The Effects Of Health, Wealth, And Wages On Labor Supply And Retirement Behavior

By Eric French

Working Papers Series

Research Department

WP 2000-02
The Effects of Health, Wealth, and Wages On
Labor Supply and Retirement Behavior

Eric French
Federal Reserve Bank of Chicago

November 19, 2003

*Comments welcome at efrench@frbchi.org. I thank Joe Altonji, John Jones, John Kennan, Rody Manuelli, Jonathan Parker, Dan Sullivan, and Jim Walker for detailed comments and encouragement. Jonathan Parker also provided me with data and computer code. I also thank Dan Aaronson, Peter Arcidiacono, Hugo Benitez-Silva, Marco Cagetti, Glen Cain, Chris Carroll, Meredith Crowley, Morris Davis, Nelson Graff, Ed Green, Alan Gustman, Lars Hansen, Yuichi Kitanura, Grigory Kosenok, Spencer Krane, Tecla Loup, Derek Neal, Victor Rios-Rull, Marc Rysman, Karl Scholz, three very helpful referees, the editors (Orazio Attanasio and Bernard Salmie), and numerous seminar participants. Jonathan Hao, Kate Godwin, and especially Tina Lam provided excellent research assistance. Financial support provided by the National Institute on Mental Health. The views of the author do not necessarily reflect those of the Federal Reserve System. Recent versions of the paper can be obtained at http://www.chicagofed.org/economists/ericfrench.cfm.
Abstract

This paper estimates a life cycle model of labor supply, retirement and savings behavior in which future health status and wages are uncertain. Individuals face a fixed cost of work and cannot borrow against future labor, pension, or Social Security income. The method of simulated moments is used to match the life cycle profiles of labor force participation, hours worked, and assets that are estimated from the data to those that are generated by the model. The model establishes that the tax structure of the Social Security system and pensions are the key determinants of the high observed job exit rates at ages 62 and 65. Removing the tax wedge embedded in the Social Security earnings test for individuals aged 65 and older would delay job exit by almost one year. By contrast, Social Security benefit levels, health, and borrowing constraints are less important determinants of job exit at older ages. For example, reducing Social Security benefits by 20% would cause workers to delay exit from the labor force by only three months.

JEL Classification: C51, J22, J26
Keywords: Social Security, retirement behavior
1 Introduction

Why do individuals retire when they do? This paper provides an empirical analysis of the effects of the Social Security system and liquidity constraints on life cycle labor supply. It is the first structural model of labor supply and retirement behavior where individuals can save to insure themselves against health and wage shocks as well as for retirement, but cannot borrow against future labor, Social Security, and pension income to smooth consumption in the face of an adverse shock. Previous structural analyses of labor supply and retirement behavior have made diametrically opposed assumptions about a household’s ability to borrow and save. At one extreme, Gustman and Steinmeier (1986) and Burtless (1986) assume that households can perfectly smooth consumption by borrowing and lending without limit. At the opposite extreme, Rust and Phelan (1997) and Stock and Wise (1990) assume that households cannot borrow or save, thus allowing no intertemporal consumption smoothing. Clearly, neither of these extreme assumptions is correct.

Understanding the importance of borrowing constraints is critical when considering the effects of the Social Security rules on lifetime labor supply. For example, suppose that Social Security were to become less generous for members of a particular cohort. This would reduce lifetime wealth and diminish the importance of the Social Security work disincentives for members of that cohort. The loss of wealth would cause individuals to work more hours in order to earn more income at some stage of their lifetime. However, it is not clear when they would do so. If individuals are liquidity constrained at the early Social Security retirement age (62), those younger than 62 will not react to the benefit reduction. All consumption and labor supply responses will be after age 62. On the other hand, if individuals are not liquidity constrained, then there may be significant responses by those younger than 62.

The model in this paper allows for a wide range of individual behavior. The model also captures the fact that the structure of Social Security and pensions causes declining work incentives after age 62. Because individuals in the model can save and accumulate
assets, they may leave the labor force and begin dissaving shortly after age 62, as Gustman and Steinmeier (1986) argue. However, they cannot borrow against future Social Security, pension or labor income. Therefore, individuals may have to remain in the labor market until they are eligible for Social Security and pension benefits, as Rust and Phelan (1997) argue.

This paper uses the method of simulated moments to match life cycle profiles estimated using data from the Panel Study of Income Dynamics (PSID) to life cycle profiles generated by a dynamic programming model. I match labor force participation, hours worked, and asset profiles. Assuming that preferences are not affected by age (after conditioning on health status and family size), matching these profiles allows me to identify key structural parameters such as the intertemporal elasticity of substitution of labor supply and the time discount factor. This allows me to consider whether the inability to borrow against future Social Security benefits significantly affects life cycle labor supply. Moreover, I consider the decisions of men ages 30-95, allowing me to consider when in a worker's lifetime we should expect to see labor supply responses to changes in the Social Security rules.

The PSID data are consistent with a low level of labor supply substitutability for young men, but a high degree of labor supply substitutability for older men. Consistent with previous research, I find very little life cycle variation in hours worked for men between ages 30 and 55. I also find that work hours and labor force participation decline sharply after age 55, and especially sharply at ages 62 and 65.\(^1\) These are exactly the ages at which Social Security, pensions, and declining wages provide strong incentives to leave the labor force.

The dynamic programming model produces reasonable preference parameter estimates. It also captures many features of the data, including the sharp decline in labor force participation rates between ages 55 and 70 and the especially large drops at ages 62 and 65. In order to fit both the participation and hours worked profiles, the model estimates a large fixed cost

\(^1\)Ghez and Becker (1975) and Browning et al. (1985) estimate similar labor supply profiles, and Blau (1994) estimates similar participation profiles. Estimates using the PSID data show that labor force participation rates drop 71% between ages 55 and 70, reaching 13% at age 70. However, declining health can explain only a 7% decline in participation between these ages. Hours also decline during these ages, although average hours never fall below 1200 hours per year (24 hours per week for 50 weeks per year). I argue that fixed costs of work are necessary to explain why work hours do not fall below 1200 hours per year, even though labor force participation rates do fall to near zero at age 70.
of work. The fixed cost generates a high level of labor supply substitutability at the labor force participation margin. Because of the Social Security and pension incentives to leave the labor force, those in their 60s are near the labor force participation margin. As a result, labor supply elasticities rise from .3 at age 40 to 1.1 at age 60.

I use the model to conduct three simulations. First, I consider shifting the early retirement age from 62 to 63. I find that this has almost no effect on labor supply, because forward looking agents almost always have sufficient financial resources at age 62 to finance an additional year out of the labor force. Because they have positive assets near retirement, liquidity constraints never bind at retirement age. Second, I consider a 20\% reduction in Social Security benefits. I find this would cause individuals to delay job exit from the labor market by three months in order to develop sufficient financial assets to offset lost retirement income. Because older individuals are the ones most willing to substitute their labor supply, most of the labor supply response would be after age 62. Third, I consider eliminating the tax wedge caused by the Social Security earnings test. I find that this would cause individuals to work an additional one year. Together, these three simulations suggest that the Social Security earnings test is the most significant labor supply incentive of the Social Security system. Interactions between the Social Security system and liquidity constraints are relatively unimportant.

The rest of the paper is as follows. Section 2 develops a model of optimal lifetime decision-making. Section 3 describes the estimation scheme: the Method of Simulated Moments. Section 4 describes the data. Section 5 presents parameter estimates. Section 6 describes the policy experiments. Section 7 concludes.

2See Cogan (1981) for similar findings.
3Neither making the Social Security system’s budget balance nor allowing people to borrow against future Social Security benefits changes these results significantly.
2 The Model

2.1 The Set Up

This section describes the model of lifetime decision-making. Individuals choose consumption, work-hours, (including the labor force participation decision), and whether or not to apply for Social Security benefits. They are allowed to save but not borrow. When making these decisions, they are faced with several forms of uncertainty: survival uncertainty, health uncertainty, and wage uncertainty.

Consider a household head seeking to maximize his expected lifetime utility at age (or equivalently, year) t, $t = 1, 2, ..., T + 1$. Each period that he lives, the individual receives utility, U_t, from consumption, C_t, hours worked, H_t, and health (or medical) status, M_t, so that $U_t = U(C_t, H_t, M_t)$. When he dies, he values bequests of assets, A_t, according to a bequest function $b(A_t)$. Let s_t denote the probability of being alive at age t conditional on being alive at age $t - 1$, and let $S(j, t) = (1/s_t) \prod_{k=t}^{j} s_k$ denote the probability of living to age j, conditional on being alive at age t. Since age $T + 1$ is the terminal period, $s_{T+1} = 0$. We assume that preferences take the form:

$$U(C_t, H_t, M_t) + E_t \left[\sum_{j=t+1}^{T+1} \beta^j S(j - 1, t) \left(s_j U(C_j, H_j, M_j) + (1 - s_j)b(A_j) \right) \right], \quad (1)$$

where β is the time discount factor. In addition to choosing hours and consumption, eligible individuals can choose whether to apply for Social Security benefits; let the indicator variable $B_t \in \{0, 1\}$ equal one if the individual has applied for benefits. The individual maximizes equation (1) by choosing the contingency plans $\{C_j, H_j, B_j\}_{j=t}^{T+1}$, subject to the following equations, described below: a mortality determination equation (4), a health determination equation (5), wage determination equations (6)-(7), a spousal income determination equation (8), and an asset accumulation equation (9).
The within-period utility function is of the form

\[U(C_t, H_t, M_t) = \frac{1}{1 - \nu} \left(C_t^\gamma (L - H_t - \theta P_t - \phi I\{M = bad\})^{1-\gamma} \right)^{1-\nu}. \] (2)

where the per period time endowment is \(L \) and the quantity of leisure consumed is \(L - H_t - \theta P_t - \phi I\{M = bad\} \). The 0-1 indicator \(I\{M = bad\} \) is equal to one when health is bad and 0 when health is good. Participation in the labor force is denoted by \(P_t \), a 0-1 indicator equal to 0 when hours worked, \(H_t \), equals zero. The fixed cost of work, \(\theta P_t \), is measured in hours-worked per year. \(^4\) Retirement is assumed to be a form of the participation decision. Workers can reenter the labor force.

The parameter \(\gamma \) is between 0 and 1 and the parameter \(\nu \) is greater than zero. The parameter \(\nu \) has two functions. First, it controls the intertemporal substitutability of consumption and leisure. As \(\nu \) increases, individuals are less willing to intertemporally substitute. Second, \(\nu \) measures the non-separability between consumption and leisure. Assuming certainty and positive consumption and work-hours, \(\nu > 1 \) implies that leisure and consumption are substitutes.

The bequest function is of the form

\[b(A_t) = \theta_B \frac{(A_t + K)^{(1-\nu)\gamma}}{1 - \nu} \] (3)

where \(K \) determines the curvature of the bequest function. If \(K = 0 \) there is infinite disutility of leaving non-positive bequests. If \(K > 0 \), the utility of a zero bequest is finite.

Given the objective function, individuals face several constraints. Mortality rates depend

\(^4\)Annual hours of work is clustered around both 2000 hours and 0 hours of work, a regularity in the data that standard utility functions have a difficult time replicating. Fixed costs of work are a common way of explaining this regularity in the data (Cogan (1981)). Fixed costs of work generate a reservation wage for a given marginal utility of wealth. Below the reservation wage, hours worked is zero. Slightly above the reservation wage, hours worked may be large. Individual level labor supply is highly responsive around this reservation wage level, although wage increases above the reservation wage result in a smaller labor supply response.
upon age5 and previous health status:

\[s_{t+1} = s(M_t, \text{age}_{t+1}). \] \hspace{1cm} (4)

Next year’s health status, \(\text{prob}(M_{t+1}|M_t, \text{age}_{t+1}) \), depends on current health status and age. Health status follows a two-state transition matrix at each age with a typical element6

\[\pi_{\text{good,bad},t+1} = \text{prob}(M_{t+1} = \text{good}|M_t = \text{bad, age}_{t+1}). \] \hspace{1cm} (5)

The logarithm of wages7 at time \(t \), \(\ln W_t \), is a function of hours-worked, age and health status, plus an autoregressive component of wages \(AR_t \):

\[\ln W_t = \alpha \ln H_t + W(M_t, \text{age}_t) + AR_t. \] \hspace{1cm} (6)

The function \(W(M_t, \text{age}_t) \) is described in detail in Section 3.2. The autoregressive component of wages has a correlation coefficient \(\rho \) and a normally distributed innovation \(\eta_t \) :

\[AR_t = \rho AR_{t-1} + \eta_t, \quad \eta_t \sim N(0, \eta_t^2). \] \hspace{1cm} (7)

By assumption, at time \(t-1 \) the worker knows the autoregressive component of wages \((AR_{t-1}) \) but only knows the distribution of the innovation in next period’s wage \((\eta_t) \).

Spousal income, described in detail in Section 4.2, depends upon the individual’s wage and age:

\[y_{st} = y_s(W_t, \text{age}_t). \] \hspace{1cm} (8)

5The notation \(\text{age}_t \) is redundant as both \(\text{age}_t \) and \(t \) are measured in years, but I make the distinction for the sake of clarity.

6I ignore the possibility that wealth may affect health, as the Grossman (1972) model implies.

7By “wage,” I am referring to the observed wage of labor market participants as well as the potential wage of non-participants. Given this definition of wage, another interpretation for the wage would be “productivity.”
The final constraint is the asset accumulation equation:

\[A_{t+1} = A_t + Y(rA_t + W_tH_t + ys_t + pb_t + \varepsilon_t, \tau) + (B_t \times ss_t) - C_t, \quad A_{t+1} \geq 0, \quad (9) \]

where \(Y(rA_t + W_tH_t + ys_t + pb_t + \varepsilon_t, \tau) \) is the level of post tax income, \(r \) is the interest rate, \(\tau \) is the tax structure (described in Appendix A), \(pb_t \) denotes pension benefits (described in Section 2.3 and Appendix C), \(\varepsilon_t \) denotes a pension accrual residual (described in Section 2.3 and Appendix C), and \(ss_t \) denotes Social Security benefits net of the earnings test (described in Section 2.2 and Appendix B).

Individuals cannot draw Social Security benefits until age 62. By assumption, the date of pension benefit receipt is 62. Because it is illegal to borrow against Social Security benefits and difficult to borrow against most forms of pension wealth, individuals with low asset levels potentially must wait until age 62 to finance exit from the labor market.

2.2 Social Security

There are three major labor supply incentives provided by the Social Security system.\(^8\) All three incentives tend to induce exit from the labor market by age 65.

First, increased labor income leads to increased Social Security benefits, but only for the first 35 years in the labor market. Social Security benefits depend upon Average Indexed Monthly Earnings, or \(AIME_t \), which is average earnings in the 35 highest earnings years. However, after the first 35 years in the labor market, \(AIME \) is only recomputed upwards if current earnings are greater than earnings in a previous year of work. Appendix B describes computation of \(AIME_t \).

Second, there are incentives to begin drawing Social Security benefits by age 65. Individuals are ineligible for Social Security benefits before age 62. Upon application for benefits

\(^8\)I use tax and benefit formulas from the *Social Security Handbook Annual Statistical Supplement* for the year 1987 for several reasons. First, 1987 is relatively close to the middle year of the data. Second, there were significant changes to the tax code enacted in 1986 that simplify the dynamic programming problem. Lastly, benefit formulas have not become significantly more or less generous between 1987 and the end of the sample period (although there have been reductions in the Social Security work disincentives).
the individual receives them until death. Once the individual has applied for Social Security benefits, benefits depend on a progressive function of AIME and the year the individual starts drawing benefits. For every year before age 65 the individual applies for benefits, benefits are reduced by 6.7%. This is roughly actuarially fair. For every year between ages 65 and 70 that benefit application is delayed, benefits rise by 3%. This is actuarially unfair and thus generates an incentive to draw benefits by age 65.

Third, the Social Security earnings test taxes labor income for Social Security beneficiaries at a very high rate. If a beneficiary younger than age 70 earns more labor income than a “test” threshold level of $6,000, benefits are taxed at a 50% rate until all benefits have been taxed away. Moreover, the earnings test tax on benefits is in addition to Federal and state income and payroll taxes. Therefore, the marginal tax rate an individual faces is the sum of Federal, state, and payroll marginal tax rates, plus 50%. The incentive to draw benefits by age 65 in combination with the Social Security earnings test for Social Security beneficiaries is a major disincentive for work after age 65.

A common misconception is that the recomputation formulas fully replace benefits lost through the earnings test. Although this is roughly true between ages 62 and 65, a loss of one year’s benefits results in only a small upward revision in future benefits after age 65. If a year’s worth of benefits are taxed away between 62 and 65, benefits in the future will be raised by 6.7%. If a year’s worth of benefits are taxed away between 65 and 70, benefits in the future will be raised by 3%.

The formula for Social Security benefits in the asset accumulation equation (9) captures all of these incentives.

2.3 Pensions

Pensions are like Social Security in two important respects. First, pension wealth is illiquid until the early retirement age, which is usually 55, 60, or 62 depending on the pension plan.9

9Although it is often possible to “cash out” of pension plans, there are often penalties for doing so. For example, there are tax penalties for drawing defined contribution wealth before age 59 1/2, except in certain hardship cases.
Therefore, I assume that pension wealth is illiquid until age 62. Second, pension benefits depend on the individual’s work history. Because of this, pension benefits are assumed to be a function of $A_t^M E_t$, just like Social Security benefits.

However, pensions are different than Social Security in their age-specific incentives to leave the labor force. Defined benefit pension plans are typically structured in a way that encourages a worker to remain at a firm until the early retirement age and to leave the firm no later than the normal retirement age (usually 62 or 65). These incentives, as well as my approach to modeling these incentives, are described below.

The formula that determines defined benefit pension plan benefits varies greatly from firm to firm, making it difficult to generalize the incentives that workers face. However, pension benefits typically depend on years of service at the firm, the highest annual earnings at the firm (usually the average of the five highest earnings years), and a formula that depends on age and years of service at the firm.

Pension plans often provide incentives to stay at a firm until the early retirement age. One reason for this is that a worker who leaves a firm before the early retirement age must wait until the early retirement age-and sometimes later-to draw benefits. Furthermore, benefits depend in part upon the nominal wage when the individual left the firm. Because the wage at the firm is usually not adjusted for inflation, the value of the wage in real terms will fall until he begins receiving benefits and thus his real benefits will fall also.

10 Although pensions only provide incentives to leave the current employer, individuals who switch employers often receive lower wages from their new employers. Therefore, it seems reasonable to assume that the declining pension accrual on a job still results in higher compensation than on any other job that an individual could obtain.

11 Health and Retirement Survey data indicate that of men aged 51-55 with a defined benefit pension plan, 31% have an early retirement age of 55 and 21% have an early retirement age of 62. 25% have a normal retirement age of 62 and 24% have a normal retirement age of 65. Data from employers tends to show even more keaping of the normal retirement age at 65 (Ippolito, 1997). Note, however, that defined contribution pension plans do not provide strong incentives to leave the labor force. Of working male Health and Retirement Survey respondents between ages 50 and 60, 22% only have a defined benefit plan, 20% only have a defined contribution pension plan, and 11% have both.

12 There are other incentives to remain with some employers until the early retirement age. For example, Federal workers with 30 years service can claim full benefits at age 55. However, if the Federal worker leaves his job at 54, he must wait until age 62 to draw benefits. Therefore, leaving at age 54 instead of 55 leads to the loss of benefits between the ages of 55 and 56. Moreover, benefits are not adjusted for inflation until the individual is drawing benefits, leading to further losses in the value of benefits. Ippolito (1997) computes that the loss of pension benefits of exiting at 54 instead of 55 is equal to seven times annual earnings.

13 It is only after the worker receives pension benefits that pension benefits are adjusted for inflation.
The part of the pension formula that depends on age and years of services generates the incentive to leave the firm by the normal retirement age. Up to the normal retirement age, this pension formula component increases with age. After the normal retirement age, it does not. Therefore, delaying exit from the firm after the normal retirement age results in a reduction in the present value of pension benefits. Although delaying benefit receipt causes slightly higher annual benefits (because years of service at the firm have increased), the individual will receive benefits for fewer years.

In order to account for the high pension accrual for those in their 50s and the lower pension accrual at other ages, I take estimates of age-specific accrual rates from Gustman et al. (1998). Because I assume that benefits, pb_t, depend only on $AIME_t$, and the formula for $AIME_t$ does not account for the high accrual rates for individuals in their 50s, the formula for $AIME_t$ overstates pension accrual at younger ages and understates pension accrual at older ages. To account for this problem, the variable ε_t represents the difference between two different methods of accounting for pension accrual. Thus ε_t is negative at younger ages and is positive at older ages. Nevertheless, the average of ε_t is less than $1,000 at almost every age. Construction of ε_t is described in Appendix C. It is treated as labor income in the asset accumulation equation (9).\footnote{Note that this method of accounting for pension accrual only leads to model misspecification if liquidity constraints and variable marginal tax rates affect behavior.}

One final aspect of pensions is worth noting. Accruing rates tend to be higher for high wage workers than for low wage workers. There are two reasons for this. First, the formulas for many defined benefit plans explicitly have higher accrual rates for high wage workers. Second, a higher share of high wage workers tend to have pension plans. I account for this by modeling pb_t as a regressive function of $AIME_t$.

14
2.4 Heterogeneity and Model Solution

Optimal decisions depend on the state variables, denoted \(X_t = (A_t, W_t, B_t, M_t, AIME_t) \), preferences denoted \(\theta = (\gamma, \nu, \theta_P, \theta_B, \phi, L, \beta) \), and the parameters that determine the data generating process for the state variables denoted \(\chi = (r, \sigma^2, \alpha, \rho, h(M_t, age_{t+1}), \{prob(M_{t+1}|M_t, age_t)\}_t^{T+1}, \{S_t\}_t^{T+1}, \{Y(\cdot, \cdot)\}_t^{T+1}, \{ys_t\}_t^{T+1}, \{pb_t\}_t^{T+1}, \{ss_t\}_t^{T+1}) \).

I solve the model backwards using value function iteration.

The model solution procedure allows for heterogeneity in the state variables, \(X_{it} \), where \(i \) indexes individuals. However, the requirement of computational simplicity does not allow for heterogeneity in preferences \(\theta \) or in the data generating process for the state variables \(\chi \). I assume that individual \(i \) responds only to \((X_{it}, \theta, \chi) \). Different realizations of the stochastic shocks means that wages and health status will differ across individuals, so there may be differences in consumption, labor supply, and benefit application decisions across individuals. However, given the same age, wage, health status, asset level, Social Security application status, and AIME, different individuals will make the same decisions. See Appendix D for details.

3 Estimation

This section describes the method of simulated moments (MSM) estimation strategy. The goal is to estimate the preferences \(\theta \) given the data generating process for the exogenous state variables \(\chi \). Because it would be too computationally burdensome to estimate all parameters simultaneously, I use a two-step strategy. In the first step, I estimate some elements of \(\chi \) and calibrate others. I assume rational expectations, meaning that individuals know their own state variables \(X_t \) at time \(t \), the Markov process that determines their state variables, which is parameterized by \(\chi \), and optimize accordingly. In the second step, I use the numerical methods described in Appendix D and the estimated data generating process for the state

\footnote{Pension wealth and spousal income depend on the other state variables and are thus not state variables themselves.}
variables to simulate life cycle profiles for a large number of hypothetical individuals. The goal is to find preference parameters that generate simulated profiles that match the profiles estimated from data.

The next subsection describes the MSM technique in more detail. The following subsections describe construction of the sample profiles that I match to the simulated profiles as well as estimation of some of the elements of \(\chi \).

3.1 Estimation of Preferences: The Method of Simulated Moments

The MSM estimation strategy matches mean assets, hours of work, participation and also median assets in the PSID to the corresponding moments of the same variables in a simulated sample. The “matching” of moments is done using standard GMM techniques. Because of problems with measurement error, I do not match high order moments.\(^1^6\) Using means, however, averages out measurement error, as shown below.

The objective is to find a vector of preferences \(\theta \in \Theta \) that simulates profiles that “look like” (as measured by a GMM criterion function) the profiles from the data. I assume \(\Theta \subset \mathbb{R}^7 \) where \(\Theta \) is a compact set. I assume the PSID data are generated by the model in Section 2, plus measurement error in hours:

\[
A_{it} = A_t(X_{it-1}, \theta, \chi),
\]
\[
\ln H_{it} = \ln H_t(X_{it}, \theta, \chi) + \epsilon_{iHt} \quad \text{if} \quad P_{it} > 0,
\]
\[
P_{it} = P_t(X_{it}, \theta, \chi)
\]

where \(A_{it}, \ln H_{it} \) and \(P_{it} \) represent individual \(i \)'s measured assets, log of hours-worked, and participation decision at time \(t \), and \(\epsilon_{iHt} \) represents measurement error in hours. I assume zero mean measurement error in hours, \(E[\epsilon_{iHt} \mid M_{it}, t] = 0 \).\(^1^7\) Computation of \(A_t(X_{it-1}, \theta, \chi) \), \(\ln H_t(X_{it}, \theta, \chi) \)

\(^{16}\)See Altonji (1986) and Abowd and Card (1989) for attempts to overcome the measurement error problems that plague high frequency analyses of labor supply.

\(^{17}\)I also allow for zero mean measurement error in participation, conditional on age and health status. The mean asset condition in equation (14) also holds if there is zero mean measurement error. However, the median condition (13) will not typically hold in the presence of measurement error. Nevertheless, dropping the median
and $P_h(X_t, \theta, \chi)$ is by value function iteration, described in Appendix D.

Assuming that the distribution of the state variables is the same in both the simulations and the data, it is possible to generate moment conditions for median and mean assets as well as mean participation and hours-worked conditional upon health status, resulting in the following $6T$ moment conditions:

\[
E \left[I \{ A_t \leq \text{median}(A_t(X, \theta, \chi)) \} \right] - \frac{1}{2} |t| = 0, \text{ for all } t \in \{1, ..., T\},
\]

\[
E[A_t|t] - \int A_t(X, \theta, \chi) dF_{t-1}(X|t) = 0, \text{ for all } t \in \{1, ..., T\},
\]

\[
E[\ln H_{i,Mt}|M,t] - \int \ln H_t(X, \theta, \chi) dF_{Mt}(X|M,t) = 0, \text{ for all } t \in \{1, ..., T\}, M \in \{\text{good, bad}\},
\]

\[
E[P_{i,Mt}|M,t] - \int P_t(X, \theta, \chi) dF_{Mt}(X|M,t) = 0, \text{ for all } t \in \{1, ..., T\}, M \in \{\text{good, bad}\},
\]

where $\text{median}(A_t(X, \theta, \chi))$ is the median\(^{18}\) of the distribution of simulated assets $A_t(X, \theta, \chi)$, $I \{ \cdot \}$ is the indicator function, equal to 1 if true, $F_t(X)$ is the cdf of the state variables at time t, and $F_{Mt}(X|M)$ is the cdf of the state variables at time t given health status M. Integrals in equations (13)-(16) are computed using Monte-Carlo integration. When evaluated at the true preference parameters and the true distribution of the state variables, conditional on age and, in the case of hours and participation, health status, the difference between the data moment and the simulated moment has an expected value of zero.

In summary, the MSM procedure I use can be described as follows. First, I estimate the condition (13) and re-estimating the model does not have a large effect on parameter estimates.

\(^{18}\)See French and Jones (2002) for more on using quantile conditions in a GMM framework.
life cycle profiles for hours-worked, labor force participation, and assets from the PSID data. Second, using the same data I use to estimate profiles, I estimate the data generating processes for health status and wages following the estimation techniques described in Sections 3.4 and 4.2. Third, I use the estimated data generating processes to simulate matrices for random health and wage shocks as well as an initial distribution for health, wages, assets and AIME. These are sequences of lifetime shocks for 5,000 simulated individuals, so there is a $5,000 \times T$ matrix of health shocks and a $5,000 \times T$ matrix of wage shocks. Fourth, I pick an arbitrary vector of preference parameters and compute the decision rules given those parameters and the numerical methods described in Appendix D. The fifth step is to use the decision rules and the health and wage shocks to simulate hypothetical life cycle profiles for the decision variables. Sixth, the simulated data and the true data are aggregated by age (and in the case of hours and participation, by health status). Seventh, the difference between the simulated and true profiles is computed and the differences are weighted up to form a distance measure. Finally, a new vector of preference parameters is picked and the whole process is repeated.¹⁹
The preference parameters that minimize the distance between the data moments and the simulated moments described in equations (14)-(16) are the estimated parameters, $\hat{\theta}$. I discuss the distribution of the parameter estimates, the weighting matrix and the overidentification tests in Appendix E.

3.2 Estimation of Profiles

This section describes the life cycle profiles for assets, hours, and participation rates to be fed into equations (13) - (16) as well as the life cycle wage profile. When constructing profiles

¹⁹I use simplex methods to search over Θ. Because the local minimum of the GMM criterion function need not be the global minimum, I try many different starting values. I check to see whether the algorithm will find the global minimum by simulating individuals at assumed parameter values and treating these simulated individuals as data. I then simulate another set of individuals with different wage and health shocks and with different initial utility function parameters. I then use the MSM algorithm to match the second set of simulated individuals to the first set of “data”. I find that preference parameters estimated for the second set of individuals come very close to the “true” preference parameters of the first set. Nevertheless, estimated preference parameters usually do not come within two standard errors of the true parameters. This shows that standard errors are underestimated. Footnote 48 provides further evidence that the standard errors are underestimated.
that account for age and health effects, I am concerned about the presence of individual-specific effects, year effects, and family size effects. To generate profiles, I estimate equation (17), where \(Z_{it} \) represents an observation for either assets \(A_{it} \), hours \(\ln H_{it} \), participation \(P_{it} \), or wages (net of the tied wage-hours effect) \(\ln W_{it} - \alpha \ln H_{it} \) for individual \(i \) at age \(t \):

\[
Z_{it} = f_i + \sum_{k=1}^{T} \Pi_{gk} I\{age_{it} = k\} \times prob(M_{it} = \text{good}|M_{it}^s) + \sum_{k=1}^{T} \Pi_{bk} I\{age_{it} = k\} \times prob(M_{it} = \text{bad}|M_{it}^s) + \sum_{f=1}^{F} \Pi_{f} f_{\text{famsize}_{it}} + \Pi_{U} U_{it} + \epsilon_{it}
\]

(17)

where \(f_i \) is an individual-specific effect, \(f_{\text{famsize}_{it}} \) is family size, \(U_{it} \) is the unemployment rate, \(\{\Pi_{gk}\}_{k=1}^{T}, \{\Pi_{bk}\}_{k=1}^{T}, \{\Pi_{f}\}_{f=1}^{F} \), and \(\Pi_{U} \) are parameters, \(\text{prob}(M_{it} = \text{bad}|M_{it}^s) \) is the probability that health is bad given a noisy health measure \(M_{it}^s \) and \(\text{prob}(M_{it} = \text{good}|M_{it}^s) = 1 - \text{prob}(M_{it} = \text{bad}|M_{it}^s) \). French (2001) describes construction of \(\text{prob}(M_{it} = \text{bad}|M_{it}^s) \). If \(M_{it}^s \) were perfectly measured, then \(\text{prob}(M_{it} = \text{bad}|M_{it}^s) \) would collapse to a dummy variable. I estimate equation (17) using fixed-effects to control for the individual-specific effect, \(f_i \). I use a full set of age dummy variables when estimating the hours, participation, and asset profiles; however, the wage profile is estimated using a fourth order polynomial in age.\(^{21}\) For the asset profiles I assume \(\Pi_{gk} = \Pi_{bk} \) for all \(k \); that is, I do not condition on health status when generating the asset profile. I use a full set of dummy variables for family size \(f_{\text{famsize}_{it}} \).

I use the age effects and health effects from equation (17) to generate the data profiles that I will match to the simulated profiles. I set family size equal to three and the unemployment rate to 6.5%,\(^{22}\) and use the mean individual-specific effect for individuals who were born in 1940, who are age 50, and have the average level of health for 50 year olds (see Appendix E). Note that this approach controls for cohort effects. The cohort effect is just the average

\(^{20}\)Note that this identifies \(W(M_{it}, age_{it}) \).

\(^{21}\)When creating profiles with the polynomials, I estimate the polynomial using data on individuals five years younger and 10 years older than my sample of interest. This overcomes some of the endpoint problems associated with polynomial smoothing.

\(^{22}\)It seems unlikely that households can properly forecast future unemployment rates. Therefore, I add in the variance in wages coming from the unemployment rate to the variance of the innovation in the wage. See footnote 32.
fixed-effect of all individuals in a single cohort.23

3.3 Accounting for Selection in the Wage Profiles

Unfortunately, the fixed-effects estimator does not overcome an important selection problem in the wage equation. Fixed-effects estimators use wage observations for workers but do not use the potential wages of non-workers. Because the fixed-effects estimator is identified using growth rates for wages and not levels of wages, composition bias problems—the question of whether high wage or low wage individuals drop out of the labor market—is not a problem if wage growth rates for workers and non-workers are the same.24 However, if individuals leave the market because of a sudden wage drop, such as from job loss, then wage growth rates for workers will be greater than wage growth for non-workers. This problem will bias wage growth upward.

In order to account for the selection problem, it is important to distinguish between three separate objects. The first is the unobserved average wage profile for all individuals that is the object of interest.25 The second is the fixed-effects wage profile estimated using the actual data on workers—this profile is biased for reasons discussed above. The third is the fixed-effects profile using simulated workers.26 This profile is biased for the same reason that the profile using actual data on workers is biased.

To correct the bias, I assume that the bias in the fixed-effects wage profiles of workers will be the same in both the actual PSID and simulated data.27 First, I feed the estimated (and biased) fixed-effects wage profile into the model. Second, I solve and simulate the model

23Cohort dummies would be unidentified if added to equation (17).

24This is an important advantage of panel data over cross-sectional data. Blundell et al. (2003), who use cross-sectional data, identify the role of selection using participation equations that rely on exclusion restrictions. Panel data allows the econometrician to observe an individual’s wages immediately before leaving the labor market. In order to infer the wage innovation for those who leave the labor market, however, I must use the functional forms and exclusion restrictions embedded in the model, whereas Blundell et al. provide methods to test for the appropriateness of functional forms.

25This object is $W(M_t, age_t) = E[\ln W_t] = \alpha \ln H_t[M_t, age_t]$.

26This object converges to $W(M_t, age_t) + E[AR_t|M_t, age_t, H_t > 0]$ as the number of simulations becomes arbitrarily large.

27This is true if the simulated individuals have the same wage generating process, the same distribution of state variables, and have the same preferences as the individuals in the data.
and estimate the fixed-effects wage profiles for both simulated workers and all simulated individuals. Third, I compute the difference between the two profiles so that I can estimate the extent to which growth rates in wages are overestimated by using only simulated workers instead of all simulated individuals. I then use this estimate of the selection bias in the simulated wage profile to infer the extent of selection bias in the PSID data wage profile.

If, for example, the fixed-effects wage profiles overstate average wages at age 60 by 10% in the simulated sample, then it is likely that wages have been overestimated at age 60 by 10% in the PSID data. Therefore, the candidate for the unobserved average wage at age 60 is the fixed-effects estimate from the PSID data, less 10%. This new candidate wage profile is fed into the model and the procedure is repeated. If, for example, the fixed-effects profile using simulated data still indicates a 1% upward bias, the candidate true wage profile is reduced by an additional 1%. This iterative process is continued until a fixed point is found.28

Once the process converges, the estimated wage profile for all individuals is fed into the model and preference parameters are estimated using the method of simulated moments. Upon re-estimation of the model parameters, the selection bias is recomputed and the wage profiles are updated. The model parameters are then estimated again.

3.4 Estimation of the Health Transition Matrix

When estimating the health transition matrix in equation (5), I am concerned with both the presence of measurement error in health status and the presence of individual heterogeneity. In order to address both of these concerns I estimate the linear probability model:

\[
Prob(M_{it} = \text{good} \mid \alpha_i, M_{it-1}, age_{it}) = \alpha_i + \sum_{k=0}^{K} \beta_k \cdot age_{it}^k \times \text{prob}(M_{it-1} = \text{good} \mid M_{it-1}^e) + \sum_{k=1}^{K} \gamma_k \cdot age_{it}^k \times \text{prob}(M_{it-1} = \text{bad} \mid M_{it-1}^e) + \epsilon_{it} \tag{18}
\]

28If the value function were concave, it would be possible to prove that this iterative mapping was a contraction. This cannot be proven analytically and in general cannot be proven numerically. However, based upon carefully conducted computations it seems that a unique solution exists.
where α_i represents individual heterogeneity in capacity for good health. OLS estimates will be inconsistent for two reasons. First, α_i is correlated with previous health status. In order to circumvent this problem, I first difference equation (18), then use lags of health status and health status interacted with age to instrument for last year’s health status change and last year’s health status change interacted with age. Second, health status is measured with non-zero mean error. As in equation (17), I take estimates of $\text{prob}(M_{it-1} = \text{good}|M_{it-1})$ from French (2001). When constructing the health status transition matrix, I set α_i equal to its average level for individuals born in 1940.

4 Data and Calibrations

4.1 Data

I use the Panel Study of Income Dynamics (PSID) for the years 1968-1997. I drop the Survey of Economic Opportunity (SEO) subsample to make the data more representative of the US population. Because I model the behavior of a head of household, I use labor supply variables for the male head of household and household-level asset data.

When estimating the hours-worked and labor force participation rate profiles, I use individuals born between 1922 and 1940, resulting in 18,690 person-year observations for labor force participation rates and 15,766 person-year observations for hours-worked. For the asset profile, I use individuals born between 1902 and 1965 to increase sample size, resulting in 8,265 person year observations. For the wage and health profiles, I use the full sample, resulting in 60,714 and 69,347 person-year wage and health observations.

I estimate the asset profile using 1984, 1989, and 1994 PSID wealth surveys. Because I do not wish my estimate of assets to be affected by the extremely wealthy, many of whom inherit their wealth, I exclude observations with over $1,000,000 in assets. Households in which an entering family member brought assets into the household or an exiting family member took assets out of the household are dropped. The PSID asset measure is fairly comprehensive.

\(^{29}\)The SEO subsample is a subsample of poor and minorities.
It includes real estate, the value of a farm or business, vehicles, stocks, mutual funds, IRAs, Keoghs, liquid assets, bonds, other assets and investment trusts less mortgages and other debts. It does not include pension or Social Security wealth.

Wages are computed as annual earnings divided by hours and are dropped if wages are less than $3 per hour or greater than $100 per hour, 1987 dollars. Hours are counted as zero if measured hours are below 300 hours worked per year.

The PSID has only one measure of health that is asked during all years of the panel. It is the self-reported response to “Do you have any physical or nervous condition that limits the type of work or the amount of work that you can do?” A criticism of self-reported health measures is that respondents often report “bad health” in order to justify being out of the labor force. This will lead me to overestimate the effect of health upon work-hours. Alternatively, the coarse discretization of health status into good and bad when true health status is likely a continuous variable potentially causes measurement error, biasing the effect of health status on different variables to zero effect.

The PSID has poor information on mortality statistics. Therefore, I combine PSID data with mortality statistics from the National Center for Health Statistics (NCHS). These statistics use the entire US population as their sample.

4.2 Remaining Calibrations

In order to estimate preference parameters, I calibrate some of the parameters that determine the data generating process for the state variables χ. These are the parameters that determine the stochastic component of wages (σ^2, ρ), the effect of work-hours on wages α, the interest rate r, and spousal income.

The parameters from the wage equation (σ^2, ρ), shown in Table 1, were estimated using

\[\text{prob}(\text{death}_t | M_{t-1} = \text{good}) = \frac{\text{prob}(M_{t-1} = \text{good} | \text{death}_t)}{\text{prob}(M_{t-1} = \text{good})} \times \text{prob}(\text{death}_t) \] (19)

\[\text{I compute prob}(M_{t-1} = \text{good} | \text{death}_t) \text{ and prob}(M_{t-1} = \text{good}) \text{ using PSID data, and prob}(\text{death}_t) \text{ from the NCHS data. When using PSID data, the estimate of prob}(\text{death}_t) \text{ is about 25% lower than when using NCHS data, indicating that the PSID underestimates mortality rates by 25%.} \]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable</th>
<th>Estimate</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2_η</td>
<td>variance of the innovation in wages</td>
<td>.0141</td>
<td>.0014</td>
</tr>
<tr>
<td>ρ</td>
<td>autoregressive coefficient of wages</td>
<td>.977</td>
<td>.017</td>
</tr>
</tbody>
</table>

Table 1: The Variance and Persistence of Innovations to the Wage

Equations (6) and (7) and minimum distance techniques. The model of wages allows for a MA(1) measurement error component.\(^3\) The results indicate that $\rho = .977$; wages are almost a random walk. The estimate of σ^2_η is .0141; one standard deviation of an innovation in the wage is 12% of wages.\(^2\) These estimates imply that long run forecast errors may be large.

The coefficient α, which parameterizes the part-time wage penalty, is set at .415 and is similar to the findings of Aaronson and French (2001) and Gustman and Steinmeier (1986). This implies that part-time workers (who work 1000 hours per year) earn 25% less per hour than full-time (2000 hours per year) workers. Controlling for the fact that part-time workers make less per hour than full-time workers eliminates most of the wage declines after age 60 that are shown in Figure 1.

The remaining calibrations are as follows. I set the pre-tax interest rate at $r = .04$ and the age at which individuals receive pension benefits at age 62. Following DeNardi (2000),

\(^3\)In order to obtain these estimates, I use wage residuals from the regression in equation (17) with the fixed effect added back. I used a balanced panel for the years 1977-1986. Given equation (7), redefine W_{it} to be the wage residual, which has the following form:

$$\ln W_{it} - \alpha \ln H_t = AR_{it} + \xi_{it} + \theta \xi_{i,t-1}$$

where ξ_{it} is assumed to be measurement error with MA(1) coefficient θ. The AR(1) component, AR_{it}, is potentially non-stationary with autocorrelation coefficient ρ and innovation η_{it}:

$$AR_{it} = \rho^{(t-1)} AR_{i1} + \sum_{j=2}^{t} \rho^j \eta_{ij}$$

French (2002) finds that most of the variance of the MA(1) component of wages is measurement error, so assuming all of the variance of the MA(1) component of wages is measurement error seems reasonable. All objects on the right hand side of equation (21) are assumed to be mutually orthogonal. Given that there are 10 years of data, there are 10 variances and 45 unique covariances, implying 55 moment conditions to match to the model in equation (21). The estimates in Table 1 are similar to other estimates in the literature, although $\rho = .977$ is likely at the high end of the range. Card (1994) also finds that wages follow a highly persistent AR(1) process.

\(^2\)I scaled up the variance of the innovations to reflect the additional uncertainty due to the aggregate unemployment rate using estimates of the variance of the unemployment rate and Π_ν from equation (17). However, the amount of volatility in wages associated with the unemployment rate is tiny, and thus this procedure had only a small effect on σ^2_ν.
the object that determines the curvature of the bequest function, K, is set equal to $500,000$. Spousal income is assumed to follow a polynomial in age and the log of the wage.33 Because the PSID has poor information on pensions and (until the most recent waves) Social Security, I use spousal income when young to predict spousal pension and Social Security benefits when old.

5 Results

The estimated inputs into the MSM algorithm can be divided into data on the exogenous state variables and data on decision variables. The data generating process for the exogenous state variables, parameterized by the vector χ, includes growth rates for wages conditional on health status, health transition matrices, and mortality probabilities. The decision variables are the profiles for hours-worked per year (by those who worked), assets, and labor force participation. In order to identify the role of health in explaining the decline of hours near the end of the life-cycle, profiles for hours and labor force participation rates are shown for individuals in both good and bad health.

5.1 Profiles for the Exogenous State Variables

This section describes the profiles for wages, health transition matrices, and the survivor probabilities. I use smoothed versions of the profiles when estimating preferences. However, I display unsmoothed profiles to show that the profiles are precisely measured, as displayed by their smooth appearance. On average, profiles for healthy individuals are smoother than for unhealthy individuals. This is because there are more observations on healthy individuals than on unhealthy individuals.

Using the methodology from Section 3.2, the top left panel of Figure 1 displays wage profiles for males by age and health status. Most striking is the hump shape of the wage

33I regress spouse’s income on the husband’s log wage (instrumented using education), an age polynomial, and a set of cohort dummy variables. When I construct the spousal income profile, I set the cohort effect equal to those born in 1940.
profiles for both health groups, with wages peaking near age 55. Fixed-effects estimates show
a more rapid decline in wages after age 55 than do OLS estimates (see Ghez and Becker
(1975), Heckman (1976), and Browning et al. (1985) for profiles constructed using OLS).
The reason for this is that high wage individuals tend to remain in the labor force until older
ages than do low wage workers. Therefore, OLS estimates suffer from “composition bias”
problems, where wage observations will be for all workers at age 55 but only for high wage
workers at age 65. Also striking is the small effect of health on wages. Fixed-effects estimates
show a smaller role for health than OLS. There are three alternative explanations for the
difference between OLS estimates and fixed-effect estimates. First, it may be that some
other factor (e.g. childhood poverty) causes both poor health and low wages. Second, the
Grossman model (1972) predicts that individuals who have higher expected lifetime wages
invest more in health human capital when young. Therefore, the Grossman model implies
that high wages cause good health, and not vice versa as most interpretations of an OLS
regression of wages on health assume. The third explanation for the small estimated effect
of health upon wages could be related to a selection problem. It may be only the individuals
who get lucky in the labor market who remain in the labor market after a bad health shock.
Section 5.5 discusses this third point in greater detail.
Figure 1: **Life Cycle Profiles for Exogenous State Variables**
The two right hand side panels of Figure 1 show how health dynamics change over the life-cycle. Until age 55, very few individuals experience a change from good health to bad health. This begins to change after age 55, with individuals becoming more and more likely to move from good health to bad health. Note, however, there is no rapid shift in population health that takes place only between ages 55 and 70, the ages at which labor force participation declines most rapidly. Instead, much of the decline in population health takes place after age 70.

Lastly, the lower left panel shows mortality rates over the life cycle. Unsurprisingly, individuals in bad health have higher mortality rates than individuals in good health.

5.2 Decision Profiles

This section describes the profiles for the decision variables. To recover preference parameters, I make two fundamental identifying assumptions. First, changes in work-hours and consumption affect neither health nor wages (other than through the tied wage-hours effect). Second, preferences depend only upon health and family size. Preferences change with age, but only as a result of changes in health and family size. Therefore, age can be thought of as an “exclusion restriction” which causes changes in the incentives for work and savings but does not change preferences.

The top panel of Figure 2 shows the life-cycle profiles for hours-worked for men in good and bad health. At any point in the life cycle, the effect of health on hours-worked is sizeable, but health only explains a small amount of the variation in work-hours over the life cycle. Hours-worked begins to decline rapidly after age 55. This is true even when conditioning on health status, so it appears that health status alone must have a small causal role in the decline in the number of hours-worked near retirement.

34 This is similar to Browning et al. (1985), although Ghez and Becker (1975) find that the drop-off in hours is later in life. Ghez and Becker’s result may be different because they use data from 1960, when the average retirement age was later.
Figure 2: LIFE CYCLE PROFILES FOR DECISION VARIABLES
The middle panel of Figure 2 shows the life-cycle profiles for labor force participation. Health appears to affect labor force participation rates more than hours worked. However, the effect is still modest. The fraction of all individuals at age 55 who report bad health is 20% and this rises to only 37% by age 70. Therefore, the change in labor force participation rates attributable to changes in health between ages 55 and 70 is small. The effect can be quantified using the equation

\[\sum_{t=56}^{70} \Delta P_t = \sum_{t=56}^{70} \left(\frac{\Delta P}{\Delta M} \right)_t \Delta M_t \quad (22) \]

where \(\Delta \) is the first difference operator, \(\left(\frac{\Delta P}{\Delta M} \right)_t \) is the estimated effect of health on participation (estimated by the vertical difference between the upper and lower profiles in the middle panel in Figure 2) at age \(t \), and \(\Delta M_t \) is the change in population health status between age \(t-1 \) and \(t \) (estimated using the bottom right panel of Figure 1). This technique suggests that declining health between ages 55 and 70 can explain a 7% drop in labor force participation rates. Thus, of the drop in labor force participation rates from 87% to 13% between ages 55 and 70, only 10% can be attributed to declining health. Moreover, the ages at which hours and labor force participation rates decline most rapidly coincides with those ages at which wages decline and at which there are large pension and Social Security work disincentives. For example, labor force participation drops 9 percentage points (or 13 percent) at age 62 and 7 percentage points (or 18 percent) at age 65.\(^{35}\) Therefore, it seems that wages, pensions, and Social Security potentially play a strong role in determining the age of retirement.

The estimated effect of health on wages, hours-worked, and labor force participation rates is average for the literature (see Currie and Madrian (1999)). As with most studies, I find a statistically significant effect of health. However, this is the first study to predict what fraction of the life cycle variation in wages, hours-worked, and labor force participation rates is explained by health status. The above analysis shows that the amount of explained

\(^{35}\)Blau (1994) finds an even larger decline in labor force participation at age 65 using data from the Retirement History Survey.
variation is small.

Finally, the bottom panel of Figure 2 shows both mean and median assets over the life cycle. Note that young people do save. A certainty life cycle model with typical parameters predicts that people dissave when young since wage levels are very low when young. Therefore, the life cycle asset profile is evidence against the standard certainty-equivalent life cycle model. However, it is consistent with a model in which young people save in order to generate a buffer stock of assets for insurance against bad wage shocks when old (Gourinchas and Parker, 2002; Cagetti, 2002).

5.3 Initial Distributions

To generate the simulated initial joint distribution of assets, wages, AIME, and health status, I take random draws from the empirical joint distribution of assets, wages, AIME, and health status for individuals aged 29-31. I adjust the mean of log wages for healthy and unhealthy individuals to match the estimated life cycle fixed effects profile for wages. Average assets at age 30 are equal to $42,100 and are highly correlated with wages.

5.4 Preference Parameter Estimates

Table 2 presents estimates of the parameters in the utility function for males, ages 30 - 95. Because relatively little is known about the extent to which tied wage-hours offers and selection in the wage equation may affect parameter estimates, Table 2 presents parameter estimates given different assumptions about tied wage-hours offers selection. Because of a

36Note that median assets are not much lower than mean assets. In Cagetti (2002), median assets are much lower than mean assets. His median asset profiles are similar to mine, but his mean asset profile implies a higher level of assets than mine. The difference arises because I top code assets at $1,000,000, whereas he does not. Topcoding has a much larger effect on mean assets than median assets. Gourinchas and Parker’s (2002) simulated asset profile is very different from those of Cagetti or myself. Their simulated asset profile implies that assets are almost zero until age 45. This seems to be the result of difficulties measuring savings using income and consumption data.

37I assume all individuals enter the labor force at age 25 and work 2000 hours per year at the age 30 wage to impute initial AIME.

38This initial variance in wages will partially control for educational status. Since wages are highly persistent, those who have higher wages in the first period will, on average, have higher wages in the final period than individuals who had low wages in the initial period. Given this, the model captures the fact that college graduates have higher wages than non-graduates.
lack of data on older individuals, I assume that individuals do not work after age 70 and match moments only up to age 70.

<table>
<thead>
<tr>
<th>Parameter and Definition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ, consumption weight</td>
<td>0.578 (0.003)</td>
</tr>
<tr>
<td>ν, coefficient of relative risk aversion, utility</td>
<td>3.34 (0.07)</td>
</tr>
<tr>
<td>β, time discount factor</td>
<td>0.992 (0.002)</td>
</tr>
<tr>
<td>L, leisure endowment</td>
<td>4466 (30)</td>
</tr>
<tr>
<td>ϕ, hours of leisure lost, bad health</td>
<td>318 (9)</td>
</tr>
<tr>
<td>θ_p, fixed cost of work, in hours</td>
<td>1313 (14)</td>
</tr>
<tr>
<td>θ_{b}, bequest weight</td>
<td>1.69 (.05)</td>
</tr>
<tr>
<td>χ^2 statistic: (233 degrees of freedom)</td>
<td>856</td>
</tr>
<tr>
<td>$\epsilon_{n,W}(40)$, Labor supply elasticity, age 40</td>
<td>0.37</td>
</tr>
<tr>
<td>$\epsilon_{n,W}(60)$, Labor supply elasticity, age 60</td>
<td>1.24</td>
</tr>
<tr>
<td>Reservation hours level, age 62</td>
<td>885</td>
</tr>
<tr>
<td>Coefficient of relative risk aversion</td>
<td>2.35</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Specifications described below:
(1) Does not account for selection or tied wage-hours offers
(2) Accounts for selection but not tied wage-hours offers
(3) Accounts for tied wage-hours offers but not selection
(4) Accounts for selection and tied wage-hours offers

Table 2: PREFERENCE PARAMETER ESTIMATES

One of the objects of interest in this paper is an individual’s willingness to intertemporally substitute his work-hours. At age 40, the elasticity of simulated average hours-worked given an anticipated transitory change in the wage is 0.19-0.37, depending upon the specification.\(^\text{30}\)

This labor supply elasticity increases with age. At age 60, the elasticity of simulated hours-worked given an anticipated transitory change in the wage is 1.04-1.33. This increase is due to the fixed cost of work generating volatility on the participation margin. This fixed cost, θ_p, varies between 240 and 1313 hours, depending on the specification. Wage changes cause relatively small hours changes for workers at both age 40 and age 60. However, the substitutability of labor supply at the participation margin rises with age. By age 60, many

\(^{30}\)This calculation was made by changing the wage by 20% for all simulated individuals of a given age, then computing the difference in total hours-worked at that age. This causes a wealth effect, making the elasticity calculated herein smaller than the Frisch labor supply elasticity. Assuming certainty and interior conditions, the Frisch elasticity of leisure is $\frac{1}{1-\beta} \frac{\mu}{1-\beta}$, and the Frisch elasticity of labor supply is $\frac{\epsilon_{n,W}}{1-\beta} \frac{\mu}{1-\beta}$. However, one of the advantages of the dynamic programming approach is that it is not necessary to assume certainty or interior conditions.
workers are close to indifferent between working and not working. Small changes in the wage cause large changes in the participation rate.

The fixed cost of work generates a reservation number of work-hours. Individuals will either work more than this many hours or will not work at all. The reservation number of work-hours depends on assets, wages, health status and AIME. At age 62, for example, individuals never choose to work fewer than 885 hours per year in the baseline specification. This is similar to Cogan’s (1981) estimate of 1,000 hours per year. The fixed cost of work is identified by the life cycle profile of hours-worked by workers. Note that the hours of work profiles, presented in Figure 2, do not drop below 1,000 hours per year (or 20 hours per week) even though labor force participation rates decline to near zero. In the absence of a fixed cost of work, we should expect hours-worked to parallel the decline in labor force participation. When estimating the model without fixed costs of work or tied wage-hours offers, hours-worked tends to decline to about 500 hours per year for individuals ages 65-70. Moreover, the simulated labor supply elasticity rises very little over the life cycle.\footnote{For example, in the specification that accounts for neither selection nor tied wage-hours offers, the elasticity rises from .45 at age 40 to .72 at age 60. In the specification that accounts for tied wage wage-hours offers but not selection, the elasticity rises from .32 to .77.}

Most of the variation in the wage and labor supply profiles is from individuals ages 55-65. Figure 2 shows hours-worked and labor force participation rates declining rapidly after age 60, even after the effect of health on hours has been addressed. This decline in hours coincides closely with the decline in wages, pension accrual, and the Social Security incentives to retire. Therefore, the evidence from older individuals indicates that labor supply is responsive to changes in economic incentives.

Many of the studies that estimate the intertemporal elasticity of substitution (Ghez and Becker (1975), MaCurdy (1981), and Browning et al. (1985)) obtain identification from a problematic source: the covariation of work-hours and wages of continuously employed young workers. Young workers work many hours although on average their wage is lower than the wage of older workers. This indicates that the intertemporal elasticity of substitution is small.
within a certainty-equivalent environment,\(^\text{41}\) as hours change very little but wages change a lot over the life cycle. However, as Benitez-Silva (2000) and Low (2002) point out, younger workers may work many hours in order to develop enough assets to buffer themselves against the possibility of low wages when old.\(^\text{42}\) Therefore, omission of uncertainty will potentially bias the estimated intertemporal elasticity of substitution downwards (see Domeij and Floden (2002) for more on this point). Note that this problem is in addition to the problem of omitting the labor force participation margin. For these two reasons, previous studies have understated the substitutability of male labor supply.

The coefficient of relative risk aversion (or the inverse of the intertemporal elasticity) for consumption is 2.2 to 5.1 (depending on the specification),\(^\text{43}\) which is similar to previous estimates that rely on different methodologies (see Auerbach and Kotlikoff (1987) and Attanasio and Weber (1995) for reviews of the estimates). Identification of this parameter is similar to Cagetti (2002) who estimates a buffer stock model of consumption over the life cycle using asset data. Within this framework, a small estimate of the coefficient of relative risk aversion means that individuals save little given their level of assets and their level of uncertainty. If they were more risk averse, they would save more in order to buffer themselves against the risk of bad income shocks in the future. I also obtain identification from labor supply, as precautionary motives can explain why wages co-vary little with hours when young but a great deal when old. More risk averse individuals work more hours when young in order to accumulate a buffer stock of assets.

My estimate of the time discount factor, \(\beta\), is larger than most estimates for three reasons. The first two reasons are clear upon inspection of the Euler Equation: \[
\frac{\partial U_t}{\partial C_t} \geq \beta s_{t+1}(1 + r(1 -
\]

\(^{41}\)For example, Ghez and Becker (1975) and Browning et al. (1985) estimate the Frisch labor supply elasticity to be around .3 at all ages.

\(^{42}\)Both of these papers are similar to mine in that they solve dynamic programming models of labor supply and consumption decisions under wage uncertainty. However, neither paper considers the importance of fixed costs of work. As a result, neither paper seems to be totally successful in matching the decline in work hours after age 60.

\(^{43}\)This is measured using the formula \[
\frac{\left(\frac{\partial^2 U_t}{\partial C_t^2}\right)_{C_t}}{\partial^2 U_t}{\partial C_t^2} = -\gamma(1 - \nu) - 1.\] Note that this variable is measured holding labor supply fixed. The coefficient of relative risk aversion for consumption is poorly defined when labor supply is flexible.
\(\tau_l \)) \(E \frac{\partial \gamma_{l+1}}{\partial \gamma_{l+1}} \), where \(\tau_l \) is the marginal tax rate.\(^{44}\) This equation identifies \(\beta s_{t+1}(1 + r(1 - \tau_t)) \), although not the elements of this equation separately. Therefore, a lower value of \(s_{t+1} \) or \((1 + r(1 - \tau_t)) \) results in a higher value of \(\beta \). The first reason for my high estimate of \(\beta \) is that most studies do not include mortality risk. In my model, individuals discount the future not by the discount rate \(\beta \), but by the discount factor multiplied by the survivor function \(s_{t+1} \). Since the survivor function is necessarily less than one, omitting mortality risk will bias \(\beta \) downwards.\(^{45}\) Second, the post-tax rate of return is smaller than the pre-tax rate of return. Therefore, omission of taxes should also bias \(\beta \) downwards. Third, the life cycle profile of hours shows that young individuals work many hours even though their wage, on average, is low. This is equivalent to stating that young people buy relatively little leisure, even though the price of leisure (their wage) is low. Between ages 35 and 60, people buy more leisure (i.e., work fewer hours) as they age even though their price of leisure (or wage) increases. Therefore, life cycle labor supply profiles provide evidence that individuals are patient. Ghez and Becker (1975), Heckman and MaCurdy (1980) and MaCurdy (1981) also find that \(\beta(1 + r) > 1 \) when using life cycle labor supply data.\(^{46}\)

The bequest parameter \(\theta_B \) varies a great deal across specifications. However, the marginal propensity to consume out of wealth in the final period—which is a nonlinear function of \(\theta_B, \beta, \gamma, \nu, \) and \(K \)—is very stable across specifications. For low income individuals, the marginal propensity to consume is 1. For high income individuals, the marginal propensity to consume is between .025 to .045, depending on specification.

\(^{44}\)Note that this is not exactly correct when individuals value bequests. Also note that the Euler Equation holds with equality when assets are positive.

\(^{45}\)Quantitatively, this effect is small. When I estimated parameters assuming that all individuals survive to age 65, the estimated value of \(\beta \) fell by less than .3 percentage points.

\(^{46}\)All of these papers ignore taxes and mortality.
Figure 3: Simulated Profiles Versus True Profiles
Figure 3 displays both the PSID profiles and the simulated life cycle profiles of the decision variables. It also displays 95% confidence intervals. Simulated profiles appear generally consistent with the data, although a \(\chi^2 \) overidentification test rejects the model because the simulated profiles frequently lie outside of the confidence intervals. There are some differences between the simulations and data that are worthy of mention. The model substantially overpredicts labor force participation rates for unhealthy individuals. This is potential evidence of one of two things. First, that the coarse discretization of health into good and bad is inadequate. It could be that bad health has only a small effect on the labor supply of some people and makes others completely unable to work. Alternatively, disability insurance provides benefits to those in bad health, but only if those people earn very little over the course of the year.\(^{47}\) Therefore, disability insurance provides income to those who drop out of the labor market but not to those who work part-time.

There are two reasons for the small standard errors in Table 2. First, the standard error formulae rely on the assumption that the GMM criterion function is quadratic near the minimum of the function. This is true in the case of a linear model, but may be a poor approximation in the case of a non-linear model.\(^{48}\) For example, Gustman and Steinmeier (1986), Palumbo (1999), Cagetti (2002), and Gourinchas and Parker (2002) all find extremely small standard errors using smaller data sets than the one I use. Moreover, those studies have less variation in their data. For example, Gustman and Steinmeier (1986) only match labor supply paths, Cagetti (2002) only matches asset profiles, whereas this study matches both labor supply and asset profiles. Second, small standard errors may result from the assumption that the first stage parameter estimates of \(\chi \) are measured with no error. Gourinchas and Parker (2002) suggest a method that allows one to incorporate the variance of the first stage

\(^{47}\)Individuals are only eligible for disability benefits if their income is very low.

\(^{48}\)To address this problem, I tried an alternative technique to obtain a measure of the precision of the estimates. I adjusted \(\nu \) upwards by 5% and re-estimated the other parameters. A \(\chi^2 \) test of the unrestricted model versus the restricted model resulted in only a narrow rejection of the restricted model (the difference in the \(\chi^2 \) statistics was 5.1, with a critical 5% value of 3.8. Also note the differences in overidentification test statistics between column 1 of Table 2 and column 1 of Table 5. When \(\theta_2 = 0 \), the test statistic rises from 856 to 968. This shows that the hypothesis of \(\theta_2 = 0 \) can be rejected at almost any level. This tends to show that while the standard errors are being underestimated, the model is sharply identified.
parameter estimates into the second stage standard errors.

Note, however, that the profiles for both the decisions and beliefs are precisely estimated as shown by their smooth appearance. This arises from the extremely large sample size used in the analysis. Moreover, using data on labor force participation rates greatly increases the variation in the data. For example, Heckman and MaCurdy (1980) also obtain small standard errors in their fixed-effects Tobit specification for female labor supply. Therefore, it is unsurprising that standard errors are smaller than other analyses using PSID data on continuously employed male workers (e.g. MaCurdy (1981)).

5.5 The Effects of Selection and Tied Wage-Hours Offers on Wages

Table 2 shows preference parameter estimates with and without controls for the effects of selection and tied wage-hours offers. This section describes how accounting for selection and tied wage-hours offers affects parameter estimates, as well as the interpretation of the estimates. Figure 1 shows that when using fixed-effects, the life cycle profile for wages declines rapidly after age 60. However, there are two reasons to suspect that the fixed effects estimates do not represent the true productivity decline after age 60. First, as discussed in Section 3.3, I am likely overestimating wage growth because I am using data only on the wage growth of workers. In other words, the average wage decline for all individuals age 60+ is even sharper than the decline shown in Figure 1. Using the methodology described in Section 3.3, I find that true wages are 7% lower at age 62 and are 11% lower at age 65 than what is shown in Figure 1. Moreover, failure to account for selection leads to a 2% underestimate of the effect of health on wages.

In contrast, failure to account for tied wage-hours offers may lead to a downward bias in productivity growth after age 60. Aaronson and French (2002) and Gustman and Steinmeier (1986) present evidence that the drop in wages after age 60 may result from the drop in work-hours after age 60. The estimates presented herein assume that part-time (1000 hours per year) workers are paid 25% less per hour than full-time (2000 hours per year) workers,49

49In other words, I set $\alpha = .415$, which is at the high end of the estimates in the literature.
resulting in a productivity profile displaying almost no decline after age 60.

Table 2 shows that the estimated fixed cost of work is very sensitive to whether the wage depends on hours-worked. Both fixed costs of work and tied wage-hours offers are potential explanations for why hours-worked by workers do not drop below 1,000 hours. Tied wage-hours offers imply that individuals will not work a small number of hours per year, even if the fixed cost of work is small. Because of the low wages paid to part-time workers, a small number of hours-worked results in very little labor income, making part-time work undesirable. However, if the wage does not depend on hours-worked, a large fixed cost of work is necessary to explain why average hours-worked does not decline below 1,000 hours per year. When estimating preferences, the model fits the data about equally well with and without tied wage-hours offers; that is, the data cannot distinguish whether it is tied wage hours offers or large fixed costs of work that result in hours-worked not declining below 1,000 hours per year.

5.6 What Causes the High Job Exit Rates at Age 62?

Figure 3 shows that the model is able to replicate the high job exit rates at age 62 that are seen in the data. There are several potential reasons for the high job exit rates at age 62: the rapid decline in pension accrual at age 62, actuarial unfairness of the Social Security system, and liquidity constraints. This section discusses the relative importance of these three reasons.

One important modeling decision is when to set the pension eligibility age. Because pension income is taxed and taxation is progressive, there is a jump in an individual’s marginal tax rate if he continues to work and begins receiving pensions. This is an important labor supply disincentive. As discussed in Section 2.3, age 62 is the median normal retirement age for pensions. As a result, I assume that all individuals begin drawing pension benefits at age 62. The fact that many people would be pushed into higher tax brackets if they continued to work seems to cause about half the decline in labor supply at age 62. When I either make taxes proportional or change the pension eligibility age, about half the decline in labor
supply at age 62 disappears. This result should be taken with a great deal of caution because pension eligibility should be a choice variable and there is a great deal of heterogeneity in the normal pension retirement age.\(^5\) Nevertheless, the correlation between labor supply and the pension eligibility age shows the importance of considering the tax implications of pensions.

The model of pension accrual allows for discontinuous jumps in pension accrual at ages 61, 62, 63, 64, and 65. As Gustman and Steinmeier (1986, 1999) and Stock and Wise (1990) point out, discontinuities in pension accrual are potential explanations for the high job exit rates at ages 62 and 65. When I force pension accrual to be smooth and re-simulate the model, the age 62 downturn in labor force participation rates is 25% smaller. Therefore, together the tax and accrual aspects of pensions explain most of the decline in labor supply at age 62.

Next consider the actuarial unfairness of the Social Security system. Whether or not to apply for benefits at age 62 and face the Social Security earnings test depends largely upon the assumed rate of interest. Given a 4% pre-tax interest rate, Social Security benefit accrual is slightly negative (and is thus actuarily unfair) for individuals who face low marginal taxes at age 62.\(^6\) However, even after using a 3% pre-tax rate of return, making Social Security benefit accrual positive for everyone between ages 62 and 65, results in a small change in labor force participation rates. In other words, actuarial unfairness explains only a small part of the decline in participation rates at age 62.

Liquidity constraints are another potential explanation for the high exit rates at age 62 (Kahn (1988), Rust and Phelan (1997)). Many individuals potentially wish to borrow against pension and Social Security benefits in order to finance retirement before age 62, but because Social Security wealth is illiquid, they are unable to do so. In order for liquidity constraints to affect consumption and labor supply decisions, future illiquid income must be high vis-a-vis current income (Deaton (1991)), so that consumption (and thus leisure) will rise when income

\(^5\) When I set the pension eligibility age to either 55 or 65 and re-estimate the model, the model underpredicts job exit rates at age 62. Nevertheless, the model still matches the overall decline in job exit rates rather well. Moreover, preference parameter estimates are relatively unchanged.

\(^6\) Given the survivor probabilities I am using the expected present value of benefits should be equal at ages 62 and 63 when the post-tax rate of return is 3.0%.
eventually rises. In order to investigate the importance of liquidity constraints, I construct the following measure of the replacement rate: \(\frac{p_{62}^{62} + \frac{b_{62}^{62}}{20000^62}}{2} \). The numerator of this expression is pension and Social Security income after age 62 if the individual applies for benefits at age 62. The denominator of this expression is a measure of labor income when working 2000 hours per year. Therefore, this ratio measures the fraction of current labor income that Social Security and pensions replace. If this ratio is equal to one at age 62, an individual can leave the labor market at age 62 with no assets and have no decline in consumption upon retirement. Alternatively, if this ratio is close to one, then an individual may optimally choose to have zero assets at retirement age.

<table>
<thead>
<tr>
<th>By Replacement Rate Quintile</th>
<th>Quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%-20%</td>
</tr>
<tr>
<td>Mean Replacement Rate (Simulated)</td>
<td>45.3 %</td>
</tr>
<tr>
<td>Mean Assets (Simulated)</td>
<td>$ 260,548</td>
</tr>
<tr>
<td>Mean Hours Decline (Simulated)*</td>
<td>5.72 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By Asset Quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Assets (Simulated)</td>
</tr>
<tr>
<td>Mean Hours Decline (Simulated)*</td>
</tr>
<tr>
<td>Mean Assets (Data)</td>
</tr>
</tbody>
</table>

*Mean hours decline is the mean hours decline between ages 61 and 62.

Table 3: The Distribution of Replacement Rates and Assets, Age 62

The top panel of Table 3 shows quintiles of the replacement rate. Note that even though all individuals in the model face the same Social Security and pension benefit rules,\(^{52}\) heterogeneity in wage and labor supply histories creates a large amount of heterogeneity in the replacement rate. Even though the median replacement rate is less than one, the average replacement rate for those in the top quintile of the replacement rate distribution is 129%. As a result, many simulated individuals choose to have close to zero wealth at age 62. Note that those with high replacement rates have lower assets, on average. The evidence in Table 3 shows that having low asset levels near retirement is an optimal response to having a high replacement rate. The lower panel of Table 3 also shows quintiles of the asset distribution

\(^{52}\)Coile and Gruber (2000) find a large amount of heterogeneity in pension accrual rates. Therefore, I am most likely underestimating the amount of heterogeneity in my illiquidity measure.
by both the model and by the PSID data. Note that even though I am not matching the
distribution of assets, the distribution of assets implied by the model fits the data quite well.

Nevertheless, I find only a very small effect of liquidity constraints on labor supply. The
mean hours decline at age 62 varies much more by replacement rate quintile than by asset
quintile.\(^{53}\) Moreover, those with the lowest assets have smaller hours declines at age 62 than
those with high assets. Therefore, it seems that the individuals who leave the labor force at
age 62 are those with high replacement rates and high assets. In other words, those who face
the largest jump in marginal tax rates at age 62 are the individuals who drop out of the labor
force at age 62. Moreover, almost no individuals have assets equal to zero in either the data
or the simulations at age 62. Thus, most individuals would be able to afford one year out of
the labor market at age 61.

Figure 4: THE IMPORTANCE OF BORROWING CONSTRAINTS

Another way of testing the importance of borrowing constraints is to allow people to
borrow against their Social Security wealth (i.e. the present value of future Social Security
income).\(^{54}\) Figure 4 shows average hours-worked and asset levels both when the individual
can borrow against future Social Security benefits and when the individual cannot borrow

\(^{53}\)This is measured as the change in the total number of work-hours between ages 61 and 62 for all individuals
in that quintile.

\(^{54}\)Appendix C gives formulas to compute Social Security wealth from the Social Security annuity stream.
against future Social Security benefits.55 Note that borrowing constraints affect asset growth a great deal. It also has some effect on hours-worked, although most of the effect is when young.

In sum, liquidity constraints and the actuarial unfairness of the Social Security system explain little of the decline in work hours at age 62. Taxes and pension accrual appear to be the driving factors.

5.7 Consumption Over the Life Cycle

Although I do not match the life cycle consumption profile to the data, the model generates an implied life cycle consumption profile. The bottom panel of Figure 3 shows the geometric mean of consumption at each age. The consumption profile displays a pronounced hump shape. There are two reasons for the hump shape to the consumption profile. First, the combination of uncertainty and borrowing constraints implies that young consumers will save more than what they would have done in the absence of borrowing constraints.56 Because their wages and thus incomes are low, their consumption must be low. Second, non-separabilities between consumption and leisure imply that consumption tracks work hours over the life cycle.57

This profile can be compared to the life cycle consumption profiles of Attanasio et al. (1999) or Gourinchas and Parker (2002). Both papers account explicitly for cohort effects and family size, attempt to account for time effects, and use Consumer Expenditure Survey data. Unsurprisingly, both papers yield similar life cycle profiles. In both studies, consumption grows approximately 15\% between age 30 and age 40, peaks around age 40, then declines 30\% by age 65.58 In contrast, my consumption profile shows consumption rising 44\% between ages

55However, in both situations the individual faces uncertainty. Low (2002) shows that uncertainty may have important effects on life cycle labor supply.

56Recall from Figure 4 that relaxing borrowing constraints has a large effect on asset accumulation.

57Identification of non-separabilities between consumption and leisure is tenuous in this model because consumption data is not used. Recall that leisure and consumption are substitutes if $\nu > 1$. Identification of this parameter has already been discussed. Therefore, the results presented herein should not be taken as strong evidence of non-separabilities between consumption and leisure. Instead, the results should be taken as evidence that this preference specification is consistent with the evidence from other studies.

58One omission of my model is family size. Although I attempt to account for family size in the first
30 and 55, then declining 22% between 55 and 65. Therefore, my simulated profile peaks at a later age than profiles estimated using Consumer Expenditure Survey data. However, both Attanasio et al. (1999) or Gourinchas and Parker (2002) likely underpredict consumption of older individuals because both papers omit data on medical expenses and housing. Both goods tend to be consumed in greater quantities later in life.\footnote{50}

Nevertheless, my consumption profile provides some evidence that my baseline specification implies that households are “too patient”. This may cause me to find no evidence of liquidity constraints even though they are important in the data.\footnote{60} Simulated individuals wish to save for higher consumption in the future, leading to asset levels at age 62 that are higher than those seen in the data. Section 6.1 investigates preference specifications with lower discount factors.

One interesting feature of the model is the sharp decline in consumption near retirement age. Below I show the relative importance of non-separabilities versus shocks in explaining the consumption decline at retirement. To do this, I estimate the following model using simulated data:

\[\Delta \ln C_{it} = \beta s_t + \phi \Delta R_t + u_{it} \]

(23)

where \(u_{it} \) is a residual. Previous studies using OLS have found that \(\phi \) is positive, indicating that consumption falls upon exit from the labor force. The OLS estimate may be a biased estimate of the consumption response to an anticipated exit from the labor force because a negative wage shock can reduce both labor supply and consumption. In other words,
the OLS estimate may just be capturing the fact that the expected present value of future resources tends to decline when people exit the labor force. To check on the size of the bias, I estimate equation (23) using both OLS and IVs. Similar to the approach used by Banks et al. (1998), I use age-average values of all variables in equation (23), and instrument for age-average values of ΔP_t using age-average values of ΔP_{t-2}. Using this approach I obtain an estimate of $\phi = .34$, much larger than the Banks et al. (1998) estimate of .26. I also use dummy variables equal to one if the individual is older than 62 and 65 as instruments. This approach produces an estimate of $\phi = .36$. The OLS estimate of ϕ is .37. Therefore, both OLS and instrumental variables produce similar results. This shows that OLS estimates are not severely biased and that shocks do not likely explain the consumption fall at retirement.\footnote{Moreover, they are similar to what the model would predict assuming certainty and interior conditions. Assuming certainty and interior conditions, a 1 percent change in leisure brought about by a wage change will result in a $\left(\frac{\ell}{1-\ell}\right)$ percent change in consumption. Given the parameter estimates in column 1 of table 2, cutting work hours from 1,300 hours per year to 0 hours leads to consumption dropping 29%. This is again similar to the OLS and IV estimates.}

6 Experiments

Policy makers are interested in how Social Security generosity, the early and normal Social Security retirement age, and the Social Security earnings test affect labor supply. To answer these questions, I conduct four experiments. Table 4 gives accounting statistics for each of these experiments.

The top row of Table 4 displays results from simulations under the 1987 policy environment. The second row displays results where Social Security benefits are reduced by 20%. Reducing benefits has two labor supply effects, both of which should increase hours-worked after age 62. First, the loss of Social Security benefits causes a loss of lifetime wealth. This results in individuals working more hours throughout their lives, as individuals consume less leisure given the loss of wealth. Second, reducing Social Security benefits also effectively reduces the Social Security earnings test and the high marginal tax rates of the earnings test.\footnote{Note that if an individual receives no Social Security benefits, there are no Social Security benefits to be} Therefore, the substitution effect associated with a benefit cut causes individuals to
work more hours when eligible for Social Security benefits and fewer hours at younger ages.

The second row of Table 4 shows that reducing benefits causes individuals to work more hours throughout their lives and thus increase their assets in order to offset reduced benefits. To understand the magnitude of these effects, note that the present value of Social Security benefits at age 62 is equal is about $132,000, on average. Cutting benefits 20% reduces the present value of Social Security wealth by $26,000. Due to both reduced consumption and increased work-hours when younger than 62, age 62 asset levels are $9,800 greater when benefits are reduced. About $2/3 of this effect is through reduced consumption, the other $1/3 from increased labor supply. This highlights the importance of forward-looking behavior when considering effects of changing the Social Security rules. Nevertheless, most of the effects are seen after age 62. Increased years in the labor market after age 62 replace $5,500 of the lost income. The reason for this is that most individuals are still working at age 62, and most of the life cycle variability in hours is at the participation margin. Therefore, the substitutability of labor supply is high after age 62. Reduced consumption when old and reduced bequests account for the remaining lost benefits. These labor supply effects are similar to those of Burtless (1986) and Krueger and Pischke (1992) and are fairly average for the literature. A more extreme experiment of eliminating Social Security benefits results in an increase of average years in the labor force between age 30 and 70 to 33.71 years.

In order to check whether substitution effects or wealth effects drive my results, I reduce the present discounted value of taxes paid over the life cycle by an amount equal to the present discounted value of reduced benefits. Note that this is roughly similar to eliminating reduced by the earnings test.

This was done assuming that population growth is $g_p = 1\%$, each birthyear cohort has annual income that is $g_w = 2\%$ above the previous birthyear cohort, and mortality rates are the same for all cohorts. In this case the net cost of the Social Security system is

$$
\sum_{t=30}^{T} \sum_{n=1}^{N} (1 + g_p + g_w)^{(T-t)} S_{30,t} \left(s s_{n,t} - [(1 - \tau_{ss}) \times \min \{W_{t,H_t}, 43,000\}] \right),
$$

where N is the number of simulations and τ_{ss} is the Social Security tax. The net cost of the Social Security system is zero when $\tau_{ss} = .065$ and $ss_{n,t}$ comes from the 1987 benefit formulas. This is greater than the employee OASDI tax of .052 but less than the employer and employee contribution of .104. The net cost is also zero when $\tau_{ss} = 0$ and $ss_{n,t} = 0$. Therefore, I reduce taxes by $0.065 \times 20\% = 0.013$ up to the OASDI maximum of $43,000$ when reducing benefits 20%.
wealth effects. Nevertheless, the substitution effects of reducing benefits remains. Results are displayed on the third row of Table 4. Upon reducing taxes, hours-worked after age 62 are still very high. This experiment highlights the importance of the substitution effect generated by the Social Security work disincentives for individuals age 62 and older.

One potential reform to the Social Security system is to shift the early retirement age from 62 to 63. Recall that benefit recomputation formulas almost fully replace benefits lost through the earnings test at age 62. Therefore, if borrowing constraints do not bind, there should be little if any work disincentive imposed by Social Security at age 62 and thus there should be little if any effect of shifting the Social Security early retirement age to 63. Recall that borrowing constraints bind for very few individuals at age 62. As a result, the fourth row of Table 4 shows that any effect of this policy would be minor. Simulations from the model indicate that shifting the early Social Security retirement age to 63 would leave years in the labor force unchanged.

<table>
<thead>
<tr>
<th></th>
<th>years worked</th>
<th>hours worked</th>
<th>PDV of labor income</th>
<th>PDV of consumption</th>
<th>assets at age 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>With borrowing constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 policies</td>
<td>32.60</td>
<td>2097</td>
<td>$ 1781</td>
<td>$ 1583</td>
<td>$ 190</td>
</tr>
<tr>
<td>reduce benefits</td>
<td>32.83</td>
<td>2099</td>
<td>$ 1789</td>
<td>$ 1569</td>
<td>$ 200</td>
</tr>
<tr>
<td>reduce benefits, reduce taxes</td>
<td>33.00</td>
<td>2115</td>
<td>$ 1803</td>
<td>$ 1586</td>
<td>$ 203</td>
</tr>
<tr>
<td>shift early retirement age to 63</td>
<td>32.62</td>
<td>2096</td>
<td>$ 1781</td>
<td>$ 1584</td>
<td>$ 190</td>
</tr>
<tr>
<td>eliminate earnings test, age 65+</td>
<td>33.62</td>
<td>2085</td>
<td>$ 1799</td>
<td>$ 1594</td>
<td>$ 188</td>
</tr>
<tr>
<td>Without borrowing constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987 policies</td>
<td>32.39</td>
<td>2067</td>
<td>$ 1764</td>
<td>$ 1603</td>
<td>$ 158</td>
</tr>
<tr>
<td>reduce benefits</td>
<td>32.58</td>
<td>2063</td>
<td>$ 1770</td>
<td>$ 1587</td>
<td>$ 168</td>
</tr>
<tr>
<td>reduce benefits, reduce taxes</td>
<td>32.68</td>
<td>2078</td>
<td>$ 1781</td>
<td>$ 1602</td>
<td>$ 170</td>
</tr>
<tr>
<td>shift early retirement age to 63</td>
<td>32.39</td>
<td>2067</td>
<td>$ 1764</td>
<td>$ 1603</td>
<td>$ 158</td>
</tr>
<tr>
<td>eliminate earnings test, age 65+</td>
<td>33.46</td>
<td>2063</td>
<td>$ 1784</td>
<td>$ 1616</td>
<td>$ 154</td>
</tr>
</tbody>
</table>

PDV stands for present discounted value
Consumption, labor income, and assets are measured in thousands

Table 4: Policy Experiments

Finally, I eliminate the Social Security earnings test for individuals ages 65 and older.64

64Note, however, that all other program parameters are being held at the 1987 values. Over the past 15 years there have been important changes to the earnings test for individuals younger than 65 and to benefit recomputation formulas for individuals aged 65 and older.
Figure 5: The Effect of Removing the Earnings Test, Age 65+

This has large effects. As shown in the fifth row of Table 4 and also Figure 5, hours-worked after age 65 jumps. Years in the labor force rises from 32.60 to 33.62 although average hours-worked by workers is largely unchanged. This increase in work-hours is completely a substitution effect, given that eliminating the earnings test will increase lifetime wealth. The wealth effect from increased post-tax wages will lead individuals to consume more of everything, including leisure. Therefore, eliminating the wealth effects from this experiment would lead to an even greater labor supply response.

This final experiment provides the model with a strong out of sample test. The earnings test was in fact abolished for individuals older than 64 in 2000. Therefore, the model predicts that labor force participation rates for individuals should rise sharply over the coming years.

The results in Table 4 highlights the importance of considering labor force participation when conducting policy experiments. Most models (Auerbach and Kotlikoff (1987), for example) focus on hours-worked by workers and ignore the labor force participation decision. This model suggests, however, that the dominant margin of labor supply substitutability for men is at the labor force participation decision.

The bottom rows of Table 4 repeat the top rows, but assume that individuals can borrow against future Social Security benefits. Note that relaxing borrowing constraints does have

\footnote{Of course, other incentives have been changing over time (Anderson et al. (1999)), so the prediction is somewhat ambiguous.}
important effects on labor supply and asset accumulation. Asset levels are much lower at age 62 when borrowing constraints are relaxed. Hours worked per year are also lower. However, note from Figure 4 that this reflects changes in labor supply early in life, but not near retirement age. Moreover, note that the effects of changing the Social Security rules on labor supply is similar to the effects when borrowing constraints are enforced. Elimination of the earnings test for those older than 65 has a very large effect on life cycle labor supply, while shifting the early retirement age to 63 has a very small effect. Therefore, the presence of borrowing constraints does not affect the predicted response of labor supply to changes in the Social Security rules.

6.1 Sensitivity of Results to Changes in Preference Parameters and Specification

In this section I present evidence on the sensitivity of results to changes in the preference parameters. Of the estimated parameters, the values of \(\beta \), \(\theta_B \), and \(\nu \) are potentially the most controversial, as is the source of identification of these parameters. Moreover, it seems worthwhile to test the robustness of the results to alternative preference specifications. In this section, I evaluate whether the results in Table 4 are sensitive to changes in preference parameters and the utility function.\(^{66}\) Preference parameter estimates are shown in Table 5.

One cause for concern when constructing asset profiles is that the year effects are not well proxied by the unemployment rate. Given that the asset data are from 1984-1994, during which there was a rapid run up in the stock market, I may be overstating asset growth. Therefore, I may be overestimating \(\theta_B \) and \(\beta \).

In order to understand the importance of this problem, I reduced asset growth 1% during each year of the sample period and re-estimated preference parameters. Appendix F shows that this technique likely understates asset growth over the life cycle relative to what we would have anticipated in the absence of a run-up in the stock market. When using this asset profile, the estimate of \(\theta_B \) falls from 1.69 to .85. None of the other parameters changes

\(^{66}\)However, the importance of unobserved heterogeneity in preferences and pension accrual is not considered.
noticeably. Moreover, the new estimates have only a tiny effect on the labor supply and savings responses to changes in the Social Security rules.

However, there are other reasons to suspect that I may be overestimating θ_B and β. The parameter θ_B is identified largely off of the shape of the asset profile, but only for individuals younger than 70. However, Hurd (1990) finds significant declines in assets near the end of the life cycle whereas the simulated profiles presented herein do not fall for older individuals. Moreover, I omit medical expense uncertainty. Palumbo (1999) shows that uncertain medical expenses can partly explain why the elderly run down their wealth slowly. In order to address these concerns I tried a more extreme set of experiments. In column 1 of Table 5, I set $\theta_B = 0$. Note that β rises to 1.04 when $\theta_B = 0$. This gives some evidence that a high value of θ_B and a high value of β are alternative explanations for why assets are high near age 70.

<table>
<thead>
<tr>
<th>Parameter and Definition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>γ consumption weight</td>
<td>.589 (.004)</td>
</tr>
<tr>
<td>ν coefficient of relative risk aversion, utility</td>
<td>5.68 (.07)</td>
</tr>
<tr>
<td>β time discount factor</td>
<td>1.04 (.002)</td>
</tr>
<tr>
<td>L leisure endowment</td>
<td>5159.0 (31)</td>
</tr>
<tr>
<td>ϕ hours of leisure lost, bad health</td>
<td>559 (8)</td>
</tr>
<tr>
<td>θ_P fixed cost of work, in hours</td>
<td>1378 (15)</td>
</tr>
<tr>
<td>θ_B bequest weight</td>
<td>0</td>
</tr>
<tr>
<td>χ^2 statistic: (193 degrees of freedom)</td>
<td>968</td>
</tr>
<tr>
<td>$a_{14}(40)$ Labor supply elasticity, age 40</td>
<td>.35</td>
</tr>
<tr>
<td>$a_{14}(60)$ Labor supply elasticity, age 60</td>
<td>2.17</td>
</tr>
<tr>
<td>Reservation hours level, age 62</td>
<td>885</td>
</tr>
<tr>
<td>Coefficient of relative risk aversion</td>
<td>3.76</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Specifications described below:
(1) $\theta_B = 0$
(2) $\theta_B = 0, \beta = .95$
(3) $\theta_B = 0, \beta = .95$, intertemporal elasticity of substitution for consumption $= \frac{-1}{\gamma(1-B)-1} = .48$
(4) Separable preferences: $\gamma_C = 5666(.0003), \gamma_H = 9.82(.01), \phi_H = 3.94 \times 10^{32}(2.28 \times 10^{30})$, $L = 5280$ by assumption, γ and ν not in specification

Table 5: PREFERENCE PARAMETER ESTIMATES

A value of $\beta = 1.04$ is much higher than most estimates in the literature. In order to assess the sensitivity of my results, I set $\beta=95$ and $\theta_B = 0$ in column 2 of Table 5. Note

67 As I pointed out earlier, β is identified partly by the life cycle labor supply profiles. Estimated profiles
that when $\theta_B = 0$ and $\beta = .95$, the value of ν rises: because they are less patient, consumers need to be more risk averse to generate the observed asset profile.68 This high value of ν also generates a low intertemporal elasticity of substitution for labor supply and consumption.69

Because the intertemporal elasticity of substitution for consumption in column 2 is lower than most estimates,70 I also consider an intertemporal elasticity of substitution for consumption of .48, estimated by Attanasio et al. (1999). Results are in column 3 of Table 5. The estimates in column 3 produce the lowest asset levels and are thus the most likely to produce a large effect of liquidity constraints on life cycle labor supply. Average assets are $10,000 at age 62. In order to assess the importance of liquidity constraints, Table 6 shows the same experiments as in Table 4, but with the preferences in column 3 of Table 5. The largest change between the results in Table 6 and 4 is the effect of changing generosity. Reducing benefits now has an even larger effect on life cycle labor supply. Because asset levels are low at all ages, reducing benefits has only small effects on savings before age 62 and bequests. Most of the response to the benefit cut is in reduced consumption and leisure after age 62. Although lower patience factors affect the labor supply response to Social Security generosity, they do not affect the labor supply response to shifting the early retirement age to 63.

One final specification test is to change the utility function so that it is separable in consumption and leisure. Consider the following utility and bequest functions.

$$U(C_t, H_t, M_t) = \frac{1}{1-\gamma_C}C_t^{1-\gamma_C} + \frac{\phi_{H}}{1-\gamma_H}(L - H_t - \theta_P P_t - \phi I(M = \text{bad}))^{1-\gamma_H},$$

68Figure 4 of Cagetti (2002) shows the relationship between risk aversion and impatience more explicitly. Note, however, that ν is also partly identified by the labor supply profiles.

69Assuming certainty and interior conditions, the consumption Euler Equation is $\Delta \ln C^t = \frac{1}{1/(1+r)-1} \ln(\beta(1+r)|L - H_t - \theta_P P_t - \phi I(M = \text{bad})|) + (\frac{1}{1-(1+r)/(\pi^2+1)}) \ln(\beta(1+r)|L - H_t - \theta_P P_t - \phi I(M = \text{bad})|)$.

70Moreover, a wide range of values of ν all seem to give relatively similar criterion functions if other parameters are re-estimated. From a statistical standpoint, one can easily distinguish between different values of ν. Nevertheless, the profiles they generate look relatively similar.
Table 6: Policy Experiments, $\theta_B = 0, \beta = .95$, $\frac{\gamma}{1-\gamma C} - 1 = .48$

$$b(A_t) = \theta_B \frac{(A_t + K)^{1-\gamma C}}{1 - \gamma C}. \quad (26)$$

Results from this specification are in column 4 of Table 5. This utility function does not fit the data as well as the non-separable preference specification, although there are no striking differences between this preference specification and the non-separable one. Nevertheless, when repeating the experiments in Table 4, shifting forward the early retirement age has almost no effect on lifetime labor supply, whereas eliminating the Social Security earnings test after age 65 increases years in the labor force by 1.4 years.

7 Conclusion

In this paper I estimate a dynamic structural model of labor supply, retirement, and savings behavior where assets must be non-negative in all periods. When augmented to include uncertainty over future wages and health status, the model fits the life cycle profile of assets rather well. It also does a good job of fitting the life cycle profiles of hours worked and labor force participation rates.

This allows me to assess how the Social Security system affects life cycle labor supply. Of central importance is whether Social Security affects labor supply because (i) Social Security wealth is illiquid until age 62 and/or (ii) because of the taxation and actuarial unfairness of the system. I find that allowing individuals to borrow against future Social Security benefits
would reduce work hours when younger than 40. However, the fact that benefits are illiquid until 62 cannot explain the high job exit rates at 62 or 65. Instead, it seems that the taxation and actuarial unfairness of pensions and Social Security explains the sharp decline in labor supply at these ages.

The value of this model lies in its ability to predict how labor supply and retirement patterns of individuals might change in response to changes in the Social Security rules. Simulations suggest that a 20% drop in Social Security benefits results in an increase in labor supply throughout the life cycle. However, the effect is rather small; individuals would spend an additional three months in the labor force. In contrast, simulations suggest that the elimination of the Social Security earnings test for those older than 65 will cause individuals to delay exit from the labor force by one year, showing the important work disincentives of the earnings test.
References

Appendix A: Taxes

Individuals pay federal, state, and payroll taxes on income. I compute federal taxes on income net of state income taxes using the Federal Income Tax tables for “Head of Household” in 1987 with the standard deduction. I also use income taxes for the fairly representative state of Rhode Island (22.96% of the Federal Income Tax level). Payroll taxes are 7.15% up to a maximum of $43,800. Adding up the three taxes generates the following level of post tax income as a function of labor and asset income:

<table>
<thead>
<tr>
<th>Pre-tax Income (Y)</th>
<th>Post-Tax Income</th>
<th>Marginal Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4440</td>
<td>.9285Y</td>
<td></td>
</tr>
<tr>
<td>4440-6940</td>
<td>4123 + .796(Y-4440)</td>
<td>.204</td>
</tr>
<tr>
<td>6940-27440</td>
<td>6113 + .749(Y-6940)</td>
<td>.251</td>
</tr>
<tr>
<td>27440-42440</td>
<td>21468 + .6021(Y-27440)</td>
<td>.398</td>
</tr>
<tr>
<td>42440-43800</td>
<td>30500 + .5262(Y-42440)</td>
<td>.474</td>
</tr>
<tr>
<td>43800-84440</td>
<td>31216 + .5977(Y-43800)</td>
<td>.403</td>
</tr>
<tr>
<td>84440+</td>
<td>55506 + .5605(Y-84440)</td>
<td>.440</td>
</tr>
</tbody>
</table>

Table 7: After Tax Income

Appendix B: Computation of AIME
The Social Security system uses the beneficiary’s 35 highest earnings years when computing benefits. The average monthly earnings over the 35 highest earnings years are called Average Indexed Monthly Earnings, or AIME. I annualize AIME and compute it using the following formula for individuals 30-59.

$$AI ME_{t+1} = AI ME_t + \frac{(W_t H_t)}{35}. \quad (27)$$

I assume the individual enters the labor force at age 25. Since AIME is computed using the 35 highest earnings years, AIME increases unambiguously if the individual is younger than 60 and works. If age is 60 or greater AIME can still increase, but only if the individual earns a great deal that year. The high earnings year will replace a low earnings year when computing Social Security benefits.\(^7^1\) Therefore, the formula for individuals 60 and older becomes

$$AI ME_{t+1} = AI ME_t + \max\{0, (W_t H_t - AI ME_t)/35\}. \quad (28)$$

Lastly, AIME is capped. In 1987, the base year for the analysis, the maximum AIME level was $43,800 in 1987 dollars.

AIME is converted into a Primary Insurance Amount (PIA) using the formula

$$PI A_t = \begin{cases}
.9 \times AI ME_t & \text{if } AI ME_t < 3,720 \\
3,348 + .32 \times AI ME_t & \text{if } 3,720 \leq AI ME_t < 22,392 \\
9,695 + .15 \times AI ME_t & \text{if } AI ME_t \geq 22,392
\end{cases} \quad (29)$$

Social Security benefits \(s s t \) depend both upon the age at which the individual first receives Social Security benefits and the Primary Insurance Amount. For example, pre-earnings test benefits for a Social Security beneficiary will be equal to PIA if the individual first receives benefits at age 65. For every year before age 65 the individual first draws benefits, benefits

\(^7^1\)Unfortunately, I assume that the high earnings year replaces an average earnings year, as described in equation (28).
are reduced by 6.7% and for every year (up until age 70) that benefit receipt is delayed, benefits increase by 3%.

Appendix C: Pensions

There are two important aspects of pensions for the purpose of this paper. First, pension wealth is illiquid until a certain age (I assume until age 62). Second, pension accrual rates are higher for individuals in their 50s than at other ages.

Consider the liquidity aspect first. Because both Social Security benefits and pensions are annuities, I load pension wealth onto PIA. If the individual is age-eligible for pension benefits, then pension benefits, \(pb_t = pb(PIA_t) \) are:

\[
pb_t = \gamma_0 \left(\gamma_1 + \gamma_2 PIA_t + \gamma_3 \max(0, PIA_t - 5000) \right)
\]

The parameters \(\gamma_0, \gamma_1, \gamma_2, \gamma_3 \) are taken from Gustman and Steinmeier (1999). A spline function is used to estimate \(\gamma_1, \gamma_2, \gamma_3 \). Table 6 of Gustman and Steinmeier (1999)\(^73\) shows that the ratio of pension wealth to Social Security wealth rises rapidly with Social Security benefits. Lastly, I pick the scale parameter \(\gamma_0 \) so that mean pension wealth, described in equation (34) below, is $78,108 in 1987 pre-tax dollars at age 60, which is meant to coincide with estimates for the male head of household in Table 5 of Gustman and Steinmeier (1999).

One problem arises from the fact that I treat the decline in Social Security benefits that arises from early reciproc of Social Security benefits, described in Appendix B, as equivalent to a decline in \(PIA \). The problem is that \(PIA \) affects pension benefits. However, the model assumes that Social Security reciproc should not affect pension benefits. In order to account for this, I adjust \(PIA \) downwards in response to early Social Security benefit application as follows. Consider next period’s pension and Social Security benefits (the later object equal to

\(^72\)AIME can be reduced instead of PIA for individuals who first receive benefits before age 65. For example, if an individual begins drawing benefits at age 62 we can adjust AIME to account for early retirement. We know that adjusted AIME must result in a PIA that is only 80% of what it would have been had the individual first received benefits at age 65. Using equation (29) it is straightforward to compute adjusted AIME. Age at application, then, need not be treated as a state variable.

\(^73\)They provide estimates of pension wealth and Social Security wealth as a function lifetime labor income. I convert these measures into annual benefits.
PIA) after a reduction in benefits because of early benefit application, but before the Social Security earnings test:

\[pb_{t+1} + PIA_{t+1} = pb_t + rem_t PIA_t, \] \tag{31}

where \(rem_t \) is the fraction of remaining Social Security benefits (for example, \(rem_{64} = .933 \)) and \(pb_{t+1} = pb_t \). Using equations (30) and (31) the new value of \(PIA_{t+1} \) is

\[PIA_{t+1} = \begin{align*}
&\frac{(\gamma_2 + rem_t)PIA_t + \gamma_3 \max(0, PIA_t - 5000)}{1 + \gamma_2} & \text{if } PIA_{t+1} > 5000 \\
&\frac{5000\gamma_3 + (\gamma_2 + rem_t)PIA_t + \gamma_3 \max(0, PIA_t - 5000)}{1 + \gamma_2 + \gamma_3} & \text{otherwise.}
\end{align*} \tag{32}

Next consider the fact that pension accrual is greater for individuals in their 50s than for individuals at other ages. However, the pension accrual benefit formula in (30) does not imply that pension accrual for individuals in their 50s is much higher than individuals in their 30s. To see the relationship between pension accrual and pension benefits note that pension wealth, \(pw_t \), grows according to

\[pw_{t+1} = \begin{cases}
(1/s_{t+1})[(1 + r)pw_t + pacc_t] & \text{if living at } t+1 \text{ and } age_t < 61 \\
(1/s_{t+1})[(1 + r)pw_t + pacc_t - pb_t] & \text{if living at } t+1 \text{ and } age_t \geq 62 \\
0 & \text{otherwise}
\end{cases} \tag{33}

where \(pacc_t \) is pension accrual. Since neither pension accrual nor pension interest are taxed, the appropriate rate of return on pension wealth is the pre-tax one.

I calculate the present value of current pension wealth by assuming that a worker receives no benefits until age 62. Assuming no further pension accrual, recursively substituting equation (33) backwards and imposing \(pw_{T+1} = 0 \) reveals that

\[pw_t = \Gamma_t pb_t, \text{ where} \] \tag{34}

\[\Gamma_t = \frac{1}{1 + r} \sum_{k=t}^{T} S(k, t) (1 + r)^{k-t} I\{age_k \geq 62\}, \tag{35} \]
and $I\{age_k \geq 62\}$ is equal to one if $age_k \geq 62$ and is equal to zero otherwise.

Pension accrual is the increase in the present value in future benefits caused by a rise in future annual benefits:

$$pacc_t = \Gamma_t(pb(PI_t A_t) - pb(PI_{t-1} A_{t-1}))$$ \hspace{1cm} (36)

where $pb(PI_t A_t)$ is the benefit level given this year’s PIA and $pb(PI_{t-1} A_{t-1})$ is the benefit level given last year’s PIA.

Equation (36) overstates pension accrual for individuals in their 30s and understates pension accrual for individuals in their 50s. To overcome this problem, I take a second pension accrual measure, where pension accrual is a function of age and labor income $pacc_t^* = pacc^*(W_t H_t, age_t)$:

$$pacc^*(W_t H_t, age_t) = \alpha_0 \times (\alpha_1 + \alpha_2 W_t H_t + \alpha_3 \max(0, W_t H_t - 15,300)) \times \alpha_4(age_t) \times W_t H_t.$$ \hspace{1cm} (37)

I use a spline function with a kink at $15,300: (\alpha_1 + \alpha_2 W_t H_t + \alpha_3 \max(0, W_t H_t - 15,300))$ to estimate the dependence of pension accrual on annual labor income. Table 6 of Gustman and Steinmeier (1999)74 shows that pension accrual rates roughly triple between individuals with extremely small incomes and individuals with incomes around $15,300$. Above this level, however, accrual rates are fairly constant. I model the age dependence of accrual rates $\alpha_4(age_t)$ using a weighted average of the defined benefit, defined contribution and combined defined benefit and defined contribution profiles in Figure 2 of Gustman et al. (1998).75

Lastly, I pick the scale parameter α_0 so that mean pension wealth, described below, is $53,894 in 1987 dollars at age 57, which is meant to coincide with the equation (34) measure of $78,108,

74They provide estimates of pension accrual as a function lifetime household labor income. I divide lifetime labor income by 35 to get an estimate of average annual labor income. Table 5 shows that the male in the household accumulates, on average, 78% of the household pension wealth.

75I adjust their pension accrual profile by their assumed rate of wage growth so that pension accrual is measured in rates then smooth their pension accrual profile using a 20th order polynomial with dummy variables for age greater than 61, 62, 63,64 and 65. Predicted accrual rates that are negative are set to zero.
but after being taxed at a 31% tax rate. This pension wealth measure is found assuming no benefits have been taken so far and solving equation (33) backwards

\[p \omega^* = \sum_{k=1}^{t} \left(\frac{(1+r)^k}{S(k,t)} \right)^{pacc_{t-k}}. \] \hspace{1cm} (38)

Equation (36) implies a different level of pension accrual than equation (37). In order to overcome this problem the difference between the two accrual measures is treated as income added to the asset equation. The asset accumulation equation is then

\[A_{t+1} = A_t + Y(rA_t + W_t H_t + ys_t + pb_t + \epsilon_t, \tau) + ss_t - C_t \] \hspace{1cm} (39)

where \(\epsilon = (pacc^*_t - pacc_t) \).

Appendix D: Numerical Methods

This section outlines the methods for computing the decision rules. Specifically, it outlines the methods for computing the value function, the methods for integrating the value function with respect to uncertainty over wages, and the method to find the optimal consumption and hours decisions.

The value function is the solution to

\[
V_t(X_t) = \max_{C_t, H_t, B_t} \left\{ \frac{1}{1 - \nu} \left(C_t^\gamma (L - H_t - \theta P_t - \phi 1\{M = b a d\}) \right)^{1-\gamma} + \beta s_{t+1} \sum_{M \in \{good, bad\}} \int V_{t+1}(X_{t+1}) dF(W_{t+1}|M_{t+1}, W_t, t) prob(M_{t+1}|M_t, t) + \beta(1 - s_{t+1}) b(A_{t+1}) \right\},
\]

where \(dF(\cdot, \ldots, \cdot) \) is the conditional cdf of next period’s wages. The individual is uncertain of future wage and health shocks. The values of \(C_t, H_t \) and \(B_t \) that solve (40) are considered the optimal consumption and hours decisions.

Although the consumption, hours, and participation and benefit application rules have no closed-form solutions, the rules fully characterize the decisions of the individual. The solution
to the worker’s problem then consists of a set of consumption \(\{ C_t(X_t, \theta, \chi) \}_{1 \leq t \leq T} \), work \(\{ H_t(X_t, \theta, \chi) \}_{1 \leq t \leq T} \) and benefit application \(\{ B_t(X_t, \theta, \chi) \}_{1 \leq t \leq T} \) rules which solve the value function (40). A labor force participation rule \(P_t(X_t, \theta, \chi) \) is equal to zero if \(H_t(X_t, \theta, \chi) = 0 \) and equals one otherwise. Using these decision rules and the asset accumulation equation it is also possible to solve for next period’s asset level \(\{ A_{t+1}(X_t, \theta, \chi) \}_{1 \leq t \leq T} \).

The decision rules are solved for recursively, starting at time \(T \) and working backwards to time 1. I compute the value function using value function iteration. At time \(T \), consumption and hours decisions will be made by maximizing equation (40), where \(V_{T+1} = b(A_{T+1}) \). Consumption and hours decisions are next solved for time \(T-1, T-2, T-3, ..., 1 \) by backwards induction. Using this technique the individual decision rules at time \(t \) can be found as functions of only the state variables at time \(t \).

Since there is no closed form solution to the problem, the state variables are discretized into a finite number of points on a grid and the value function is evaluated at those points.\(^7\) Because variation in assets, AIME and wages is likely to cause larger behavioral responses at low levels of assets, AIME and wages, the grid is more finely discretized at low levels of assets, AIME and wages. Since the value function is computed at a finite number of points, I use linear interpolation within the grid and extrapolation outside of the grid to evaluate the value function points that were not directly computed.

I integrate the value function with respect to the innovation in the wage using Gauss-Hermite quadrature. Although assets at time \(t + 1 \) will be known at time \(t \), wages at time \(t + 1 \) will be a random variable. In practice, I use quadrature of order 5 (Judd, 1998).

I also discretize the consumption and labor supply decisions and use a grid search technique to find the optimal consumption and hours rules. Because the fixed cost of work and the benefit application decision mean that the value function need not be globally concave, I cannot use relatively fast hill climbing algorithms. I experimented with the fineness of the

\(^7\)In practice, I chose 30 asset states, 10 wage states, and 10 benefit states. The grid for assets and wages is \(A \in \{ \$0, \$300,000 \}, W \in \{ \$3, \$60 \} \). There are two application states, and two health states. This requires solving the value function at \(30 \times 10 \times 10 \times 2 \times 2 = 12,000 \) different points after age 62 when the individual is eligible to apply for benefits and 6,000 points when younger than 62.
grids. The grids described herein seemed to produce reasonable approximations. Increasing the number of grid points seemed to have a small effect on the computed decision rules.

Figure 6 shows policy functions for both consumption and work hours. These functions are plotted as a function of assets and wages. These functions are plotted for healthy individuals who are age 35 and have an AIME of $7,240. For these individuals, 95% have assets between $25,000 and $217,000 and 95% of these individuals have wages between $8 and $22. Higher consumption and labor supply functions refer to higher wage levels.

There are a few things worth noting in the figure. First, note that labor supply drops to zero when assets exceed a certain level. This sharp drop is caused by the fixed cost of work. Second, consumption functions are not concave or even monotonically increasing in assets. The consumption function is convex in assets above a certain asset level. This is a result of progressive taxation. Higher asset levels cause higher marginal tax rates. Individuals can move to lower tax rates by consuming their assets. Third, consumption is sometimes declining in wealth for those with low wage levels. This is caused by non-seperabilities between preferences for consumption and leisure. Recall that the given the preference specification, consumption and leisure are Frisch substitutes if \(\nu > 1 \). Note that the points where consumption falls is the same set of points where labor supply falls. Fourth, note that consumption is never zero. At all positive wage levels, individuals will work positive hours if their wage is zero and they have no other form of income. Figure 7 shows policy functions when the number of asset points is set equal to 100 and all parameters are re-estimated. Note that the

\footnote{Currently, there are 90 possible values for consumption. I use next period’s optimal consumption rule as an initial guess for this period’s optimal consumption rule at each value of \(X \). For most years, I search over a space that is between 70% and 150% of next period’s consumption rule. For years where there will likely be large changes in the decision rules for a given set of state variables, such as between ages 61 and 62, I increase the search area to 30%-300% of next period’s optimal decision rule. If the new consumption rule is near the boundary of the search space, the search space is shifted and the consumption rules are re-computed. To find the optimal hours decision, I use the marginal rate of substitution between consumption and leisure. There is a difficulty in that the marginal rate of transformation between consumption and leisure is not the wage. Instead, taxes, pensions, and the effect of current work-hours on Social Security benefits distort the relationship. Therefore, I make an initial guess by setting the marginal rate of substitution equal to the wage. I then try 10 different hours choices in the neighborhood of the initial hours guess. Because the fixed cost of work may cause large discontinuous changes in optimal hours-worked (from zero hours-worked and a large number of hours-worked), I also evaluate the value function at \(H_t = 0 \) where the space of consumption choices is determined by next period’s optimal consumption choice when \(H_{t+1} = 0 \).}
Figure 6: Policy Functions, 30 asset points

policy functions are not much changed.\footnote{When setting the number of asset states to 100, I also re-estimated all parameters. The parameter estimates were virtually unchanged from the case where there were 30 parameters. The criterion function was also virtually unchanged.}

Appendix E: Moment Conditions

In this appendix I describe the GMM minimization procedure where I account for the three data problems discussed in the text. The first data problem is that I wish to match profiles that are uncontaminated by cohort and family size effects. The second problem is a
selection problem. If individuals who are healthier have a greater preference for work than unhealthy individuals, then selection of individuals into the healthy hours and participation moment conditions will not be random. Failure to overcome this problem will lead to an overestimate of the effect of health on preferences for work. Healthy workers will work more hours than unhealthy workers, not because of health but unobserved differences in preferences for leisure between healthy and unhealthy individuals. The third data problem is that I use an unbalanced panel of data. Since not all individuals are seen in all moment conditions during all time periods, some of the individual level contributions to the moment conditions
are “missing”. Moreover, because individuals are healthy only with a certain probability,
many of the individual level contributions are “missing” with a certain probability.

I now discuss the first two problems and their solution in greater detail. For concreteness, consider the moment condition for hours-worked for individuals in good health. Upon estimating the fixed-effects profile for hours-worked, I use the estimated parameters for age and the person-specific residual from estimation of (17). I use these estimates to generate a predicted life cycle profile for hours-worked. This life cycle profile helps me generate my set of moment conditions. I wish to set the following moment condition to zero:

\[E[\ln H_{it,M=\text{good}} | \text{birthyear} = 1940, M = \text{good}, f\text{ams}ize = 3] - \ln \tilde{H}_{it,M=\text{good}} = 0 \quad (41) \]

where \(\ln \tilde{H}_{it,M} \) is the simulated geometric mean of log hours-worked. In order to generate this moment condition, I use parameter estimates from equation (17) and make three modifications to hours-worked, shown in equation (42):

\[
\ln H_{it,M=\text{good}} = f_i + E[f_i | \text{birthyear} = 1940, \text{prob}(M = \text{good}) = \text{prob}(M = \text{good}| \text{age} = 50), \text{age}_{it} = 50] - E[f_i | \text{birthyear}_i, \text{prob}(M_{it} = \text{good}), \text{age}_{it}] + \Pi_g \text{age}_{it} + \Pi_f (f\text{ams}ize = 3) + u_{it} \quad (42)
\]

Note the three modifications to the data. First, there is no probability of being in good
or bad health. Instead, individuals are in either good or bad health for certain. Second, it
is not the size of the family that is used but a family size of three. In this way life cycle
family size effects will not contaminate profiles. Third, I adjust the person specific effects
\(f_i \). There are two things that I wish to adjust in the person specific effects. First, I wish to
control for cohort effects. Note that an individual’s cohort effect is one component of their
person specific effect, as a cohort effect is an average of the fixed effects of everyone born in
that cohort. I adjust the person specific effect so that everyone has the same cohort effect,
set to \(\text{birthyear} = 1940 \), which means profiles will be uncontaminated by cohort effects. The
second aspect of the person specific effect that I adjust for is the possible correlation between

64
the person specific effect and the health status of the individual. This solves the problem of selection into a moment condition, as the adjusted hours data in (42) should be uncorrelated with health.

In order to generate the adjusted hours data in (42) it is necessary to predict the person specific effect f_i for a given age, birthyear, and health status. To predict the person specific fixed effect I estimate the conditional expectation of f_i given birthyear and age interacted with health status using OLS:

$$f_i = \pi_1 \text{birthyear} + \pi_2 \text{prob}(M_{it} = \text{good}) \times \text{age}_{it} + \pi_3 (1 - \text{prob}(M_{it} = \text{good})) \times \text{age}_{it} + \epsilon_{it}$$

(43)

where π_1, π_2, π_3 are parameters to be estimated and birthyear is a full set of birthyear dummies, and age_{it} denotes a full set of age dummies.

Next I address the problem of having an unbalanced panel and the problem of not knowing an individual’s health status with certainty. If there are I separate individuals in the data there will be a total of I possible contributions to both the healthy and unhealthy moment conditions for hours at age t. However, not all individuals are observed working for all possible time periods. Assume instead that there are $I_t \leq I$ individuals observed working at age t. The idea is to treat a moment contribution as equal to zero if it is missing.

This means that the moment condition for individuals of age t and health state $M = \text{good}$ is generated by

$$\frac{1}{I_t} \sum_{i=1}^{I_t} \left\{ \ln H_{it, M=\text{good}} - \ln \bar{H}_{it, M=\text{good}} \right\} \times \text{prob}(M_{it} = \text{good})$$

(44)

where $\ln H_{it, M=\text{good}}$ is adjusted work-hours described in equation (42). The relative weight of this moment condition rises as I_t, the number of observed workers rises and as the probability that these workers are healthy rises. Note that $\text{prob}(M_{it} = \text{good})$, which determines selection into the moment condition, might be correlated with the person specific fixed effect f_i but will not be correlated with its adjusted value $f_i + E[f_i | \text{birthyear} = 1930, \text{prob}(M = $
good) = \text{prob}(M = \text{good} | \text{age} = 50), \text{age}_{it} = 50] - \mathbb{E}[f_i | \text{birthyear}_i, \text{prob}(M_{it} = \text{good}), \text{age}_{it}] \text{ by construction.}

The value of \(\theta \) that minimizes the (weighted) distance between the simulated profiles and estimated profiles for assets, hours, and participation is considered to be the true value of \(\theta \). Define the vector of the 5T moment conditions as \(\tilde{g}(\theta; \chi) \). Assuming \(W_T \) is an optimal weighting matrix, the minimized GMM criterion function

\[
\frac{I}{1 + \tau} \tilde{g}(\theta; \chi)' W_T \tilde{g}(\theta; \chi)
\]

is distributed asymptotically as Chi-squared with 5T – 7 degrees of freedom if the model is correctly specified. \(\tau \) is the ratio of the number of observations to the number of simulated observations, which tends to zero as the number of simulated observations becomes large. My estimate of \(W_T \) is the inverse of the 5T \times 5T variance covariance matrix of the (adjusted) data. That is, \(W_T^{-1} \) has a typical element along the diagonal of a variance \(\frac{1}{T} \sum_{i=1}^{T} \{ [\ln H_{it, M= \text{good}} - \mathbb{E}[\ln H_{it, M= \text{good}}]] \times \text{prob}(M_{it} = \text{good}) \}^2 \) and a typical element of a covariance on the off-diagonal. When computing the chi-square statistic and the standard errors, the estimated value of \(\mathbb{E}[\ln H_{it, M= \text{good}}] \) is replaced with its simulated counterpart.

Under the regularity conditions stated in Pakes and Pollard (1989) and Duffie and Singleton (1993), the MSM estimator \(\hat{\theta} \) is both consistent and asymptotically normally distributed. Denoting \(\theta_0 \) as the true parameter vector, the estimated value of \(\theta_0, \hat{\theta} \), converges in distribution to

\[
\sqrt{T}(\hat{\theta} - \theta_0) \sim N(0, V),
\]

(46)
where V is the variance-covariance matrix of θ which is estimated by:

$$
\hat{V} = (1 + \tau)(\hat{D}'\hat{W}\hat{D})^{-1}
$$

(47)

$$
\hat{D} = \frac{\partial\hat{\theta}}{\partial\theta}|_{\hat{\theta} = \hat{\theta}}.
$$

(48)

Appendix F: Adjustments to the Asset Profile

This appendix describes the adjustments to the asset profile made in Section 6.1 and shows that the adjustments likely lead me to understate a household’s anticipated asset growth at each age.

The procedure is as follows. First, I estimate the “excess” rate of return from the run up in the stock market and housing wealth using procedures described in French and Jones (2002). Second, I re-estimate the life cycle asset profile, setting the “excess” rate of return to zero. Therefore, the profiles can be interpreted as the likely asset profile that would of occurred had asset returns been equal to their historical average, and savings rates had been unchanged. Third, I re-estimate preference parameters in the utility function.

Briefly stated, the French and Jones procedure estimates historical growth rates in asset prices, then compares the historical rates of growth to those in the sample period. Stock price growth (net of inflation) was 1.7% higher per year from December 1984-December 1994 than it was over the 1950-1994 period. However, annual housing price growth was .6% lower from December 1984-December 1994 than it was over the 1976-1994. I assume growth in all other assets was as anticipated. Multiplying the excess rates of return by the shares of wealth in different assets, I find that rates of return during my sample period were perhaps .31% higher than would have been anticipated. This has a tiny effect on the results.

Next I conduct a more extreme experiment. I assume that annual rates of return were 1% greater than anticipated. Given that I have asset data for 1984, 1989, and 1994, I reduce 1989 assets by 5% and 1994 assets by 10%. I then re-estimate the profiles using the fixed-effects
estimator. This asset profile looks very similar to the cross-sectional asset profile. Using this procedure, I find that the bottom panel of Figure 2 likely overstates average assets at age 70 by $46,000.

This approach likely underestimates the life cycle asset profile that would have been observed in the absence of a run-up in the stock market for two reasons. First, in the absence of a run-up in the stock market, savings rates would have been higher. If rates of return are uncorrelated across time, then a positive rate of return shock causes only a wealth effect and not a substitution effect. The wealth effect will cause individuals to increase consumption and leisure and thus reduce savings. Therefore, if rates of return were lower during 1984-1994, savings rates and thus asset growth would have been higher at each age during this time period.

The second reason that the procedure described above likely underestimates the “anticipated” life cycle asset profile is that the procedure over-corrects for the wealth gains on savings over the sample period. For example, wealth is reduced by 10% in 1994, which is reasonable if there is no saving or dissaving between 1984 and 1994. However, if all household wealth is from savings in 1994, then the household has received no wealth shock. My 10% reduction in wealth would be completely erroneous, and would lead to asset levels in 1994 being understated. This argument is formalized below.

For simplicity, assume that τ is the common marginal tax rate and $r^* = r(1-\tau)$. Consider an individual who anticipates receiving a rate of return r^* on his assets but instead faces a rate of return $r^* + e_t$. During most years of my sample period, $e_t > 0$. Assuming that rates of return do not affect savings behavior (this assumption also leads me to underestimate asset growth when $e_t > 0$ for reasons described above), he saves S_t in period t, where $S_t = (W_tH_t + y_{st} + pb_t + \varepsilon_t)(1 - \tau) + (B_t \times ss_t) - C_t$. Define observed assets at time j given the observed interest rates $\{r^* + e_t\}_{t=0}^{j}, A_j$, and anticipated assets given that the rate of return is r^* in every period are A_j^*. Therefore, the asset accumulation equations for observed and
anticipated assets are:

\[A_{t+1} = (1 + r^* + e_{t+1})(A_t + S_t) \] (49)

and

\[A^*_t = (1 + r^*)(A^*_t + S_t) \] (50)

where \(A_0 = A^*_0 \). Therefore,

\[A_j = \left(\prod_{t=1}^j (1 + r^* + e_t) \right) A_0 + \sum_{t=1}^j \left(\prod_{k=1}^{t-1} (1 + r^* + e_k) \right) S_{j-t} \] (51)

and

\[A^*_j = \left(\prod_{t=1}^j (1 + r^*) \right) A_0 + \sum_{t=1}^{j-1} \left(\prod_{k=1}^{t-1} (1 + r^*) \right) S_{j-t} \] (52)

Now consider another measure of assets, which is the alternative measure used in the text:

\[A^*_j = \left(\prod_{t=1}^j \left(\frac{1 + r^*}{1 + r^* + e_t} \right) \right) A_j \] (53)

Note that this measure is equal to

\[A^*_j = \left(\prod_{t=1}^j (1 + r^*) \right) A_0 + \sum_{t=1}^j \left(\prod_{k=t-1}^{j} \frac{(1 + r^*)}{1 + r^* + e_{j-k-1}} \right) (1 + r^*)^t S_{j-t} \] (54)

Note that equation (52) is greater than equation (54) so long as \(\sum_{t=1}^j \left(\prod_{k=t-1}^{j} \frac{(1 + r^*)}{1 + r^* + e_{j-k-1}} \right) (1 + r^*)^t - 1 \) \(S_{j-t} < 0 \) Making the approximation \(\ln(1 + r^* + e_k) \approx (r^* + e_k) \) means that the term is less than 0 if

\[\sum_{t=1}^j \left(\exp \left(\sum_{k=t-1}^{j} -e_{j-k-1} \right) - 1 \right) (1 + r^*)^t S_{j-t} \] (55)
is less than 0. Note that this condition holds if average growth rates after the initial time period are positive. My sample period is 1984-1994. Because there was a run up in stock prices early in my sample period, this appears to be true. Although stock returns were negative in a few years in my sample, average returns between 1984 and any time period between 1985 and 1994 were positive.