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Introduction and summary

Controlling inflation is a primary goal of monetary
policy. In order to control inflation, central bankers
need to be able to measure and forecast inflation as
best they can. Forecasting is particularly important,
given the fact that monetary policy operates with “long
and variable lags,” and therefore policymakers need
to act well in advance of actual developments in in-
flation, on the basis of their forecasts.

Both the measurement and the forecasting of in-
flation have been subjects of ongoing debate and re-
search in recent years. This article reports on my
research on both aspects. Specifically, I develop a new
measure of inflation, which can also be used to gen-
erate a forecast. The research is still very preliminary,
but the first results are encouraging. In particular, it
appears to provide some gains in forecasting compared
with what remains the best and simplest forecasting
model, namely, the random walk model of inflation.1

Motivation
For the U.S. Federal Reserve (and for many other

central banks), price stability is a primary goal, man-
dated by law. This stability is usually interpreted to mean
a low level of inflation (how low will not be debated
here). So what is inflation and how do we measure it?

Inflation is generally defined as the rate of change
of some price index: Well-known examples are the
Consumer Price Index (CPI) and the Personal Consump-
tion Expenditures (PCE) Price Index. Price indexes,
generally speaking, result from the attempt to mea-
sure with a single number a change in a collection of
prices pi (for i = 1, …, n) .

The simplest conceivable index is to take a straight
average of the prices in each period, ignoring the quan-
tities. But it seems more reasonable for many purposes
to weight the prices. Movements in the price of an

item that is of little importance relative to the others
should not be given much weight. An item of little
importance is one that does not represent a large share
of expenditures, which naturally leads one to use ex-
penditure shares in creating the weights (see box 1).

More generally, suppose we have observations
on prices at which a given range of goods and services
are bought and sold and also observations on the quan-
tities bought and sold at those prices. We thus have a
collection {pi} and a collection {qi}. Suppose further
that we have observations in two periods, 0 and 1. One
period (either 0 or 1) is chosen as the reference peri-
od. The problem of constructing an index (for either
prices or quantities) is that of devising a formula that
takes the prices and quantities in both periods and yields
a single number. The formula must be such that, if
the prices and quantities are the same in the reference
period and the other period, the number is 1. Note that,
even if prices are unchanged between the two periods,
a change in quantities will generally result in the index
being different from 1. Even though prices are un-
changed, the weighting of the prices, which is based
in part on the quantities, will change the overall index.

From this brief overview, one can draw some
general observations about price indexes. Most price
indexes require information on quantities in order to
weight the prices. For certain applications, the fact
that quantities are measured less precisely, less easily,
and less quickly than prices can be a problem. At a
deeper level, there is an important connection between
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the prices and quantities. In much of index theory, the
two collections are intimately related, and the index
makes sense with respect to a particular set of quanti-
ties. For example, the CPI is based on weights repre-
senting the typical basket of goods and services
consumed by an average urban consumer. The PCE
deflator is based on the quantities of goods and services
consumed in the economy as a whole. These indexes
yield different inflation rates, partly because they
are tied to different collections of goods and services,
and the computation of the index depends on the col-
lections themselves, as well as on the quantities.

More generally, price indexes are designed for a
certain purpose and have optimal properties for that
purpose, but they may not be well suited for others.
Monetary policy needs measures of inflation, but it
may well be that indexes designed to measure the
value of a basket of consumer goods or to convert
nominal consumption expenditures into real con-
sumption expenditures are not perfectly suited for the
goals of monetary policy.

In fact, policymakers have come to use variants
of both the CPI and PCE index, the so-called core

measures. The intuition behind these measures is that
monetary policy is interested in broad and persistent
movements in inflation and that certain price series,
being too volatile, introduce noise and confusion in
the measurement of these broad movements. There-
fore, the troublesome series (typically food and ener-
gy-related items) are removed altogether from the
price index.

The alternative approach I propose here extends
the intuition behind the core measures of inflation.
My premise is that inflation is a general movement in
the price level or, put differently, a movement that is
common to all individual price series. Once we posit
the object to be measured (inflation) as a statistical
series of its own, then the measurement problem can be
seen in a different light, as a signal extraction problem.
Constructing (weighted) averages is a way of mea-
suring inflation that makes particular assumptions
about the movements that are specific to each series:
essentially, that they are a sort of observation noise
that can be removed by taking averages and counting
on the law of large numbers. But these movements
specific to each price series can have a more complex
structure than being just noise. As it happens, statisti-
cal tools are available to measure inflation and allow
for more complex structures. The result of this ap-
proach is still, in a way, a weighting scheme, but it is
a dynamic weighting scheme, and it is one that weights
series not by their importance in a basket, but accord-
ing to the information that they contain.

Method

The Kalman filter
The Kalman filter relies on a distinction made

between what is observed and what is not. This is for-
malized by writing two equations, known as the state
equation and the observation equation. The first equa-
tion posits the evolution over time of the hidden vari-
ables, gathered in a vector called the state vector. The
specification is typically dynamic, meaning that cur-
rent value taken by the state depends on past values.
One of these hidden variables will be our general move-
ment in the price level. The second equation describes
the relation between the state and the observables.

I call the vector of observable variables yt: That
is, at every point in time t, (y1t, y2t, y3t, ...) represent
the values of the series 1, 2, 3 at time t. There is an-
other vector, made up of variables that are not observed:
It is called the state vector, xt. The state equation de-
scribes how this (unobserved) state changes over
time. The general form is

xt = A xt–1 + ut,

BOX 1

Different kinds of indexes

A straightforward weighting scheme is to use the
expenditure shares to weight the items. And, since
the choice of the units to measure the quantities of
goods, and therefore the prices per unit of goods,
is arbitrary, the absolute level of an index is mean-
ingless, and an index can only measure changes
relative to a reference period. One thus arrives at
the classic price indexes to measure changes be-
tween period 0 and period 1—the Laspeyres and
Paasche indexes, depending on whether one chooses
period 0 or period 1 as the reference period, and
the Fisher index, which takes the geometric aver-
age of the two indexes and thus achieves a pleas-
ing symmetry between the two periods.

The CPI is essentially a Paasche index, with
weights based on a reference period that is changed
from time to time. The current PCE index is a type
of Fisher index, with no fixed reference period:
The changes computed period by period are chained
together to form an index series. The Fisher in-
dex has another nice feature—a quantity index
that can be computed in exactly the same way
(weighting quantities by expenditure shares); in
any period the quantity index times the price in-
dex equals the total expenditure. Thus, the price
index can be seen as a deflator of the nominal ex-
penditures that yields an index of real quantities.
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where A is a matrix and ut is a noise or error term.
The observation equation relates the observables

and the state in the following way:

yt = B xt + vt,

with vt, another noise or error term, uncorrelated with
ut.  Having specified this model of the relationships
between the state and observables, I need to supply
initial guesses about two things: the initial value taken
by the state and the uncertainty surrounding that initial
value. Typically, the initial value is assumed (in the
absence of any other information) to be the long-run
average of the state, and the uncertainty surrounding
this value can be derived from the state equation.

I am now ready to apply the Kalman filter. It may
seem a little magical to estimate the value of a variable
(the state) that is never observed. The way it works is
as follows: The method is recursive, meaning that at
any point in time it takes the most recent guess and
updates it in a systematic manner based on the newly
available information. Given a guess as to the value
of the state yesterday, and the uncertainty around it,
the mechanical application of the state equation pro-
vides a best guess as to its value today (before I intro-
duce any of today’s information).

How do I represent today’s information? The basic
rule here is learning from one’s mistakes. Since I have
a guess of today’s state, I can make a guess of today’s
observables, using the observation equation. Then
I compare this guess with what actually happened:
The difference between the two is the new information
that is relevant to my model.

How do I incorporate today’s information? I project
the (unknown) value of today’s state onto all of the
information, which can be decomposed into the infor-
mation available yesterday and the new information
that became available today. A classic result of regres-
sion analysis tells us that this projection is the sum of
two terms. The first is simply the best guess of today’s
state using the information up to yesterday. The second
corrects this guess with the new information, but weights
it according to two expectations: how correlated it is
likely to be with today’s state and how noisy it is. The
more correlated this new information is with the state,
the more weight I place on it; on the other hand, the
noisier it is, the more I discount it. How these weights
are determined depends on the particular values I have
assigned to the coefficients of the state and observa-
tion equations.

This leads to a recursive formula: Today’s guess
is yesterday’s guess updated with the (appropriately
weighted) new information. Tomorrow, I will take

today’s guess of today’s state, derive a guess of to-
morrow’s state, and repeat the procedure.

Of course, when tomorrow rolls around, I will
correct my guess of tomorrow’s state that was based
on today’s information. But I could also correct my
guess of today’s state based on today’s information,
or even yesterday’s guess of yesterday’s state. More
generally, having proceeded recursively from the be-
ginning to the end of the available sample, it is possible
to go back and correct the guesses made for the value
of the state in earlier periods based on the information
of the whole sample. This procedure, which is also re-
cursive but backwards (as it updates yesterday’s guess
based on today’s error), is called the Kalman smoother.

This approach to measuring inflation, like any
other, has costs and benefits. Some of the benefits are
apparent if we think back to the initial motivation.
Modeling inflation as a hidden variable allows me to
bypass a number of the issues that arise for standard
indexes. For example, the basic intuition behind core
measures of inflation is fully extended. Price series
are not ignored or deleted when they are volatile; rather,
optimal use is made of the information that they con-
tain. The approach helps me deal with the choice of
optimal weights to apply to the price series because
the Kalman filter algorithm itself chooses the weights
that it applies recursively. But it doesn’t choose them
arbitrarily; rather, it tries to extract the information
contained in the price series.2 The choice of the series
themselves is not eliminated, of course, but it is of less
importance. There is no conceptual problem in mixing
series of different origins (say, the PCE index and CPI)
or choosing a subset of either collection of series. There
is no “adding up” constraint; there is no need to fully
represent a given basket or bundle of goods and ser-
vices. The main consideration in adding another series
to the collection we use should be: Is that additional
series likely to provide information about inflation
that was not contained in our collection already?

Finally, one major benefit of the approach is that
it yields a forecasting tool at no additional cost, so to
speak. My best guess of the value of the state at time
t+1 based on information available at time t is simply
my best guess of the state at t, projected forward one
period using the state equation. The Kalman filter ap-
proach thus folds into one operation measurement
and forecast.

There are disadvantages, however. One cost is of
a technical nature, and another is more of a conceptual
problem.

The technical difficulty becomes more apparent
in the next section. Although index theory may rely
on some assumptions about the economic process that
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generated the prices and quantities, the considerations
that lead to the choice of an index are quite general
and make few or no assumptions about the prices them-
selves. The Kalman filter approach requires that a
modeling choice be made about the statistical pro-
cesses that best represent the price series and the un-
derlying inflation as well. That is, I have to take a
stand on the structure of prices, their interdependence,
the correlations of a series with its past values, as
well as those between the series themselves, and so
on. Fortunately, some statistical tests guide the choice
of that structure, as I discuss in the next section.

The conceptual difficulty is the following: One
might fairly argue that I am not so much measuring
inflation as inventing a concept of inflation that I can
measure. The underlying inflation, or “latent inflation,”
may be just a statistical artifact. My response is that,
although it is indeed an invented concept, it is one
that captures the intuition we have about inflation.
But it would be better to think of the series I uncover
as an index, perhaps not of inflation itself, but of the
forces that affect inflation dynamics, at least in the
short run. For lack of a simpler term, I choose to call
this index latent inflation, but I need to show that, in
practice, it can be closely related to more standard
measures of inflation. I do this in the second part of
the section that follows.

The model

General form
The general form of the model I use is relatively

straightforward. Let Yit denote the individual inflation
series, with i = 1, ..., N. Let Pt be the latent inflation.
I assume that the relation between them takes the form

Yit = λi Pt + Pit,

where λi is called the “loading factor.” The term Pit
represents the component specific to the individual
inflation series i. I call it the “relative inflation” for
the good or service i.

One would expect the loading factors to be close
to 1. (As I explain later, one of them is normalized to
be 1.) Indeed, it may be hard to think of a theory in
which they would not be 1, since one would expect
inflation to have the same impact on all series. To the
extent that I do not find them to be 1, this can be re-
interpreted as capturing any immediate dependence
on the relative inflation from the general inflation,
for example, the product of distortions generated by
inflation on the pricing decisions in one sector. Formally,
the equation can be rewritten as '

it t itP P P= +  with
( )' 1 .it i t itP P P= λ − +  An alternative explanation is that

loading factors different from 1 are picking up some
model misspecification, such as nonlinear time trends.

Within this general framework, I consider a vari-
ety of statistical models for the relative inflation rates
Pit and the latent inflation Pt.

Specific form
As I explained previously, part of the cost of the

approach is that it involves many choices: not only a
choice of series, but also a choice of the statistical model
to apply to the series. Partly to avoid deciding, but
mostly to explore the properties of the general model,
I have experimented with a number of variations.

The PCE index or the CPI can be thought of as
the apex of a pyramid. The general price index corre-
sponds to the most aggregated level of observation.
Immediately below, there is a first level of disaggre-
gation. In the case of the PCE index, it contains three
series: an index of durables prices, an index of non-
durables prices, and an index of services prices. Fur-
ther down is a second level of disaggregation, which
contains 13 series, and a third level. At this stage of
the research, I have experimented with a collection
of three series of the PCE index (the first level of
disaggregation), 13 series (the second level), and
52 series (selected from the third level).

The next decision is the choice of a statistical model
for the individual series. For the sake of simplicity, I
have imposed the same model on the latent and the
relative inflation series, but I have varied the model.
All models belong to the ARIMA (autoregressive in-
tegrated moving average) families of models, which
I now explain.

The simplest statistical model one can think of is
that a series is white noise; that is, it consists of real-
izations from uncorrelated, identically distributed statis-
tical processes— each observation (at time t) is drawn
from, say, a normal distribution with constant mean
and variance. Obviously, this is not a good model for
inflation, which is highly persistent, but it serves as a
building block for other models. The next step is to
allow for serial correlation, and imagine that inflation at
time t can be decomposed into the sum of last period’s
realization multiplied by a factor ρ, and white noise et:

Pt = ρ Pt–1 + et.

This introduces some persistence in the process.
More generally, one can suppose that the process de-
pends on more than one lag. The general form is then
that of an AR(p), autoregressive process with p lags:

Pt = ρ1 Pt–1 + ρ2 Pt–2 + … + ρp Pt–p + et.
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Other methods and related literature

In addition to presenting my results, I want to say
a few words about other methods.

The approach taken here is related to other
work. The model I use can be seen as a special
case of what are called “dynamic factor models.”
These models represent a given collection of vari-
ables {X1,t, X2,t, …} as being determined by a set
of unobserved common factors {F1,t, F2,t, …} and
their lags, to which observation noise is added.
The general form of the equation modeling each
variable would be

Xi,t = ai10 F1,t + ai11 F1,t–1 + … + ai20 F2,t

+ ai21 F2,t–1 + … + ui,t,

where the ui,t terms are not correlated over time
and with each other (Sargent and Sims, 1977).
Typically, the number of factors is kept small rel-
ative to the number of variables being modeled.
More recently, researchers have found that the
principal components of the collection Xi can be
used to approximate the common factors Fi, an
approximation that becomes valid as the number
of variables X becomes large relative to the number
of factors (Stock and Watson, 1998; Forni et al.,
2000). These techniques are used by the Chicago

Another step is to allow the innovation et to have
effects that extend beyond the period when it occurs,
without having as much persistence as the autore-
gressive part. That is, the innovation et affects not
just Pt but also Pt+1:

Pt = ρ1 Pt–1 + ρ2 Pt–2 + … + ρp Pt–p + et + θ et–1.

This is a mixture of an autoregressive (AR) process
with a moving average (MA) component: It is called
an ARMA process. The moving average part can
have q terms:

Pt = ρ1 Pt–1 + ρ2 Pt–2 + … + ρp Pt–p + et + θ1 et–1

+ …+ θq et–q,

in which case the process is called ARMA(p,q).
Estimation is much simpler if the process is sta-

tionary; that is, its properties do not vary over time,
and it tends to revert to its mean rather than drift away.
This will be true if the sum of the autoregressive co-
efficients is less than 1 in absolute value. But this may
not be a good assumption for inflation, which is so

highly persistent that it can look like a random walk.
One solution is to take the difference of inflation and
to model that difference as an ARMA process; the origi-
nal process is said to be integrated of order 1 if the
first difference is stationary, and the process is called
an ARIMA(p,1,q) process, where 1 denotes the fact
that inflation needs to be differenced once. (I do not
consider higher orders of integration.)

A final variant that I consider is to allow for feed-
back from the relative inflation to the latent inflation.
This takes the following form: The relative inflation
series are modeled as ARMA(p,q), and the latent in-
flation is modeled as

Pt = ρ1 Pt–1 + ρ2 Pt–2 + … + ρp Pt–p + et + θ1 et–1

+ …+ θq et–q + Σ ψiPit.

I denote the model as ARIMA(p,i,q,ψ) if I allow
for such feedback and ARIMA(p,i,q,~) otherwise. The
same model is imposed on all series. (Further refine-
ment of the analysis will involve imposing different
models on the different series, eliminating terms that
appear to be insignificant in the estimation.) Constants

Fed’s National Activity Index (Evans, Liu, and Pham-
Kanter, 2002). Cristadoro et al. (2002) use these
methods to compute a measure of core inflation for
the euro area using large numbers of economic se-
ries and extracting the slow-moving component of
the common factor associated with inflation.

My approach is a particular form of a dynamic fac-
tor model, where the number of factors is the number
of series plus one and estimation proceeds along the
more traditional (and computer-intensive) line of max-
imum likelihood. Bryan and Cecchetti (1983) use this
method with a small-scale model to estimate the de-
gree of bias in the CPI (the bias being the difference
between actual CPI and the estimated latent variable).
They do not assess the properties of their estimated
variable or its forecasting ability. Jain (1992, 2001)
uses the state space approach with only price series
to remove seasonal fluctuations from price series, but
the focus is not on estimating latent inflation. Other
uses of the state space model approach to estimate or
predict inflation include Bomhoff (1982), who uses
a small economic model to relate inflation to money
and output; Hamilton (1985) and Burmeister, Wall, and
Hamilton (1986), who estimate current expectations
of inflation using variables such as interest rates;
and Laubach and Williams (2003).

BOX 2
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are included in all the ARMA models, allowing for
potentially different trends in relative inflation.

Estimation method
To estimate each model, I use the so-called esti-

mation-maximization (EM) algorithm detailed in
Watson and Engle (1983). The problem is to find the
values of the parameters of the model: the loading
factors; the ρ, θ, ψ coefficients; and the variances of
the innovations et for each relative inflation and for
the latent inflation. The difficulty is that the Kalman
filter and smoother formulas can compute estimates
of the latent variable assuming that these parameters
are known; however, they are not known, and they
must themselves be estimated.

The EM algorithm uses the classic approach of
assuming we know what we don’t know. Specifical-
ly, one starts with a guess for the parameters, applies
the Kalman smoother, and computes estimated series
(the estimation step); then, pretending that these esti-
mated series are observed data, one finds new esti-
mates of the parameters, essentially by regressing the
observed price series on the relative and latent infla-
tion to compute the loading factors, as well as the
hidden variables on their lags to compute the param-
eters of the ARMA model.3 The main drawback of
this algorithm is that it converges very slowly and
makes computation time-intensive.

In box 2 (p. 59), I present a brief overview of
other methods. In the following section, I discuss my
results.

Results

The estimated latent inflation
As I have explained, the approach

to modeling relative prices as well as
latent inflation is somewhat agnostic:
A variety of models have been estimated.
Which does one choose? One criterion is
how well the model fits the existing data
(I use the sample period from 1959:Q1 to
2005:Q1). The estimation procedure tries
to maximize the likelihood that the ob-
served data were generated by the esti-
mated model, and one can simply compare
the resulting likelihood across models.
Of course, models with more parameters
will tend to do better, simply because they
have more parameters, and ways have
been devised to take this into account.4

Figures 1–3 show the estimated val-
ues of the latent variable over the sample,
compared with the quarterly core inflation
rate, for three models: two models chosen

on the basis of fit—the ARIMA(2,0,0, ~) and the
ARIMA(3,0,1, ψ)—and a model that will turn out
to have good forecasting ability in the next section,
the ARIMA(2,0,2, ~). The figures also show the
forecasted path of the latent variable over the next
12 quarters. Note that this is not a forecast of core
inflation, but only a forecast of the latent variable.
I use this forecast of the latent inflation in the next
section to forecast core inflation. Another important
point is that neither the level nor the amplitude of
the latent variable can be determined. The estimation
procedure normalizes to 1 the first loading factor (in
effect, I scale the latent variable so that its amplitude
is comparable to that of the first price series), and in
figures 1–3 I add the value of core inflation in 1959:Q2
to the level of the latent variable. Thus, the scale of
the figure only applies to core inflation, and if the
figures allow us to compare visually the two series,
they should not be taken to mean that core inflation
is higher or lower than the latent variable at any par-
ticular point in time.

Overall, the behavior of the latent variable is sim-
ilar to that of core inflation. It’s worth recalling that
I did not remove food or energy from the series I used
to estimate the latent variable.

Forecasting with the latent inflation measure
As I mentioned previously, one difficulty with

the latent inflation approach is that the variable I am
measuring is a construct. How can I be sure that it is

FIGURE 1

Estimated latent inflation,
ARIMA(2,0,0,~) model

percent (quarterly, at annual rate)

Notes: The scale of the figure only applies to core inflation. PCE means personal
consumption expenditures.
Sources: Author’s calculations and U.S. Bureau of Economic Analysis.
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FIGURE 2

Estimated latent inflation,
ARIMA(2,0,2,~) model

percent (quarterly, at annual rate)

Notes: The scale of the figure only applies to core inflation. PCE means personal
consumption expenditures.
Sources: Author’s calculations and U.S. Bureau of Economic Analysis.

FIGURE 3

Estimated latent inflation,
ARIMA(3,0,1,ψψψψψ) model

percent (quarterly, at annual rate)

Notes: The scale of the figure only applies to core inflation. PCE means personal
consumption expenditures.
Sources: Author’s calculations and U.S. Bureau of Economic Analysis.

measuring what I think it might be measuring? Is it
of any use or, more precisely, does it capture the latent
inflationary pressures that are in play, at least in the
short term?

One way to evaluate the latent inflation measure
is to find out if it holds any predictive power for in-
flation as it is commonly measured. To find out, I carry

out an out-of-sample forecasting exercise
similar to Fisher, Liu, and Zhou (2002)
and Brave and Fisher (2004). As this re-
search has emphasized, the naive model
of inflation, which predicts that inflation
in the future will be what its most recent
value was, is “the man to beat.”

I proceed as follows. For each quar-
ter T between 1984:Q2 and 2002:Q2, I
take the sample ranging from the begin-
ning of the series (1959:Q1) to the cho-
sen quarter T. Using only the data in this
sample, I estimate a family of ARIMA
models. Then, I run various regressions
of core inflation over various horizons
(that is, core inflation from quarter t – H
to quarter t, where H ranges from 1 to 8)
on the estimated measure of the latent in-
flation and current and lagged core infla-
tion within the sample. Then, I construct
a forecast of latent inflation over the ho-
rizon T to T + H and use those forecasts
as well as the values for current and
lagged core inflation to project core infla-
tion over the horizon T to T + H. Having
done this for all quarters T between
1985:Q1 and 2002:Q2, I compute the
root mean squared error (RMSE) of these
forecasts. I compare this RMSE to the
RMSE of the naive model, which simply
predicts that core inflation over T to
T + H will be what core inflation was
from T – 4 to T.

Using the same notation as Brave and
Fisher (2004), core inflation from t – H
to t is

ln ln ,H
t t t Hp p −π = −

while core inflation from t – 1 to t is sim-
ply denoted πt = ln pt – ln pt–1.

Note that

1 2 ... .H
t t H t H t− + − +π = π + π + π

Latent inflation xt is calculated as the latent vari-
able in the statistical model, and the latent variable
over the T to T + H horizon is simply

1 2 ... .H
t t H t H tx x x x− + − += + +
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Root mean squared error relative to naive model

Forecast horizon one to eight quarters ahead

ARIMA(2,1,0) without feedback 1.09 1.13 1.12 1.16 1.20 1.23 1.24 1.25
ARIMA(2,1,0) with feedback 1.34 1.70 1.71 1.82 1.89 1.91 1.93 1.94
ARIMA(3,1,0) with feedback 1.30 1.81 1.84 1.96 2.05 2.12 2.16 2.18
ARIMA(2,0,1) without feedback 1.11 1.16 1.15 1.17 1.20 1.23 1.24 1.25
ARIMA(2,0,2) without feedback 1.12 1.15 1.11 1.10 1.10 1.10 1.09 1.08
ARIMA(3,0,1) without feedback 1.10 1.15 1.11 1.11 1.12 1.11 1.11 1.10
ARIMA(2,0,0) without feedback 1.17 1.24 1.25 1.27 1.29 1.29 1.28 1.28
ARIMA(3,0,0) without feedback 1.19 1.25 1.22 1.21 1.22 1.22 1.21 1.20
ARIMA(2,0,0) with feedback 1.38 1.74 1.91 2.02 2.07 2.08 2.06 2.03
ARIMA(3,0,0) with feedback 1.36 1.74 1.91 2.00 2.07 2.09 2.08 2.05
ARIMA(3,0,1) with feedback 1.41 1.83 2.04 2.17 2.25 2.30 2.30 2.29
1 lag of inflation alone 1.08 1.17 1.24 1.31 1.37 1.44 1.50 1.54

The regression I run is

0 1 11) .H H
t t t H t Hx − − −π = α +β π +β π + γ

The statistical model allows me to project ˆH
T Hx +

and then construct an estimate

0 1 1ˆ ˆ .H H
T H T H T Tx+ + −π = α +β π +β π + γ

Note that, in equation 1, latent inflation is in-
cluded in the regression in addition to lagged inflation.
Such an inclusion usually hurts the predictive power
of the forecasting equation (out of sample). By con-
trast, if latent inflation helps significantly, this is a
success. Note also that, although a lot of work goes
into coming up with the series H

tx  and the forecast
ˆ ,H

T Hx +α  the regression itself is simple and has only
three regressors.

The results in terms of relative RMSE are shown
in table 1. For each model and each horizon (one to
eight quarters ahead), the table shows the model’s
RMSE relative to the naive model (a number lower
than 1 indicates that the model performs better). The
models are sorted by order of increasing likelihood.

The pattern of performance varies considerably
across models. One group of models does substantially
worse than the others: As it turns out, these are the mod-
els that allow feedback from lagged relative inflation
to latent inflation. The models without feedback do
markedly better than regressing core inflation on two
quarters of inflation, the performance of which is given
in the last row of table 1. In other words, the addition
of the latent inflation to the regression substantially im-
proves the forecasting performance. Which model per-
forms best depends on the horizon: At the short
horizon (one to three quarters), the ARIMA(2,1,0,~)

TABLE 2

Performance of the moving average versions of the models’ forecasts

Two-quarter moving average

ARIMA(2,1,0) without feedback 1.02 1.02 1.03 1.05 1.08 1.09 1.11 1.15
ARIMA(2,0,1) without feedback 1.04 1.01 0.97 0.97 0.99 1.01 1.05 1.08
ARIMA(2,0,2) without feedback 1.05 1.01 0.96 0.95 0.95 0.97 1.00 1.03
ARIMA(3,0,1) without feedback 1.03 1.00 0.95 0.94 0.95 0.97 1.01 1.04
ARIMA(2,0,0) without feedback 1.08 1.04 1.01 1.00 1.00 1.00 1.02 1.05
ARIMA(3,0,0) without feedback 1.08 1.03 0.98 0.96 0.96 0.97 1.00 1.03

Three-quarter moving average

ARIMA(2,1,0) without feedback 0.98 0.96 1.00 1.02 1.06 1.08 1.12 1.16
ARIMA(2,0,1) without feedback 0.98 0.95 0.94 0.96 0.99 1.03 1.08 1.12
ARIMA(2,0,2) without feedback 0.99 0.95 0.93 0.93 0.95 0.99 1.03 1.07
ARIMA(3,0,1) without feedback 0.97 0.94 0.92 0.93 0.96 1.00 1.04 1.08
ARIMA(2,0,0) without feedback 1.01 0.98 0.97 0.97 0.98 1.00 1.04 1.09
ARIMA(3,0,0) without feedback 0.99 0.96 0.93 0.93 0.95 0.98 1.02 1.06

TABLE 1
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does slightly better; for all other horizons, the winner
is the ARIMA(2,0,2,~), with the ARIMA(3,0,1,~) not
far behind. Neither one, however, manages to do any
better than the naive model, though they come rea-
sonably close, within 10 percent of the RMSE of the
naive model.

FIGURE 5

Predictions of the naive model and
ARIMA(2,0,2,~) model (smoothed) vs. actual inflation

percent (annual rate)

Note: See the text for further details.
Sources: Author’s calculations and U.S. Bureau of Economic Analysis.

FIGURE 4

Predictions of the naive model and
ARIMA(2,0,2,~) model vs. actual inflation

percent (annual rate)

Note: See the text for further details.
Sources: Author’s calculations and U.S. Bureau of Economic Analysis.

Figure 4 compares the forecasts of
core inflation produced by the naive model
(gray line) and the latent inflation model
ARIMA(2,0,2,~) (green line) with actual
core inflation (black line) at the two-year
horizon. The date on the horizontal axis
is the date at which the forecast is made.
The gray line is the black line shifted by
two years, since the naive model predicts
that inflation two years hence will be the
same as today. The predictions of the la-
tent model are not substantially different
from those of the naive model, and hence
the latent model does not perform any
better. But what is striking is how variable
the green line is, relative to the gray line.
The reason is as follows. The gray line
averages actual inflation over the previ-
ous eight quarters and therefore smoothes
out a lot of the quarter-to-quarter vari-
ability in inflation. The latent inflation
model incorporates the new information
that arrives in each quarter, and even
though it weights it appropriately, the
new information shifts the estimate of
where latent inflation currently stands;
this in turn shifts the whole projected
path of latent inflation, and hence the
forecast of core inflation. There is no
smoothing mechanism here.

It is possible, of course, to add a
smoothing mechanism.5 For example,
I have tried replacing the latent model’s
forecast with a two-quarter or three-quar-
ter moving average of itself. This ad hoc
procedure produces a smoother forecast.
Its performance is shown in table 2, only
for selected models.

The performance of both the ARIMA
(2,0,2,~) and the ARIMA(3,0,1,~) models
is improved markedly. Just taking a two-
quarter moving average reduces the rela-
tive RMSE for the ARIMA(2,0,2,~) from
1.10 to 0.95. It becomes possible to beat
the naive model, although not by a great
amount. Figure 5 compares the predic-

tions of this moving average: The green line is clearly
smoother, and in some instances, it seems to do better
in terms of predicting changes in inflation (for exam-
ple, the downturn in the mid-1980s and the pick up
in the early 1990s).
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Conclusion

This article has presented recent research on
measuring and forecasting inflation. The approach
taken, that of state space modeling, consists of repre-
senting latent inflation as an unobserved variable af-
fecting simultaneously a collection of individual price
series, for example, the main components of an ag-
gregate price index like the PCE deflator. The approach
extends the intuition that lies behind the use of core
measures of inflation in that it takes the individual

price series to be noisy observations on true, underly-
ing inflation, and filters out the noise in the individu-
al price series. The resulting estimated latent inflation
validates the use of core inflation, since the two se-
ries look very much alike. The latent inflation approach
has the additional benefit of yielding a forecast of fu-
ture inflation, and preliminary results indicate that some
progress can be made in reducing out-of-sample fore-
casting error.

1For an explanation of the random walk model, please refer to
Brave and Fisher (2004) and Fisher, Liu, and Zhou (2002).

2Note that I am not fully escaping the use of weighted indexes,
since the individual price series will, in practice, be indexes of
their own.

3If the model has moving average components, the et series are
treated as yet another unobserved variable.

NOTES
4Two such criteria are commonly used, the Bayesian information
criterion (BIC) and the Akaike information criterion (AIC), the
former tending to be stricter than the latter. In my family of models,
the BIC chooses the most parsimonious model, the ARIMA(2,0,0)
with no feedback, while the AIC ranks almost equally the ARIMA
(3,0,0) with feedback and the ARIMA(3,0,1) with feedback.

5I thank former Federal Reserve Board Chairman Alan Greenspan
for this suggestion.
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