recent changes
in the measurement of business invest-
ment, my estimate of the trend growth
rate of GDP is very close to that first re-
ported by Watson. At 3.30 percent, it is slightly high-
er than the constant growth rate estimate from the
linear trend model.

Figure 5 plots the univariate UC constant drift
trend and cyclical components. Panel A reveals that
the UC trend component is not as smooth as the lin-
ear trend component. This highlights level shifts of
log GDP caused by fluctuations in the random trend
component. Panel B shows that the univariate UC
cyclical component also has turning points that
closely match the NBER business cycle dates.

Unobserved component time-varying trend growth
rate models

Watson’s model assumes that variations in the
growth rate of the trend are temporary, so it needs to
be modified to test for permanent changes in the trend
growth rate. I build on Watson’s model by introduc-
ing a time-varying drift term µt that allows the growth
rate of the trend to change permanently. I consider
two cases, a discrete-jump model that allows for
lumpy changes in the trend growth rate and a unit-root
model that allows for smooth changes in the trend
growth rate.
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FIGURE 6

Univariate unobserved component model
with time-varying drift

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas indicate
National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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Discrete-jump trend growth rate
The first case assumes that changes

in the trend growth rate of GDP take on
discrete jumps. In particular, the trend
growth rate is assumed to jump to a new
level µi–j for a fixed period (t = i to j).
Under this assumption, the trend compo-
nent is a random walk with drift:

9) τ t = µt + τ t–1 + ετt,

but now the drift µt is allowed to vary
over fixed periods:

10) µt = µi–j for i ≤ t ≤ j.

This is analogous to the time-vary-
ing discrete-jump linear trend model
studied above. Just as in the linear trend
case, I allow the drift term to vary over
three periods that are widely viewed by
empirical researchers to be periods in
which the trend growth rate of productiv-
ity changed significantly: the productivi-
ty slowdown era; the new economy era;
and the pre-productivity slowdown era.
I test for significant change in the trend
growth rate over the new economy era by
testing whether the drift term over the
new economy period is significantly
higher than the drift term over the pre-
ceding productivity slowdown period.

Table 1 reports my estimates of trend
growth rates for all the models I estimate
across the three periods. In the case of
the univariate discrete-jump model, the
trend growth rate over the new economy
era (3.29 percent) is higher than that for
the productivity slowdown era (2.92 per-
cent), but the difference between the two
rates is not statistically different from
zero. Therefore, I cannot reject the null
hypothesis that the U.S. was the same old
economy in the late 1990s. In contrast,
my estimates suggest that the difference
between the pre-slowdown and produc-
tivity slowdown trend growth rates is a
statistically significant 1.28 percent.

Figure 6 plots the univariate UC trend and cycli-
cal components under the discrete-jump assumption.
The discrete-jump drift cyclical component (light
green line) lies slightly above the constant-drift cycli-
cal component (dark green line) over the early part of

the new economy period. This gap diminishes over
the latter part of the 1990s, so that the two curves are
virtually identical around 2000. Just as in the dis-
crete-jump linear trend model, level differences of this
size would likely generate a different policy response
from the Fed, which again highlights the importance
to policymakers of estimating the true trend component.
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FIGURE 7

Univariate unobserved component model trend
growth rates

percent

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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FIGURE 8

Univariate unobserved random trend components

percent

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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However, this comparison of the constant and
discrete-jump drift cyclical components is uninfor-
mative when it comes to answering the question of
whether changes in the trend growth rate
had a bearing on monetary policy. As in
the linear case, we need to compare the
cyclical components under the assump-
tion of no change in the trend growth rate
in 1995:Q4 in the discrete-jump linear
trend model (the old economy path, not
plotted) and the plotted cycle, which al-
lows for changes in the trend growth rate
(the new economy path). Irrespective of
where the estimation sample ends post
1995:Q3, I find that the path of the cycli-
cal component, assuming no change in
the growth rate from 1995:Q3 onwards,
is close to the cycle that allows for
changes in the trend growth rate in
1995:Q4. This finding suggests that if the
Fed used this unobserved component
model to estimate the trend and cycle
component, but failed to factor in a
change in the trend growth rate in
1995:Q4, its monetary policy response
would have been indistinguishable from
its response with a change in the trend
growth rate.

Unit-root growth rate
The next time-varying model fol-

lows Harvey and Todd (1983) and Clark
(1987) in assuming that the trend compo-
nent is a random walk with a time vary-
ing drift:

τ t = µt + τ t–1+ ετt,

but now I allow the drift µt to vary in a
smooth way by allowing it to be also a
random walk process:

11)  µt = µt–1 + εµt,

where the current trend growth rate µt de-
pends on its most recent past observation
µt–1, plus a random component εµt. Under
this assumption, fluctuations in trend
growth come from two sources: changes
in the random trend component ετt, which
permanently change the level of the trend
component, and changes in the random
drift shock εµt, which permanently change

the slope of the trend (or long-run trend growth rate).
The unobserved trend, cyclical, and time-vary-

ing drift components are identified by assuming that
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FIGURE 9

Multivariate unobserved component model trend
growth rates

percent

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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the random trend component ετt, random cycle com-
ponent εct, and random drift component εµt are uncor-
related. In this case, I test for significant change in the
underlying trend growth rate by testing whether the
average time-varying drift µt over the new economy
era is significantly higher than the average time-varying
drift over the preceding productivity slowdown era.

Figure 7 plots the unit-root trend growth rate for
the Watson model (dark grey line) against its discrete-
jump (light green line) and constant trend growth rate
(dark green line) counterparts. This figure suggests that
after a dramatic fall in the trend growth rate over the
pre-productivity slowdown era, the trend growth rate
held steady at about 3.12 percent over the latter part
of the productivity slowdown era and into the new
economy era. A comparison of the average growth
rates over these periods indicates that there has not
been a statistically significant variation in the average
trend growth rate over the latter part of the estimation
period (see point estimates in table 1). Hence, there
is no evidence of the new economy in the GDP data.

The point estimates of the trend and cyclical com-
ponent parameters of the unit-root model are slightly
different to the model with a constant drift. This is
echoed in figure 6 by the similarity of the unit-root
(dark gray line) and the constant drift (dark green line)
trend and cyclical components, especially over the pro-
ductivity slowdown and new economy eras. The only
noticeable difference occurs in the early part of the

sample, which reflects the relatively high
trend growth rate estimates over the 1960s.

If the underlying trend growth rates
did not change, what then explains the
high observed GDP growth rates in the
late 1990s? Figure 8 suggests that the
high GDP growth rates of the late 1990s
were the result of a level shift in the
trend component, which was driven by a
sequence of relatively large positive ran-
dom fluctuations that had a permanent
effect on the level of the trend, but no per-
manent effect on the trend growth rate.

Multivariate unobserved component
models of GDP

One of the drawbacks of Watson’s
model is that despite carrying the label of
a structural economic model, it is in fact
atheoretical in that it embodies no behav-
ioral economic relationships. Various au-
thors have attempted to add behavioral
content to Watson’s model by employing
multivariate UC models that link the un-

observed trend and cyclical components not only to
observed log GDP, but also to observed price infla-
tion πt. This is typically done by adding a so-called
Phillips curve to Watson’s univariate model, which pro-
vides a link between changes in the level of price in-
flation and changes in the cyclical component of GDP.

For example, Gerlach and Smets (1999) (hereaf-
ter GS) add the following Phillips curve:

12)  ∆πt = α1∆πt–1 + α2∆πt–2 + α3∆πt–3 + γct–1+ επt.

Their relationship allows for rich dynamics in
the evolution of changes in the rate of inflation
(∆πt = πt – πt–1) through the autoregressive coefficients
(α1, α2, α3). In general, γ is assumed to be positive,
so that a widening gap between actual GDP and the
trend, captured by the cyclical component ct, leads to
higher price inflation.

GS also modify the specification of the cyclical
component of the model by incorporating informa-
tion on the real federal funds rate (difference between
the level of the Federal Reserve’s target interest rate
and the average level of price inflation):

1 ,1 2 2 1 113) ( )−− − − −= φ + φ + λ π + εt t t t t ctc c c r

where rt denotes the nominal U.S. federal funds rate
and tπ  denotes the average level of price inflation
over the previous four quarters. GS argue that this
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FIGURE 10

Multivariate unobserved component models

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas indicate
National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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modified cyclical equation is essentially a reduced-
form aggregate demand function with λ assumed to
be negative, so that a rising real interest rate decreas-
es aggregate demand. The other equations in the GS
model are the same as the constant and time-varying
drift UC models described above.

One of the key observations driving
speculation that the U.S. had experienced
a significant increase in its trend growth
rate of GDP was that inflation was con-
sidered to be relatively low for such a
rapidly expanding economy. To under-
stand this argument, we must examine
the relationship between inflation and
trend growth embodied in the Phillips
curve. An increase in the trend growth
rate of GDP would, other things being
equal, raise the level of the trend compo-
nent and lower the level of the cyclical
component, which would in turn imply
a lower rate of increase in price inflation
through the Phillips curve relationship.
In light of this, GS’s model is particular-
ly well suited to exploring the existence
of the new economy, since it allows in-
flation also to affect the measurement of
the trend component.

Moving onto the trend growth rate
estimates, table 1 shows that the estimat-
ed multivariate UC constant drift model
has an underlying trend growth rate of
3.32 percent, which is marginally higher
than the estimated constant trend growth
rate from the univariate UC model. The
multivariate UC discrete-jump model pa-
rameters, on the other hand, suggest that
while there was significant change in the
trend growth rate in the earlier part of the
sample, there was not a statistically sig-
nificant increase in the trend growth rate
of GDP in the 1990s. A similar picture
emerges from the multivariate UC unit-
root drift estimates reported in figure 9
(dark gray line). Based on these results,
the trend growth rate changed little from
the end of the productivity slowdown era
through to the new economy period. In
fact, the unit-root drift estimates suggest
that after rising slightly in the late 1990s,
the trend growth rate actually fell below
the levels recorded in the productivity
slowdown period.

Parameters governing the cyclical
components are virtually identical across all three mul-
tivariate UC models. This finding is echoed by the simi-
larity of the multivariate UC cyclical components under
the three trend growth rate assumptions plotted in
figure 10. These cyclical components suggest that,
other things being equal, if the Fed had relied on
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FIGURE 11

Multivariate unobserved random trend components

percent

Notes: Data cover the period from 1961:Q1 to 2003:Q4. Shaded areas
indicate National Bureau of Economic Research recession dates.
Source: Author’s calculations based upon data from the U.S. Department of
Commerce, Bureau of Economic Analysis, 1961–2003, National Income and
Product Accounts.
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these multivariate UC models to estimate the cyclical
component of GDP, its monetary policy response
would have been invariant to its trend growth rate
assumption over the late 1990s.

Overall, these multivariate UC models estimates
provide no evidence in favor of the new economy, so
what was the factor underlying the strong growth of

GDP? Turning to estimates of the multi-
variate UC random trend components in
figure 11, we see even stronger evidence
than in the univariate UC model case that
there is a clustering of positive random
fluctuations to the level of the trend com-
ponent of GDP in the multivariate model
in the late 1990s. Again, this suggests
that the high GDP growth rates of the late
1990s were the result of a level shift in
the trend component, which was driven
by a sequence of relatively large, positive
random fluctuations that had a permanent
effect on the level of the trend, but no per-
manent effect on the trend growth rate.

Conclusion

New economy advocates argue that
the high productivity growth rates of the
second half of the 1990s ushered in a per-
manent increase in the trend growth rate
of U.S. GDP. I test formally whether there
was a statistically significant change in
the trend growth rate of GDP over the
late 1990s. Using a number of widely
used approaches to estimate the trend com-

ponent of GDP, I find that there was variation of the
trend growth rate of GDP over the latter half of the
1990s, but it was not statistically different from zero.
I conclude that, at least in terms of GDP data, the
U.S. was the same old economy in the late 1990s.

NOTES

1See Taylor (1993) for details.

2Details of data sources and dates used for estimation are reported
in appendix A.

3I estimate the time-varying A and µ using standard linear spline
and knot regression techniques, which restrict the estimated trend
to be a continuous line; see Greene (1990) pp. 248–251 for details.

4At 2.94, my estimate of the productivity slowdown growth rate
is slightly higher than the typical trend growth rate based on pro-
ductivity growth rate estimates. As Seskin (1999) shows, this up-
ward revision to the trend growth rate can be explained by the shift
to current chain-weighted data, which also incorporates revisions
to the measurement of business fixed investment that raised the
average growth rate of GDP over the entire sample by roughly
0.3 percentage points.

5Orphanides and van Norden (2002) highlight problems in mea-
suring the cyclical component of GDP in real time. The methods
used in this article are subject to their critique of real-time estimates

of the cycle. However, my main objective here is not to estimate
a real-time cycle, but to document whether the trend growth rate
of GDP changes over the latter half of the 1990s using the best
available data, so their criticism is not relevant for the trend growth
rate results presented here.

6Trend properties of the data used in this article are reported in
appendix A. In particular, table A1 reports augmented Dickey–
Fuller tests for log GDP. According to these tests, log GDP has
a stochastic trend.

7Details of the techniques used to estimate the UC models are
reported in appendix B. I use the following conventions when
reporting parameter estimates or plotting unobserved components:
The cycle is expressed as percentage deviations from the trend,
while the underlying growth rate of the trend is expressed as an-
nualized percentage rates. Plots of the unobserved cycle and trend
components refer to the two-sided estimates generated by the
Kalman smoother. Appendix C reports estimates of the other pa-
rameters of the unobserved component models.
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APPENDIX A: TREND PROPERTIES OF GDP AND INFLATION DATA

An important assumption in Watson’s (1986) and Gerlach
and Smets’ (1999) models is that the log of GDP has a
unit root. Gerlach and Smets’ model goes one step further
in assuming that price inflation also has a unit root. This
section reports the results of augmented Dickey–Fuller
(ADF) tests for nonstationarity using quarterly U.S. real
chain-weighted gross domestic product (GDP) and con-
sumer price index (CPI) data from 1961:Q1 to 2003:Q4.
Note, the quarterly CPI data are calculated as averages
of the three months in the quarter.

The left-hand side of table A1, panel A reports ADF
t-statistics for cases with a constant and time trend, using
various lags of the change in the log of GDP (∆xt = xt – xt–1).
These test statistics do not allow me to reject the null of a
unit root in the log of GDP at typical levels of significance.

A potential time-varying model of the trend growth
rate of GDP is a unit root without drift. A time-varying
trend growth rate with a unit root would require a unit
root in the change in the log of GDP∆xt. The right-hand
side of table A1, panel A reports ADF t-statistics for the
change in the log of GDP. I am able to reject the null of
a unit root in the growth rate of GDP at conventional
levels of significance when a constant is included in the
regression. This implies that the trend growth rate of
real GDP is a stationary process. However, Stock and
Watson (1998) argue that if the variance of the innova-
tion to the trend growth rate is small, the growth rate of
GDP will have a nearly unit moving average (MA) root.
It is well-known that unit-root tests have a high rejection
rate in the presence of large MA roots, which means
that the reported ADF statistics are consistent with a
model that has a unit root in the trend growth rate with
a small innovation variance.

Panel B of table A1 repeats these experiments for
inflation πt, measured as the change in the log of the CPI.
The left-hand side suggests that at conventional levels
of significance, I cannot reject the null of a unit root in
inflation. The right-hand side suggests that I can reject
the null of a unit root in the change in the level of infla-
tion (∆πt = πt – πt–1) at conventional levels of significance.
This implies that ∆πt is a stationary process.

TABLE A1

Unit-root tests

A: Real GDP

xt = log(GDPt) ∆∆∆∆∆xt = xt – xt–1

Lags Constant, trend Constant

2 –2.77 –7.41
4 –2.38 –7.09
8 –2.02 –5.05
12 –2.10 –4.69

B: CPI inflation

πππππt = log(CPIt) – log(CPIt–1) ∆π∆π∆π∆π∆πt = πππππt – πππππt–1

Lags Constant, trend Constant

2 –2.51 –9.47
4 –2.73 –7.36
8 –2.70 –6.06
12 –1.90 –5.36

Source: Author’s calculations based on GDP and CPI data from
1961:Q1 to 2003:Q4.
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APPENDIX B: ECONOMETRIC ISSUES

I estimate all models using maximum likelihood. In each case the likelihood function is evaluated using the Kalman
filter on the model’s state space representation. I simplify the estimation by transforming the models so that they are
specified in first differences rather than levels of real GDP. For example, I estimate the univariate model with con-
stant drift or drift with discrete jumps using the following structure:

∆xt = µi-j + ∆ct + ετt for i ≤ t ≤ j

 ct = φ1ct–1 + φ2ct–2 + εct.

The advantages of this data transformation are twofold. First, the computation costs are lower because the state
vector ξ t is reduced to current and lagged values of the GDP gap:

ξ t  = [ct   ct–1]′ .

Second, these components are assumed to be stationary, so I can use the exact likelihood to estimate the model
by specifying the initial values of the state vector ξ0 and the initial covariance matrix of the associated estimation er-
ror P0 in terms of the population moments of the state vector:

ξ0 = 0 and 1 2*2
0

1 2

1 /(1 )
/(1 ) 1cP

φ −φ 
= σ  φ −φ 

,

where
2

*2
2 2 2
1 2 1 2 2

.
1 2 /(1 )

c
c

σ
σ =

−φ −φ − φ φ −φ
 This avoids the many problems associated with estimating models in levels,

such as the unobserved component estimates depending critically on initial values.
The set up of the unit-root models is more complicated. The state vector is expanded to include current and

lagged values of the growth rate:

ξ t = [ct   ct–1   µt   µt–1]′ ,

and I must use the conditional likelihood to estimate the model’s parameters. I follow Harvey (1993) by explicitly using
∆x0 as an estimator of µ0 and noting that the variance of the associated estimation error is E[(∆x0 – µ0)2] = E[(∆ct + ετt)2],
which implies the following initial state vector and associated estimation error covariance matrix:

ξ t = [0    0     ∆x0     ∆x–1]′

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1 1 2

2 2 2

1 1 1

2 2 2*2
0 2 2

1 1 1 1 1 2
*2

2 2 2 2

2
1 1 2

2

21 1
1 1 1

1 1 1
1 1 1

21 1 2 1 1
1 1 1 1

2
1

c

c

P
τ

   φ φ φ −φ −φ
−      −φ −φ −φ   

   φ φ φ
− −      − φ − φ −φ   

= σ
        φ φ φ σ φ −φ −φ

− − − + −                − φ −φ −φ σ −φ        

 φ −φ −φ
 − φ  ( ) ( ) ( )

2 2
1 1 1 2 1

*2
2 2 2

.

21 1 2 1
1 1 1 c

τ

 
 
 
 
 
 
 
 
 
 
 
       φ φ − φ −φ φ σ

− − − +             −φ − φ −φ σ        

Fortunately, the innovations to the inflation equation are stationary variables, so I can follow the same approach
to initializing the multivariate models.
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