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Abstract 
 

A recently derived function ties a portfolio’s loss given default rate (LGD) to its default rate. This 
study compares the predictive performance of the LGD function to that of linear regression 
using simulated data. The data are simulated using a linear model. Even though this confers an 
advantage to linear regression, the LGD function produces lower mean squared error over a 
meaningful range of conditions. This suggests that risk managers can benefit by using the LGD 
function to model the relationship between default and LGD.  

 
 

The views expressed are the solely author’s and do not necessarily represent the views of the 
management of the Federal Reserve Bank of Chicago or of the Federal Reserve System.  
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Models of portfolio credit loss contain default rates and loss given default (LGD) rates. If the two 
rates tend to rise in the same conditions, credit risk is worse than otherwise. Although the 
connection between default and LGD must be expressed in some way, there has been no 
standard approach to modeling.  

A recently derived LGD function predicts the LGD rate of a portfolio based upon its default rate. 
If conditions cause the default rate to be elevated, the function predicts that the LGD rate will be 
elevated by an associated amount. The quantitative connection has survived statistical testing 
against steeper and flatter alternatives within the Moody’s-rated universe of loans and bonds.1  

This study tests the LGD function with data simulated by linear models. A linear statistical 
model would seem best to analyze such data, so linear regression is used as a performance 
benchmark. But when a data set is short, linear regression tends to over fit the data and to make 
noisy predictions. The LGD function cannot be over fit to the same degree. Over a wide range of 
conditions, the LGD function therefore outperforms linear regression. This suggests that a risk 
manager is well served using the LGD function rather than a statistically estimated relationship. 

 

The LGD function 

The LGD function connects the conditionally expected LGD rate (cLGD) to the conditionally 
expected default rate (cDR). These rates would be observed in a homogeneous portfolio with a 
large number of statistically identical loans. In smaller portfolios, default and LGD rates are 
random with means equal to cDR and cLGD. 

The conditionally expected LGD rate can sometimes be stated as a function of cDR. Frye and 
Jacobs derive a particularly simple LGD function: 

 (1)                                                                    𝑐𝐿𝐺𝐷 = Φ�Φ−1[𝑐𝐷𝑅] − 𝑘�/𝑐𝐷𝑅 

where Φ[⋅] represents the standard normal cumulative distribution function, and k is a positive 
parameter that characterizes a given loan. The LGD function is strictly monotonic in cDR for all 
values of k and is bounded on the interval (0, 1). 

                                                        
1 Frye and Jacobs 
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Figure 1 illustrates the moderate, positive LGD function for seven values of k. For example, in 
the range of default rates between 1% and 10%, each of the lines exhibits approximately a nine-
point response of cLGD.  

Applying the LGD function to a loan is usually straightforward because k depends only on 
parameters that are in common use. Specifically,  

 (2)                                                             𝑘 = (Φ−1[𝑃𝐷] −Φ−1[𝐸𝐿])/�1 − 𝜌 

where PD denotes a loan’s probability of default, EL denotes its expected loss rate, and ρ 
denotes correlation. EL equals PD times the expected LGD rate (ELGD). A given value of k can 
produced by many combinations of PD, EL, and ρ. Of the three parameters, ρ has least effect.  

Some models of the default rate do not condition on observable variables. An example is the 
widely-used Vasicek Distribution.2 If cDR has a Vasicek Distribution and the LGD function is 
valid, then credit loss has a two-parameter distribution: 

(3)     𝑐𝐿𝑜𝑠𝑠 = 𝑐𝐿𝐺𝐷 𝑐𝐷𝑅 =  Φ�Φ−1[𝑐𝐷𝑅] − 𝑘�            

 = Φ �Φ−1 �Φ �
Φ−1[ 𝑃𝐷 ] +�𝜌 𝑍

�1 − 𝜌
��  −

Φ−1[ 𝑃𝐷 ] −Φ−1[ 𝐸𝐿 ]
�1 − 𝜌

�  =  Φ �
Φ−1[ 𝐸𝐿 ] + �𝜌 𝑍

�1 − 𝜌
� ;  𝑍~𝑁[0,1] 

 

Specifically, this is a Vasicek Distribution with mean equal to EL. Other specifications of cLGD, 
even if they appear simpler, tend to produce more complicated distributions of cLoss. For 
example, if cLGD always equals ELGD, the distribution of credit loss has three parameters:  

                                                        
2 Vasicek 
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Figure 1: LGD Function for seven values of k
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(4)                                   𝑐𝐿𝑜𝑠𝑠 =  𝐸𝐿𝐺𝐷 Φ �
Φ−1[ 𝑃𝐷 ] + �𝜌 𝑍

�1 − 𝜌
� ;  𝑍~𝑁[0,1] 

In addition to purely random influences, a default rate model might condition on observed 
variables such as the change in GDP or house prices. The same variables might also affect LGD. 
Credit loss would then depend on the default rate (with its dependences on underlying 
variables) and on the LGD rate (with its own dependences).  

There is nothing wrong with additional statistical parameters if they are statistically significant. 
The LGD function makes the testable assertion that available data are not extensive enough to 
resolve the additional parameters with statistical significance. The simulations performed in this 
study compare the performance of the simpler LGD function to that of linear regression.  

  

Data Simulation  

Data are simulated in two stages. The first stage simulates conditionally expected values, and the 
second stage adds the randomness inherent in a finite portfolio.   

On the default side, the conditionally expected rate is drawn from the Vasicek Distribution. The 
number of defaults is drawn from the Binomial Distribution with its parameter equal to cDR. On 
the LGD side, the conditionally expected LGD rate is inferred from a linear function. The LGD 
rate is drawn from a normal distribution with mean equal to cLGD and variance that depends on 
the number of defaults. In symbols, 

(5)                                         𝑍 ~ 𝑁[0,1]          

(6)                                   𝑐𝐷𝑅 =   Φ [ (Φ−1[𝑃𝐷] + �𝜌 𝑍 ) �1 − 𝜌�  ]    

(7)                                         𝐷 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙[𝑛, 𝑐𝐷𝑅] 

(8)                                 𝑐𝐿𝐺𝐷 =  𝑎 +  𝑏 𝑐𝐷𝑅 

(9)                                    𝐿𝐺𝐷 ~ 𝑁[𝑐𝐿𝐺𝐷, σ2/𝐷] 

The initial simulations use a particular set of parameter values: PD = 3%, ρ = 10%, and n = 
1,000. The values a = 0.5 and b = 2.3 are those fit by Altman and Kuehne to high-yield bond 
data.3 The value σ = 20% is provided by Frye and Jacobs. The target for each approach is 98th 
percentile cLGD, which equals 72.3%: 

 (10)                              𝑐𝐿𝐺𝐷 =  0.5 + 2.3 Φ [ (Φ−1[0.03] + √. 1 Φ−1[0.98] ) √1 − .1⁄  ] 

                                                   =   0.5 + 2.3 ∗  0.0972 = 0.723 

                                                        
3 Altman and Kuehne 
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The length of the data sample is initially set to ten years, because many banks have not had a 
rigorous definition of default for longer than that.  Later experiments explore a range of values 
for each of the control variables. 

 

Initial simulations 

This section details the analysis of one set of data and summarizes the analysis for 10,000 sets. 
Figure 2 illustrates the data generator, Equation (8), as a dashed line. The 98th percentile is 
indicated by an open diamond. Ten simulated data points are indicated with solid diamonds.  

 

On the default side, estimated PD is assumed equal to the average annual default rate, 2.24%. 
Maximizing the following likelihood function produces an estimate of ρ: 

(11)                                                    𝐿𝑛𝐿𝜌[ρ] = � 𝐿𝑜𝑔[𝑓𝑉𝑎𝑠[𝑑𝑟𝑖;𝑃𝐷,� 𝜌]
𝑑𝑟𝑖>0

 

where fVas [ ⋅ ] is the PDF of the Vasicek Distribution. For these data the estimate is 𝜌� = 17.6%. 
The estimated 98th percentile of cDR is then 

(12)                      𝑐𝐷𝑅�  =  Φ[ (Φ−1[ 0.0224 ] + √0.176 Φ−1[0.98]) / √1− 0.176 ]  =  0.1035 

On the LGD side, the LGD function is simple to apply. Estimated EL is the average annual loss 
rate, 1.34%, which implies k = 0.2276. The LGD function prediction, 𝑐𝐿𝐺𝐷�  = 65.9%, is marked 
with an open square in Figure 2. It understates true cLGD by 72.3% - 65.9% = 6.4%.  
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Default-rate-weighted LGD = 60.0%



6 
 

Ordinary least squares (OLS) estimates are 𝑎� = 0.449 and 𝑏� = 3.98. The regression line 
prediction, 𝑐𝐿𝐺𝐷�  = 86.1%, is marked with an open square and overstates cLGD by 13.8%. 
However, the regression slope is not statistically significant with a test size of 5%. The regression 
prediction therefore reverts to an average, and for this we use default-rate-weighted-average 
LGD, 60.0%. This is an improvement relative to the untested regression, but it understates the 
target by 12.3%. The error made by OLS is about twice as great as the error made by the LGD 
function. 

 

Figure 3 summarizes 10,000 instances of this analysis using randomly generated data sets. 
Predictions made by the LGD function are tightly distributed and produce root mean squared 
error (RMSE) equal to 7.9%. Predictions made by OLS range from 49.7% to 133% and produce 
RMSE equal to 11.0%. The lesser mode reflects primarily non-significant regressions such as the 
one illustrated in Figure 2.  

Thus, the LGD function (RMSE = 7.9%) outperforms OLS (RMSE = 11.0%). This is principally 
because the LGD function is less affected by the noise that is observed in a short data set.  

 

Robustness  

This section allows each control variable to take a range of values. Of the eight control variables, 
five have little effect on the conclusion that the LGD function outperforms OLS. However, if 
there are many years of data, or if LGD responds very strongly (or not at all) to conditions, then 
OLS can sometimes outperform. PD affects the tradeoff between the steepness of the data 
generator and the relative performance of the two predictive approaches. 
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Figure 4 illustrates the effect of the LGD target percentile. The dashed vertical line calls 
attention to the 98th percentile and to the RMSEs of 7.9% and 11.0%. A greater (lesser) 
percentile requires greater (lesser) extrapolation from the data and entails greater (lesser) errors 
by either method. However, the LGD function outperforms OLS at each possible target 
percentile.  

 

A greater value of ρ implies greater variances of all random variables. Figure 5 shows this leads 
to greater errors by either method. However, the LGD function outperforms OLS at each 
possible value of ρ. 
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A greater number of loans reduces the RMSE for OLS until a limit is reached at about 4,000 
loans, as shown in Figure 6. Otherwise, the LGD function outperforms OLS. 

 

Figure 7 shows that over a broad range of values of intercept a, the LGD function outperforms 
OLS. This range extends from zero up to the value a = 78.4%. Then, 98th percentile cLGD equals 
0.784 + 2.3 * 0.097 = 101%. This highlights a shortcoming of the linear data generator: it often 
produces values of cLGD outside the range [0, 1], unlike the LGD function, which is bounded. 
For more reasonable values of a, the LGD function outperforms OLS. 
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A greater value of σ adds noise and increases the errors of either approach. The initial value, σ = 
20%, is less than most LGD studies.4 Figure 8 shows that at realistic values of σ, the LGD 
function outperforms OLS. 

 

An increase in the length of the data sample benefits each approach, but regression benefits 
more. Figure 9 shows that the cross-over, using the initial values of the control variables, is 
twenty years of data produced by a sequence of random draws. But real-world data is less 
informative than simulated data because of serial dependence; therefore, more than twenty 
years of real-world data would be required to produce cross-over.  

                                                        
4 Jacobs 
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Figure 10 shows that when b is nearly zero, the RMSE of OLS is low. This is because few 
regressions are significant and predictions revert to the average, which is a good predictor under 
the circumstances. Greater values of b entail greater errors by OLS. But greater values of b make 
the data generator a better match for the LGD function. The RMSE of the LGD function declines 
at first, and this creates a wide range of slopes for which the LGD function outperforms OLS. 

 

The top line of Figure 11 shows the difference between the RMSE of OLS and the RMSE of the 
LGD function when there are ten years of data in the sample. As in Figure 10, the LGD function 
outperforms OLS for slopes between 0.45 and 3.4. As the number of years increases, the range 
of outperformance narrows. But even after fifty years of data there remains a range of slopes for 
which the LGD function outperforms OLS. If the data generator resembles the LGD function 
itself, outperformance could continue for any number of years.  
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Figure 12 shows the effect of PD on the range of outperformance. At the left, the black line is the 
steepest data generator passing through (1%, 50%) for which the LGD function outperforms 
OLS when PD = 1%; its slope is 13.0. The gray line is the shallowest data generator passing 
through the same point for which the LGD function outperforms. Thus, unless either cLGD has 
almost no relation to cDR or its sensitivity is extreme, the LGD function produces less error than 
an estimated relationship. One reason that the range of outperformance is so great is that the 
portfolio produces few defaults and the LGD data is particularly noisy.  

The pair of lines at the right represent the bounds of outperformance when PD = 5%. Although 
the range of slopes is less, the range of systematic LGD variation is still quite large. The 
endpoints of all lines in Figure 12 are the 5th and 95th percentiles of the variables. For the steeper 
bound at the right, the percentiles of cLGD are 42% and 64%. This means that within the central 
90% of the distribution of cLGD, a bad year has 150% the LGD of a good year. Thus, a 
substantial amount of systematic LGD risk would be required for OLS to outperform the LGD 
function.  

This section allows each of the eight control variables to take a range of values. Unless the data 
sample is longer than currently available to most banks, or unless systematic LGD risk is either 
near zero or extreme, the LGD function tends to produce lower RMSE than OLS.  

 

Exact regression 

The forgoing comparison uses OLS to estimate the relationship between default and LGD. 
However, default and LGD data unavoidably violate the assumptions under which OLS works 
best. This section derives the exact distribution and compares the performance of exact 
regression to the other approaches.  
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A portfolio’s default rate is based on a Binomial Distribution with parameter cDR. The variance 
of the distribution depends on cDR, so when cDR is high the portfolio default rate is highly 
random; the observed default rate is therefore a poor guide to cDR. On the other hand, when 
there are few defaults portfolio LGD is highly random; the observed LGD rate is a poor guide to 
cLGD. These complications, compared to when OLS assumptions are obeyed, allow random 
influences to have a greater role shaping data.  

The probability density of portfolio average LGD given that the observed number of defaults, D, 
is greater than zero is symbolized 𝑓𝐿𝐺𝐷|𝐷[𝐿𝐺𝐷]. It can be derived with two applications of Bayes 
Rule:  

(13)           𝑓𝐿𝐺𝐷|𝐷[𝐿𝐺𝐷]  =  � 𝑓{𝐿𝐺𝐷,𝑐𝐷𝑅}|𝐷[𝐿𝐺𝐷, 𝑐𝐷𝑅] 𝑑𝑐𝐷𝑅
1

0
 

                                              =  � 𝑓𝐿𝐺𝐷|𝑐𝐷𝑅,𝐷[𝐿𝐺𝐷] 𝑓𝑐𝐷𝑅|𝐷[𝑐𝐷𝑅] 𝑑𝑐𝐷𝑅
1

0
 

                                              =  � 𝑓𝐿𝐺𝐷|𝑐𝐷𝑅,𝐷[𝐿𝐺𝐷]  𝑓𝐷|𝑐𝐷𝑅[𝐷]𝑓𝑐𝐷𝑅[𝑐𝐷𝑅]  𝑑𝑐𝐷𝑅 / 𝑓𝐷[𝐷]
1

0
 

where 𝑓𝐿𝐺𝐷|𝑐𝐷𝑅,𝐷[𝐿𝐺𝐷] is the Normal Distribution of Equation (9), 𝑓𝐷|𝑐𝐷𝑅[𝐷] is the Binomial 
Distribution of Equation (7), 𝑓𝑐𝐷𝑅[𝑐𝐷𝑅] is the Vasicek Distribution, and  

(14)       𝑓𝐷[𝐷]  =  � 𝜙[𝑧] �Φ �
Φ−1[𝑃𝐷] + �𝜌 𝑧

�1 − 𝜌
��

𝐷

�1 −Φ�
Φ−1[𝑃𝐷] +�𝜌 𝑧

�1 − 𝜌
��

𝑛−𝐷

�
𝑛
𝐷
�  𝑑𝑧

1

0
 

The exact distribution contains five parameters to be established by the ten data points. We 
illustrate with the data points of Figure 2 and take 𝑃𝐷� = 2.24% and 𝜌� = 17.6% as before.  The 
statistical approach is allowed the additional advantage that it uses the true value of σ rather 
than an estimate. Maximizing the likelihood in the remaining two parameters produces 𝑎� = 
0.543 and 𝑏� = 1.539. These imply that 98th percentile cLGD equals 70.2%. This is a substantial 
improvement to the estimate produced by OLS before testing, 86.1%.  

The tests of the previous sections employed the null hypothesis b = 0. This is the null hypothesis 
most often used in practice because it is part of all statistical toolkits. Yet this hypothesis 
produces a distribution of credit loss that is more complicated than the one produced by the 
LGD function itself, as discussed earlier, so this is used in the likelihood ratio test. As with OLS, 
the exact regression is not statistically significant for the example data at test size 5%. Therefore, 
the exact-regression estimate of 98th percentile cLGD reverts to the LGD function estimate, 
65.9%. Again, this is an improvement compared to the OLS estimate, 60.0%. 
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Table 1 reports the results of repeating this 1,000 times. Although the exact regression 
outperforms OLS applied to the same cases, it nonetheless underperforms the LGD function.  

The LGD function performs particularly well in cases that exhibit statistical significance for the 
exact regression. For these cases, RMSE = 5.7%. These cases, compared to others, have on 
average greater estimates of PD, greater estimates of correlation, and greater estimates of 
ELGD. Each of these characteristics raises the prediction of the LGD function, and this tends to 
improve performance. By contrast, exact regression performs no better when it finds 
significance (9.5%) than when it finds no significance (9.3%).  

For these settings of the control variables, the LGD function outperforms exact regression. By 
continuity, there is a range of slopes of the data generator for which this would occur, and this 
range extends to slopes at least as low as 1.0, a rough match for the LGD function itself. One 
might attempt to find a statistical procedure that outperforms the LGD function. Significance 
tests might be performed at size 1% or 10% or not at all, or other techniques might be tried.  

However, statistical tinkering cannot replace facts. There are only a few years of reliable data. 
Since the data have serial dependence, they are less informative than assumed in many 
statistical procedures. In a “bad” year, the observed DR is highly dispersed around cDR, which is 
therefore uncertain. In a “good” year a portfolio does not produce many defaults, so cLGD is 
uncertain. When a short, serially dependent, noisy data set is subject to statistical modeling, 
large errors are apt to result.  

In many situations large errors must be accepted because there is no alternative. In the case of 
systematic LGD risk, an LGD function has been derived from simple assumptions. It expresses a 
moderate, positive relationship between default rates and LGD rates. It can produce lower 

Table 1. Exact regression compared to LGD function and OLS

All data sets Not Significant Significant 
1,000 cases 582 cases 418 cases

RMSEs
LGD function 8.0% 9.3% 5.7%

Exact regression 9.4% 9.3% 9.5%
OLS 10.8% 11.4% 9.9%

Average intermediate estimates
PD 3.0% 2.6% 3.5%
ρ 9.8% 8.6% 11.5%

ELGD 60.4% 58.5% 63.2%
Tail default rate 9.6% 8.1% 11.7%

Average tail cLGD estimates; target = 72.3%
LGD function 65.5% 63.4% 68.5%

Exact regression 69.4% 63.4% 77.8%
OLS 69.2% 64.7% 75.5%
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errors than statistical analysis even if the statistical analysis uses the distribution that generates 
the data, and even if it finds statistically significant results. 

 

Conclusion 

A portfolio credit loss model must express some connection between default rates and LGD 
rates. The connection might be established by a free-form statistical technique or by the LGD 
function that expresses a moderate, positive relationship between default and LGD. Of the two, 
the LGD function can be applied more readily because it depends only on parameters that are 
already in common use. 

This simulation study compares the predictions of the two approaches using simulated data. 
Data are simulated with a linear model. Still, the nonlinear LGD function produces lower RMSE 
than linear regression when two not unlikely conditions hold: the data sample must be short and 
the sensitivity of LGD to default must be neither zero nor extreme. Until there is evidence that 
statistical techniques can outperform it, risk managers can use the LGD function to avoid 
introducing unnecessary parameters into their models and unneeded noise into their 
predictions.   



15 
 

References  

Altman, E. I., and Kuehne, B. J., Defaults and Returns in the High-Yield Bond and Distressed 
Debt Market: The Year 2011 in Review and Outlook. Report, New York, University Salomon 
Center, Leonard N. Stern School of Business, 2012. 

Frye, J. and Jacobs, M., Credit loss and systematic loss given default, The Journal of Credit Risk 
(1–32) Volume 8/Number 1, Spring 2012 

Jacobs, LGD paper to be determined 

Vasicek, O. (2002). Loan portfolio value. Risk 15(12), 160–162. 


