Inside-Outside Money Competition

Ramon Marimon, Juan Pablo Nicolini and Pedro Teles

WP 2003-09
Inside-Outside Money Competition*

Ramon Marimona,b,c, Juan Pablo Nicolinid and Pedro Telese,c\dagger

aUniversitat Pompeu Fabra.
bCentre for Economic Policy Research.
cNational Bureau of Economic Research.
dUniversidad Torcuato Di Tella.
eFederal Reserve Bank of Chicago.

Revised, July, 2003

Abstract

We study how competition from privately supplied currency substitutes affects monetary equilibria. Whenever currency is inefficiently provided, inside money competition plays a disciplinary role by providing an upper bound on equilibrium inflation rates. Furthermore, if “inside monies” can be produced at a sufficiently low cost, outside money is driven out of circulation. Whenever a ‘benevolent’ government can commit to its fiscal policy, sequential monetary policy is efficient and inside money competition plays no role.

*A previous version of this paper was circulated with the title: “Electronic Money: Sustaining Low Inflation?”. We thank Isabel Correia, Giorgia Giovanetti, Robert King, Sérgio Rebelo, Neil Wallace and participants at seminars where this work was presented for helpful comments and suggestions. We are particularly grateful to an anonymous referee, for many useful comments and suggestions. Teles thanks hospitality at the European University Institute (European Forum), and the financial support of Praxis XXI. Marimon thanks the support of CREA (Generalitat de Catalunya). The opinions expressed herein do not necessarily represent those of the Federal Reserve Bank of Chicago or the Federal Reserve System.

†Corresponding author: Pedro Teles, Federal Reserve Bank of Chicago, 230 S. LaSalle St., Chicago, IL 60604, USA. Tel.: +1-312-3222947; fax.: +1-312-3222357; pteles@frbchi.org. Teles is on leave from Banco de Portugal and Universidade Catolica Portuguesa.
Key words: Electronic money; Inside Money; Currency competition; Reputation; Inflation

JEL classification: E40; E50; E58; E60
1. Introduction

Payment systems have gone through a major transformation in the last two decades. In particular, electronic payments have risen in most developed countries and are expected to rise even more in the future. The development of the technology to transfer information electronically has increased substitutability between deposits and currency in transactions and has substantially reduced the cost of transactions using deposits. Deposits used for electronic payments are highly substitutable for currency because the settling value is ultimately a liability of the financial institution that issues the electronic card (checks, in contrast, are a liability of the purchaser). Clearing electronic transactions is also considerably less expensive than clearing checks (1/3 to 1/2 of the cost of checks, according to Humphrey et al, 1996). Furthermore, in contrast to currency, deposits used for electronic transactions can pay nominal interest on the average balance at a very low cost.

In spite of the technological developments leading to a widespread use of different forms of electronic money, there has been little theoretical attention on a range of issues raised by this. How is monetary policy affected by the increased competition from inside money? Does the increased efficiency in the supply of inside money induce lower inflation rates? Can the increasing efficiency in the supply of inside money result in a cashless economy? In other words, will inside money drive outside money out? In this paper we investigate the theoretical issues associated with competition between currency and currency substitutes, between outside and inside money.

At first glance, competition between suppliers of currency substitutes and between them and the monopolist supplier of currency should induce a lower price for the use of money and, therefore, lower inflation rates as well as nominal interest rates. However, one reason for high inflation rates, emphasized in the literature, is the time inconsistency of monetary policy; and it is unclear whether expos-

1 For example, Humphrey et al. (1996) find that “in all (fourteen) developed countries but the United States, electronic payments have been either the sole or the primary reason for the 34 percent rise in total non-cash payments between 1987 and 1993” (p. 935).

2 According to Humphrey et al. (2003), there has been a major reduction in the operating costs of providing bank payments and other services, associated with the development of electronic payments. They estimate those costs to have fallen by 24% relative to banks’ total assets in 12 European countries over 1987-1999.

3 We call these deposits used for electronic payments, electronic money, which are privately issued currency substitutes, a form of inside money.
ing monetary authorities to competition will discipline them or possibly worsen the time consistency problem. In other words, the role of competition cannot be analyzed independently of the commitment problem. The aim of this paper is to study these issues in the context of a dynamic monetary general equilibrium model where currency is the unique outside money and where competitively supplied inside monies are perfect substitutes for currency. To this end, we consider monetary regimes that differ in two dimensions regarding the monetary authority: the objective function (whether the aim is to maximize transfers or welfare) and the ability to commit to a policy (whether there is full commitment or policies are sequentially redesigned).

We start the analysis in Section 2 by describing the competitive equilibria for given monetary policies. In Section 3, we show that a government that maximizes transfers (or revenues) and is able to commit to its policies will be induced by competition from currency substitutes to set a low stationary inflation rate. This inflation rate is driven down with the reduction of financial intermediation costs, and approaches a negative number, corresponding to the Friedman rule, as the intermediation costs approach zero. Since these low inflation equilibrium outcomes are time inconsistent we analyze, in Section 4, the set of sustainable equilibria, in particular, whether the commitment solution can be sustained through reputation, and how competition from currency substitutes affects the set of sustainable equilibria. We show that the set of sustainable equilibria with valued currency is characterized by inflation rates which are nonnegative and are bounded above. The zero lower bound results from the need of future positive rents for the reputation mechanism to work. The upper bound results from inside money competition since it limits the expected revenues that can be obtained from outside money. When the production of inside money is sufficiently efficient the corresponding upper bound would become negative and, as a result, there is no equilibrium with valued currency.

Competition between outside and inside money is an interplay between two sources of inefficiency, one resulting from lack of commitment affecting the supply of outside money and the other an assumed technological inferiority in the supply of inside money. Outside money is produced at zero cost but, without commitment, requires inflationary rents to exist in equilibrium. Inside money is produced competitively but at a positive cost. In equilibrium, whether inside or outside money circulates is determined by which of the two sources of inefficiency is dominant. In summary, inside money competition enhances efficiency by constraining the inflation rates that can be sustained in equilibria with valued
currency. However, as the intermediation costs are reduced, outside money may be driven out of circulation. In this case, because the economy would be using a more costly technology to supply money, there would be a welfare loss.

In Section 5 we analyze the case of a “representative” government. With full commitment, the Ramsey planner chooses to implement the Friedman rule. Therefore, with commitment, there is no disciplinary role for competition from currency substitutes. However, even if the monetary authority cannot commit to future decisions, as long as the fiscal authority is committed to an expenditure and tax policy, it is a time-consistent monetary policy to maintain the Friedman rule. This is due to the fact that, once there is commitment to fiscal policy, the zero bound on interest rates leaves no room for enhancing welfare by changing the time pattern of government revenues. It follows that in this regime, inside money competition plays no role independently of whether there is commitment to monetary policy. Only the ‘technologically efficient’ outside money circulates.

In our model we abstract from some aspects that distinguish different “currency substitutes”. Deposits can be used for transactions through electronic payments in many different ways. Our model allows for the use of deposits for transactions through an arrangement that most resembles debit cards, which allow buyers to make purchases directly using funds from some form of deposit account. Reloadable cash cards would also fit our description of currency substitutes, but these cards are not widely used and do not typically pay interest, although they could.

In our set up, currency substitutes are assumed to be fully backed, default free deposits that are perfect substitutes for currency. The suppliers of these deposits are price takers. Relaxing these assumptions can significantly alter the results. If the suppliers of currency substitutes can default on nominal contracts, then they will, unless the resulting loss of future profits prevents them from doing so. If the suppliers of inside monies were not price takers, then they would have an incentive to overissue in order to devalue outstanding balances. In Marimon, Nicolini and Teles (2000), we analyze a monetary arrangement of that type as an example of how the reputation and the competition mechanisms interact.

That alternative environment is also analyzed in Klein (1974), with “...one dominant money (currency supplied by a government monopoly) and many privately produced nondominant monies (deposits supplied by different commercial banks).” Klein asked most of the questions that we address in this paper. In particular, he made it clear that competition between the private issuers of currency substitutes and between them and the monopolist issuer of currency did
not dismiss and could even raise intertemporal consistency problems. However, he did not provide a full characterization of the equilibrium set as we do in this paper. To our knowledge, Taub (1985) has been the only previous attempt to study “currency competition” taking into account reputational aspects using a dynamic general equilibrium framework.4

2. Competitive monetary equilibria

In this section we describe the economic environment and characterize its monetary equilibria for a given policy. The economy is populated by a large number of identical infinitely lived households, financial intermediaries, and a government. The households have preferences defined over consumption of a cash good, \(c^1_t \), consumption of a credit good, \(c^2_t \), and total labor, \(n_t \), for any period \(t \geq 0 \),

\[
V = \sum_{t=0}^{\infty} \beta^t [u(c^1_t) + u(c^2_t) - \alpha n_t].
\] (2.1)

Assuming that leisure enters linearly into the utility function is in no way essential, but significantly simplifies the analysis. The function \(u \) is increasing, strictly concave, and differentiable.

The households are endowed with a unit of time that can be used for leisure or total labor, \(n_t \), which can be allocated to the production of the consumption good or the production of deposits, \(n^e_t \). The production technology of the consumption good is linear with unitary coefficients. Thus, feasibility requires that

\[
c^1_t + c^2_t = n_t - n^e_t
\]

We use the timing of transactions as found in Svensson (1985). The goods market meets in the beginning of the period. The cash good, \(c^1_t \), must be purchased using either currency, \(M_t \), or privately issued currency substitutes, \(E_t \), which have been carried over from the previous period. Currency substitutes are deposits that the buyers can easily access, for example using electronic cards. The credit good, wages, and government transfers are paid at the end of the period in the assets market where the households can adjust their portfolios of currency, deposits, and real bonds. In principle, currency and currency substitutes do not have

4In contrast with this paper, Taub (1985) only considers time-consistent stationary policies and therefore cannot provide a full characterization of equilibria with reputation and competition.
to be traded at par. In other words, there are two nominal units of account corresponding to the two payment systems. Goods are priced in units of these two assets; that is, P^m_t is the price of goods in currency and P^e_t the corresponding price in privately issued currency substitutes. The corresponding exchange rate in period t is $\varepsilon_t = P^m_t / P^e_t$, which denotes the price of deposits in units of currency.

We focus our attention on three types of equilibria. In the first type of equilibria, both currency and deposits are valued, meaning that if the supply was positive and finite, the price would be finite. Because of perfect substitutability the exchange rate is indeterminate. We look at equilibria where the two monies trade at par, $\varepsilon_t = 1$, and where the supply and demand of deposits is zero, $E_t = 0$, $t \geq 0$. In the second type of equilibria, currency is never valued. Only deposits are used for transactions. If $M_t > 0$, then $\varepsilon_t = \infty$. Finally, we also consider a third type of equilibria where deposits have zero value, but currency is valued. In this case, if $E_t > 0$, then $\varepsilon_t = 0$. There are no equilibria where both monies have zero value.

We use P_t to denote the price of goods in the relevant unit of account. Thus, when currency is valued, including the case in which deposits are also valued, $\varepsilon_t = 1$, $t \geq 0$, then $P_t = P^m_t$, and when only inside money circulates, then $P_t = P^e_t$.\footnote{In our environment with a dominant money (currency) and privately issued deposits, it would be natural to assume a one-sided convertibility legal requirement in that deposits are convertible on demand into currency at a one-to-one fixed exchange rate. This convertibility requirement implies that, in equilibrium, $\varepsilon_t \geq 1$. If $\varepsilon_t < 1$, depositors would exercise their option to convert their deposits at par value.}

The representative household is endowed with initial holdings of money M_0 and of real bonds valued at $R_0 b^h_0$, as well as initial deposits that are assumed to be zero, $I_0^* E_0 = 0$. We assume for convenience that $R_0 = \beta^{-1}$. The household chooses sequences of consumptions and labor $\{c^1_t, c^2_t, n_t\}$ and portfolios $\{M_{t+1}, b^h_{t+1}, E_{t+1}\}$, $t \geq 0$, treating parametrically prices and interest rates $\{P_t, \varepsilon_t, R_t, \Pi_t\}_{t=0}^\infty$, government transfers $\{g_t\}_{t=0}^\infty$, and dividends from financial intermediaries $\{\Pi_t\}_{t=0}^\infty$. I^*_{t+1} is the gross interest on deposits held from period t to $t+1$ in units of deposits.

If both outside and inside money are valued forever, i.e., $\varepsilon_t = 1$, $t \geq 0$, the household intertemporal budget and cash-in-advance constraints for $t \geq 0$ are

\begin{align*}
M_{t+1} + P_t b^h_{t+1} + E_{t+1} &\leq M_t + P_t R_t b^h_t + I^f_t E_t - P_t (c^1_t + c^2_t) + P_t n_t + P_t g_t + \Pi_t \quad (2.2) \\
P_t c^1_t &\leq M_t + E_t \quad (2.3)
\end{align*}

and a no-Ponzi scheme condition that guarantees that the present value budget is
satisfied. Notice that there is no nominal interest paid on currency, while deposits E_{t+1} are remunerated by financial intermediaries at the gross nominal interest rate, I_{t+1}. The nominal interest rate on bonds is given by $I_{t+1} \equiv \frac{P_{t+1}}{P_t} R_{t+1}$.

Since currency does not pay nominal interest, in the equilibria where both currency and deposits are valued, and $\varepsilon_t = 1, t \geq 0$, it must be that $I^f_{t+1} = 1, t \geq 0$. Then an equilibrium allocation must satisfy, for $t \geq 0$,

$$\frac{u'(c^1_{t+1})}{\alpha} = I_{t+1}, \quad (2.4)$$

$$\frac{u'(c^2_t)}{\alpha} = 1, \quad (2.5)$$

$$R_{t+1} = \beta^{-1} \quad (2.6)$$

In an equilibrium where currency is never valued and where only deposits are used for transactions, the equation (2.4) is replaced with

$$\frac{u'(c^1_{t+1})}{\alpha} = 1 + I_{t+1} - I^f_{t+1} \quad (2.7)$$

meaning that the cost of holding inside money is the difference between the return on bonds and the return on deposits. To simplify notation, from now on we use the fact that in equilibrium the real rate of return on bonds always satisfies (2.6).

Private issuers of inside money The financial intermediation sector is competitive. A representative issuer of *inside money* offers deposits E_{t+1} at a gross interest rate I^f_{t+1}. We assume that their contracts are enforceable, possibly through banking regulation. The financial intermediation technology is such that they must pay a real cost, in units of labor, for the supply of deposits, at redemption time, as a fraction of the real value of the outstanding deposits: $n_t^e = \theta \frac{E_t}{R_t}$. The financial intermediary holds the total amount deposited, E_{t+1}, as bonds, $P_t b_t^e$, which pay gross interest I_{t+1}. The cash flow of the financial intermediary in period $t \geq 0$ is

$$\Pi_t = E_{t+1} - E_t I^f_t - P_t b_t^e + P_t b_t^p \beta^{-1} - P_t n_t^e$$

6If inside money is not valued, i.e., $\varepsilon_t = 0, t \geq 0$, E_t must be replaced by $\varepsilon_t E_t$ in the constraints and, similarly, if currency is not valued, i.e., $\varepsilon_t = \infty, t \geq 0$, M_t must be replaced by M_t / ε_t.

8
Free entry in the financial intermediation sector results in $\Pi_{t+1} = 0$, $t \geq 0$, which, given that $E_{t+1} = P_t e^{\epsilon}_{t+1}$ and $P_t n^e_t = E_t \theta$, implies

$$I_{t+1} - I^I_{t+1} = \theta, \ t \geq 0 \quad (2.8)$$

Recall that we assume that financial intermediaries are price takers and honor their liabilities. If they were not price takers, then it would be optimal to surprise the households and overissue. This overissuing would have an impact on the price level and would reduce the real value of the nominal liabilities of the financial intermediary. Similarly, if the deposit contracts could not be enforced then they would have an incentive, in any given period, to default on deposits.7

Government Given $(M_0, R_0 d_0)$, a government policy consists of a sequence of transfers $\{g_t\}_{t=0}^\infty$, that can be negative, and a monetary and debt policy $\{M_{t+1}, d_{t+1}\}_{t=0}^\infty$. For now, we abstract from sources of revenues other than seigniorage; therefore, in the equilibria where both currency and deposits are valued, the intertemporal budget constraint of the government is

$$M_{t+1} + P_t d_{t+1} \geq M_t + P_t R_t d_t + P_t g_t \quad (2.9)$$

Together with a no-Ponzi games condition.

In setting its policy, the government takes into account the competitive behavior of the private sector. Using (2.6), the present value budget constraint can be written as

$$\sum_{t=0}^\infty \beta^t g_t \leq \sum_{t=0}^\infty \beta^{t+1} (I_{t+1} - 1) m(I_{t+1}) - \frac{M_0}{P_0} - R_0 d_0 \quad (2.10)$$

where $I_{t+1} = \beta^{-1} \frac{P_{t+1}}{P_t}$ and $m(I)$ is defined implicitly by (2.4) together with the cash-in-advance constraint, i.e., $m(I) = v^{-1}(\alpha I)$. In the equilibria where currency is not valued the budget constraint would be

$$\sum_{t=0}^\infty \beta^t g_t \leq -R_0 d_0 \quad (2.11)$$

It is well known, that, in general, for a given money supply policy $\{M_{t+1}\}_{t=0}^\infty$ there are multiple competitive equilibria, with different paths for the initial price

7Marimon, Nicolini and Teles (1999) study the case of private issuers of currency who are neither price takers nor necessarily credible.
level and interest rates \((P_0, \{I_{t+1}\}_{t=0}^\infty)\). We will focus our attention on equilibria with constant rates of money growth, from period \(t = 1\) on. In this case, in addition to stationary equilibria there may be multiple non-stationary equilibria. We only consider the equilibria that are stationary from period \(t = 1\) on.

Competitive equilibria Given \(\left(M_0, R_0d_0, R_0b_0^h, R_0b_0^e, I_0^f E_0 \right)\) and a prespecified government policy \(\{M_{t+1}, d_{t+1}, g_t\}_{t=0}^\infty\), a competitive equilibrium where inside and outside money are valued (i.e. \(\varepsilon_t = 1, t \geq 0\))\(^8\) consists of sequences of price levels and interest rates \(\{P_t, R_t, I_{t+1}^f\}_{t=0}^\infty\), households’ allocations \(\{c_t^1, c_t^2, n_t, M_{t+1}, E_{t+1}, b_{t+1}^h\}_{t=0}^\infty\), and financial intermediaries’ allocations \(\{n_t^c, E_{t+1}, b_{t+1}^e\}_{t=0}^\infty\), such that households maximize their utility subject to their budget constraints, financial intermediaries maximize profits, and markets clear; that is, for \(t \geq 0\),

\[
\begin{align*}
 c_t^1 + c_t^2 &= n_t - n_t^c; \\
 n_t^c &= \theta E_t P_t; \\
 d_t &= b_t^h + b_t^e.
\end{align*}
\]

Equilibria with valued currency As previously mentioned, we are interested in the characterization of stationary equilibria (from period one on) where one or both forms of monies are valued. In equilibria where currency is held, the cost of holding currency must be less than or equal to the cost of holding deposits;

\[
I_{t+1}^f \leq 1
\]

must hold. Since the cost of holding deposits is \(I_{t+1} - I_{t+1}^f = \theta\), in a stationary equilibrium with valued currency it must be that either \(I_{t+1} = I < 1 + \theta, t \geq 0\) or \(I_{t+1} = 1 + \theta, t \geq 0\). In equilibria with \(I < 1 + \theta, t \geq 0\), deposits do not have value. This means that if the supply of deposits is positive, \(E_t > 0\), the exchange rate must be \(\varepsilon_t = 0\). When \(I_{t+1} = 1 + \theta, t \geq 0\), the households are indifferent between holding currency and deposits. We will assume that only currency is held, so that \(E_t = 0\).

Cashless equilibria In an equilibrium where currency is not valued and only deposits are used for transactions, the price level is \(P_t = P_e^m\), and both the nominal interest rate on deposits, \(I_t^f\), and on bonds, \(I_t\), are in units of deposits. There is a unique such equilibrium, up to the determination of all nominal variables.

\(^8\)The competitive equilibria where either only outside money or only inside money is valued are defined analogously.
Furthermore, there is no equilibrium where neither currency nor deposits are valued. In the equilibrium with valued deposits, if the supply of currency is positive, $M_t > 0$, then $\varepsilon_t = \infty$. The incremental cost of the cash good is equal to the difference between the interest rate on bonds and the one on deposits, that is, the intermediation cost, θ (i.e., $I_{t+1} - I_t^f = \theta, t \geq 0$).

In this economy with inside money, the nominal supply of deposits is indeterminate. It follows that price levels are also indeterminate. The interest rates are also indeterminate, but the difference between the two interest rates is not, and that is what is relevant to determining the allocations. All of the real quantities except the initial consumption of the cash good are determined by

\[
\begin{align*}
 & u'(c_1^2) = \alpha; u'(c_{t+1}^1) = \alpha(1 + \theta) \\
 & n_t = c_t^2 + c_t^1(1 + \theta), t \geq 0.
\end{align*}
\]

Since $c_0 = \frac{E_0}{I_0}$, the initial consumption is indeterminate if $E_0I_0 > 0$. Assuming $E_0I_0 = 0$ avoids this indeterminacy without affecting the characterization of equilibria from period one on.\(^1\)

3. Equilibria with commitment

In this section, we consider full commitment policies under the assumption that the government chooses the policy $(\{M_{t+1}\}, \{d_{t+1}\}, \{g_t\})$ that maximizes its preferences for revenues (or transfers). More precisely, we assume that the government’s problem is to maximize $\sum_{t=0}^{\infty} \beta^t G(g_t)$ (where, for standard reasons, the function G is assumed to be increasing and strictly concave), subject to (2.10). Thus, given that in equilibrium the gross real interest rate is constant and equal to β^{-1}, the government will always choose a constant sequence of transfers. Therefore, the value to the government of different allocations can be measured in terms of g.

In the full commitment optimal program the value of the outstanding initial money balances is zero, $\frac{M_0}{I_0} = 0$. The choices of interest rates are likely to be constrained by the presence of currency substitutes. To see this, notice that without inside money competition, revenues from the inflation tax are given by $f(I) = (I - 1)m(I)$. We assume that the function $f(I)$ has a unique maximum I^*, and that $f'(I) > 0$ for $I^* > I \geq 1$ and $f'(I) < 0$ for $I > I^*$. If, for example, u is of

\[^9\]The formal treatment of the existence and non-uniqueness of monetary equilibria in economies with inside money only is, to our knowledge, best performed by Drèze and Polemarchakis (2000).

\[^10\]This cashless economy is not the limit of economies with well defined currency demands, as in Woodford (1998) and, therefore, it is not possible to determine the initial price level in our cashless equilibrium as the limit of a sequence of equilibria with valued currency.
the CRRA form then f satisfies these assumptions. It follows that an optimal plan
is stationary $I_{t+1} = I, t \geq 0$. Furthermore, whenever $f'(1 + \theta) \geq 0$, i.e., revenues
from the inflation tax are non-decreasing at $1 + \theta$, the unconstrained choice of the
interest rate is greater than or equal to $1 + \theta$. Inside money competition prompts
the government to choose $I = 1 + \theta$. Condition (2.8) implies that $I_{t+1}^f = 1$. More
formally,

Proposition 1 Assume there exists $I^* > 1 + \theta$ such that $f'(I) > 0$ for $I^* > I \geq 1$
and $f'(I) < 0$ for $I > I^*$. Then, the commitment solution for the revenue
maximizing government is $I_{t+1} = 1 + \theta$, resulting in $I_{t+1}^f = 1$ for $t \geq 0$.

It follows as a corollary that as the intermediation costs are reduced (i.e.,
$\theta \searrow 0$) – for example, because the suppliers of currency substitutes become more
efficient –, the commitment equilibrium approaches the Friedman rule, where the
rents to the monopolist supplier of currency are zero.

The commitment solution is time inconsistent. In this solution, at time zero,
the government runs a big open market operation holding real bonds issued by
the private sector that are exchanged for currency so that the real value of the
outstanding money stock is zero. In addition, monetary policy from time one on
is such that the gross nominal interest rate is constant over time and set at $1 + \theta$.
At time $t \geq 1$, the government has outstanding liabilities $\left[\frac{M_t}{P_t} + \beta^{-1} d_t \right]$, so that
if it was able to commit from time t on, it would be optimal to revise the plan
by setting $\frac{M_t}{P_t} = 0$, thereby conducting another big open market operation. The
interest rate plan $I_t = 1 + \theta$ will not necessarily be optimal for a government that
can decide sequentially. Therefore, we turn our attention to an economy without
a fully committed monetary authority.

4. Equilibria without commitment

In this section, we define and characterize equilibria when the government makes
choices sequentially. These decisions depend on the history of the economy, which
is given by

$$h_0 = \left\{ M_0, R_0 d_0, R_0 b^h_0, R_0 b^c_0, I_0 E_0 \right\} \text{ and } h^1_{t+1} = \{ h_t, M_{t+1}, d_{t+1}, g_t \}, \text{ for } t \geq 0.$$

and $h_{t+1} = \{ h^1_{t+1}, b^h_{t+1}, b^c_{t+1}, E_{t+1} \}, \text{ for } t \geq 0.$
Given a history h_t at the beginning of period t, the government moves first and chooses the policy for the period (g_t, M_{t+1}, d_{t+1}). Thus, h_{t+1}^1 is known within period t, at the time households make their choices.

A sequential policy for the government is a sequence of functions $\sigma = \{\sigma_t\}_{t=0}^\infty$, where $\sigma_t(h_t)$ specifies the choice of a government action (g_t, M_{t+1}, d_{t+1}) as a function of the history h_t. As in the commitment case, the government takes the competitive behavior of the private sector as a given when choosing a policy. An allocation rule for the private sector η is a sequence of functions $\{\eta_t\}_{t=0}^\infty$, where $\eta_t(h_{t+1}^1)$ specifies a one-period allocation for households and financial intermediaries $(c_{1t}, c_{2t}, n_t, M_{t+1}^d, E_{t+1}, b_{t+1}^h, b_{t+1}^b)$ as a function of the history h_{t+1}^1. If $\sigma_t(h_t)$ denotes the continuation of σ from h_t, sequential rationality implies that for each (t, h_t), $\sigma_t(h_t)$ is optimal (i.e., maximizes transfer revenues subject to (2.10)) given the allocation rules of the households.

A Sustainable Equilibrium (SE) is a pair (σ, η) such that: i) (σ, η) defines a competitive equilibrium, with corresponding prices $\{P_t, \varepsilon_t, R_{t+1}, I_{t+1}^f\}_{t=0}^\infty$, and ii) for each (t, h_t), $\sigma_t(h_t)$ is optimal given η.

In order to characterize the set of sustainable equilibrium values, we first need to identify the worst one.

Proposition 2. The value of a competitive equilibrium where currency is not held and deposits are used for transactions is the value of the worst sustainable equilibrium.

Proof. Let η be the allocation rule for the private sector corresponding to an equilibrium where only inside money is valued (as defined in Section 2). Let the strategy of the government σ be given by $M_{t+1} = (1 + \mu)M_t$, where $(1 + \mu)\beta^{-1} > 1 + \theta$, $d_t = d_0$, $g_t = -(\beta^{-1} - 1)d_0$, for all t. Currency is dominated and is not held in the equilibrium defined by (σ, η). Since currency is not valued, such a policy is sequentially rational for the government. It follows that the value of this equilibrium outcome, measured by the constant flow of government transfers, is

$$V^{WSE}(d_0) = -(\beta^{-1} - 1)d_0$$

where WSE stands for worst sustainable equilibrium. In fact the government can always guarantee this payoff, so that that there is no sustainable equilibrium with a value lower than $V^{WSE}(d_0)$. \(\blacksquare \)

\(^{11}\)The implementation of the policy has to obey the timing of transactions spelled out in Section 2 where good markets open first and asset markets open at the end of the period, taken from Svensson (1986).
In line with Chari and Kehoe (1990), we apply Abreu (1988)’s optimal penal codes and use the reversion to the worst sustainable equilibrium as the means of supporting equilibrium outcomes. As mentioned above, we will concentrate on stationary equilibria, except for the initial big open market operation.

More explicitly, consider the following government strategy σ: $M_1 = BM_0$, $M_{t+1} = (1 + \mu')M_t$, $t \geq 1$, $g_t = g = \mu' m(I') - d_1(\beta^{-1} - 1)$, and $d_{t+1} = d_1 = d_0 - \beta m(I')$, for all $t \geq 0$, as long as $M_s = (1 + \mu')M_{s-1}$, for $2 \leq s \leq t$, and $M_1 = BM_0$, where $I' = (1 + \mu')\beta^{-1} \leq 1 + \theta$. If $M_1 \neq BM_0$, then for $t \geq 1$, $M_{t+1} = (1 + \mu)M_t$, $g_t = -d_1(\beta^{-1} - 1)$, and $d_{t+1} = d_1$, where $(1 + \mu)\beta^{-1} > 1 + \theta$; and if $M_s \neq (1 + \mu')M_{s-1}$ for at least one $s \geq 2$, then, for $t \geq s$, $M_{t+1} = (1 + \mu)M_t$, $g_t = g_s = -d_s(\beta^{-1} - 1)$, and $d_{t+1} = d_s$, where $(1 + \mu)\beta^{-1} > 1 + \theta$. We consider the limiting equilibria as $B \to \infty$. For $I' = 1 + \theta$, the limiting strategy corresponds to following the policy achieved under full commitment (Proposition 1), as long as such a full commitment path has been followed previously, while a deviation to an inside money equilibrium -without cash, as in Proposition 2- follows if a deviation from the full commitment path is observed.

As we have seen (Proof of Proposition 1), the value for the government after a deviation is $V^{WSE}(d_t)$. Therefore, it is not profitable for the government to deviate from the path of constant growth of the money supply μ' if $V(I'; d_t) \geq V^{WSE}(d_t)$, $t \geq 1$, where

\[
V(I'; d_t) = \beta(I' - 1)m(I') - (1 - \beta) \left(m(I') + d_t\beta^{-1}\right), \ t \geq 1
\]

\[
= (\beta I' - 1)m(I') + V^{WSE}(d_t), \ t \geq 1
\]

At $t = 0$, the value of the equilibrium with I', $V(I'; d_0) = \beta(I' - 1)m(I') - (1 - \beta)d_0\beta^{-1}$ is always higher than $V^{WSE}(d_0)$. $V(I'; d_t) \geq V^{WSE}(d_t)$, for all t, only if $\beta I' - 1 = \bar{\pi}' \geq 0$, where $\bar{\pi}'$ is the, constant, inflation rate when I' is the gross nominal interest rate.

So far, we have shown that sustainability requires the inflation rate to be nonnegative.\footnote{12} In addition, competition from currency substitutes requires $I' = (1 + \pi')\beta^{-1} \leq 1 + \theta$. Thus, the set of (from period one) stationary sustainable competitive outcomes with valued currency is characterized by inflation rates satisfying

\[
\text{If there was nominal debt, the corresponding lower bound on inflation rates would be strictly positive.}
\]
\[0 \leq \pi \leq \beta (1 + \theta) - 1 \]

(4.2)

In the absence of competition from currency substitutes, the set of sustainable equilibria is a very large one that includes the commitment solution, i.e. the stationary inflation rate that allows achieving the maximum of the Laffer curve. As long as that value is positive, the equilibrium is sustainable. The punishment is autarchy, but from the perspective of a revenue maximizing government, autarchy has the same value as the deposits-only equilibrium.

Competition reduces the set of sustainable inflation rates by imposing an upper bound on equilibrium inflation when currency is valued. Thus, competition from currency substitutes allows to reduce the maximum level of the inflation rate in a sustainable equilibrium.

Because competition from currency substitutes reduces the future gains from issuing currency, it is more difficult to sustain equilibria where currency has value. If the supply of currency substitutes is very efficient, the set of sustainable equilibria with valued currency may be empty. That would be the case if, under commitment, competition from currency substitutes drove the inflation rates into negative numbers, which would happen if \(\theta < \beta^{-1} - 1 \). In that case, there would be no sustainable equilibrium with valued currency but there would still be a sustainable equilibrium outcome with deposits being used for transactions. In this equilibrium, the cost of transactions is given by the real intermediation cost \(\theta \).

Proposition 3. The policy with full commitment (of Proposition 1), characterized by \(I_{t+1} = 1 + \theta \), is sustainable if the intermediation cost \(\theta \) satisfies \(\theta \geq \beta^{-1} - 1 \); i.e., if the equilibrium inflation rate is non-negative, \(\pi \geq 0 \). If \(\theta < \beta^{-1} - 1 \), there is no sustainable equilibrium with valued currency, but there is a sustainable equilibrium with (only) inside money.

When the policy with full commitment is sustainable, the set of sustainable equilibria can be relatively large although, as (4.2) shows, it shrinks with the costs of supplying inside money. Efficiency is thus enhanced as these costs are reduced, to the point where outside money is driven out of circulation. At this point there would be a discrete loss of welfare, because of the use of a relatively more costly technology to supply money. In turn, this cost would be minimized as the inside-money technology becomes increasingly efficient.
5. The case of a representative government

In this section we show how the results we have obtained so far are modified when we assume that the government maximizes welfare. As in the standard Ramsey problem, we assume exogenous -per period- government expenditures, \(g \). As the ability to collect seigniorage will be limited by the efficiency of the financial intermediaries, we allow for the government to levy consumption taxes, \(\tau_t \), as well as taxes on the production of inside money, \(\tau_t^e \), to ensure that expenditures can be financed. In this paper we concentrate on the choice of monetary policy and therefore we maintain full commitment on the choice of tax policy, in addition to exogeneity of expenditures. We allow for monetary policy to be chosen with and without commitment.

As in the previous section, the timing of events is as in Svensson (1985). Nicolini (1998) shows that with this timing, the time inconsistency problem of a Ramsey government is of a different nature than in the classic papers of Calvo (1978) and Lucas and Stokey (1983), since there are costs of unanticipated inflation. The two main differences that this timing introduces are that the optimal deviation for inflation is always finite and that for the government to be willing to deviate from the Ramsey policy and inflate at a higher rate, the price elasticity of consumption has to be larger than one. We will assume that this is indeed the case. Nicolini (1998) obtains these results in an environment where seigniorage is the sole source of revenue. In our set up there are alternative taxes which implies that the optimal monetary policy is characterized by the Friedman rule. As we show in this section, in our economy, when there is commitment to tax policy, the monetary policy is time consistent.

The consumer’s problem is the same as before, except for the presence of a tax on consumption. We simplify the analysis in this section by assuming preferences of the form (2.1), but with the additional restriction of constant relative risk aversion (CRRA), i. e., \(-u''(c_t)/u'(c_t) = \rho > 0 \), where \(1/\rho \) is the price elasticity of consumption. For the reasons stated above, we assume that \(\rho < 1 \). If \(\varepsilon_t = \varepsilon \in \{0, 1\} \), \(t \geq 0 \), the budget and cash-in-advance constraints are

\[
M_{t+1} + P_t b_{t+1} + \varepsilon_tE_{t+1} \leq P_t n_t - (1 + \tau_t)P_t(c_t^1 + c_t^2) + M_t + P_t R_t b_t^h + I_t^f \varepsilon_tE_t \quad (5.1)
\]

\[
(1 + \tau_t)P_t c_t^1 \leq M_t + \varepsilon_tE_t \quad (5.2)
\]

for \(t \geq 0 \), \(M_0, R_0b_0^h, E_0 = 0 \) given. Again, we assume that \(R_0 = \beta^{-1} \).
The tax on consumption imposes a distortion between consumption and leisure, shown in the following first order conditions for $t \geq 0$:

$$\frac{u'(c^2_t)}{\alpha} = 1 + \tau_t, \quad t \geq 0$$
(5.3)

As before, when currency has value, the marginal rate of substitution between the two consumption goods is such that

$$\frac{u'(c_{1t+1}^1)}{u'(c_{2t+1}^2)} = I_{t+1}, \quad t \geq 0.$$
(5.4)

When only inside money circulates the consumptions of the two goods satisfy

$$\frac{u'(c_{1t+1}^1)}{u'(c_{2t+1}^2)} = 1 + I_{t+1} - I_{t+1}^f, \quad t \geq 0.$$
(5.5)

Since there are consumption taxes the real value of deposits is $E_t (1 + \tau_t) P_t$. The financial intermediation technology is described by $n_t = \theta - \frac{E_t}{(1 + \tau_t) P_t}$. The financial intermediaries pay a tax on time used to produce money, τ^e_t. Free entry in the financial intermediation sector results in

$$I_{t+1} - I_{t+1}^f = \frac{(1 + \tau^e_{t+1}) \theta}{1 + \tau^e_{t+1}}, \quad t \geq 0.$$
(5.6)

If, as it will be shown to be the case, $\tau^e_{t+1} = \tau_{t+1}$, then (5.5) and (5.6) imply

$$\frac{u'(c_{1t+1}^1)}{u'(c_{2t+1}^2)} = 1 + \theta, \quad t \geq 0.$$
(5.7)

5.1. Optimal policy under commitment

The optimal policy under commitment is the solution of a dynamic Ramsey problem, as in Lucas and Stokey (1983); like they did, we follow the primal approach. The objective of the government is to maximize the welfare of the representative household, subject to feasibility and other competitive equilibrium constraints. These other competitive equilibrium constraints are consolidated in an implementability condition.

We first consider the case where $I_{t+1}^f \leq 1$ and only currency is used for transactions. The budget constraint of the households, from any period $t \geq 0$ on, can be
written as follows, provided that the cash-in-advance constraint is satisfied with equality for all $t \geq 0$:

$$\sum_{s=1}^{\infty} \beta^s \left\{ (1 + \tau_{t+s}) \left[I_{t+s}c_{t+s}^1 + c_{t+s}^2 \right] - n_{t+s} \right\} + (1+\tau_t) \left(c_t^1 + c_t^2 - n_t \right) \leq (1+\tau_t)c_t^1 + b_t \beta^{-1}$$

This constraint, for $t = 0$, satisfied with equality, together with (5.3) and (5.4), can be used to build the following implementability condition, which is a necessary condition for the optimal solution to be decentralized as a competitive equilibrium with taxes:

$$\sum_{t=1}^{\infty} \beta^t [u'(c_t^1)c_t^1 + u'(c_t^2)c_t^2 - \alpha n_t] + u'(c_0^2)c_0^2 - \alpha n_0 - \alpha d_0 \beta^{-1} = 0$$

(5.9)

We can now define the Ramsey problem as the maximization of the utility function subject to (5.9) and

$$c_t^1 + c_t^2 + g - n_t \leq 0, \ t \geq 0.$$

(5.10)

In the following proposition we characterize the Ramsey solution.

Proposition 4. Let the utility function u be CRRA and $\rho < 1$. The Ramsey solution is such that $I_{t+1} = 1$ and $\tau_t^t = \tau_t^R$, for $t \geq 0$. Furthermore, $c_0^1 \equiv c_0^R < c_t^2 = c_{t+1}^1 = c^R$, $t \geq 0$.

Proof. The result follows directly from the first order conditions of the Ramsey problem. Let $\gamma \geq 0$ be the Lagrange multiplier associated with condition (5.9). Then, $\frac{u'(c_t^1)}{u'(c_0^1)} = 1 + \gamma(1-\rho)$, and, for $t \geq 0$, $I_{t+1} = \frac{u'(c_{t+1}^1)}{u'(c_{t+1}^2)} = \frac{1+\gamma(1-\rho)}{1+\gamma(1-\rho)} = 1$ and $1 + \tau_t = \frac{u'(c_t^2)}{\alpha} = \frac{1+\gamma}{1+\gamma(1-\rho)}$.

We have set up the Ramsey problem assuming that the cash-in-advance constraints were satisfied with equality. That is indeed the case if $u'(c_t^1) \geq \frac{(1+\tau_t)I_t}{\beta u'(c_{t+1}^2)} \beta u'(c_{t+1}^2) \geq \frac{(1+\tau_t)I_t}{\beta u'(c_{t+1}^2)}$, $t \geq 0$. At the Ramsey optimum $\beta_{t+1}^P = \frac{1}{I_{t+1}} = 1$, and $\tau_t = \tau_t^R$. The time zero cash-in-advance constraint is satisfied with equality if $c_0^1 \leq c_1^1$, which is the case provided $\rho \leq 1$.

We have also assumed that the optimal policy resulted in $I_{t+1}^I \leq 1$. Suppose that $I_{t+1}^I > 1, \ t \geq 0$. In that case only inside money circulates and the Ramsey problem is the one in the cashless economy.
The budget constraint of the households in the cashless economy after a deviation at some period $t \geq 0$ can be written as

$$\sum_{s=1}^{\infty} \beta^s \left\{ (1 + \tau_{t+s}) \left[(1 + \left(I_{t+s} - I_{t+s}^f \right)) c_{t+s}^1 + c_{t+s}^2 \right] - n_{t+s} \right\} + (1+\tau_t) c_t^2 - n_t \leq d_t \beta^{-1}$$

with $c_t^1 = 0$, since $E_t = 0$. For $t = 0$, this budget constraint and the first order conditions (5.5), (5.6), (5.3) can be summarized in the single implementability condition, (5.9), together with $c_0^1 = 0$. The feasibility condition is

$$(1 + \theta) c_t^1 + c_t^2 + g - n_t \leq 0, \ t \geq 0. \quad (5.12)$$

The Ramsey problem is to maximize the utility function, subject to feasibility, (5.12) and implementability, (5.9), with $c_0^1 = 0$.

The solution is given by a constant consumption tax, $\tau_t = \tau$, $t \geq 0$, and by a tax on the production of money that equals the consumption tax, $\tau_{t+1}^c = \tau_{t+1} = \tau$, $t \geq 0$. This way both cash and credit goods are taxed at the same rate, τ.

Using (5.7), $\frac{u'(c_{t+1}^1)}{u'(c_{t+1}^2)} = 1 + \theta$, for $t \geq 0$ and $c_0^1 = 0$. However, these marginal rates of substitution and initial consumption were a feasible solution to the Ramsey problem, as set up above, by choosing $I_{t+1}^f = 1 + \theta$ (resulting in $I_{t+1}^f = 1$) and a zero initial price of money. That (suboptimal) policy would increase revenues, by $\sum_{t=0}^{\infty} \beta^{t+1} \theta c_{t+1}^1$, and save on intermediation costs, relatively to a policy that implies $I_{t+1}^f > 1$. It follows that the Ramsey solution is such that $I_{t+1}^f \leq 1$, $t \geq 0$, so that currency substitutes will not be held, and only currency will be used for transactions.

This proposition states that under commitment, a benevolent government will follow the Friedman rule, $I_{t+1}^f = 1$, $t \geq 0$. The Friedman rule means that both cash and credit goods, from period one on, are taxed at the same rate. This is the optimal taxation solution since the utility function is homothetic in the two goods and separable in leisure - which are the conditions for uniform taxation of Atkinson and Stiglitz (1972), as highlighted by Lucas and Stokey (1983) and Chari, Christiano and Kehoe (1993). It also follows from standard optimal taxation principles that, since the price elasticity is greater than one ($\rho < 1$), the consumption in period 0 of the cash good is lower than the consumption from period 1 on. That is, there is a higher tax on the initial cash good (with a price elasticity of one).\(^{13}\)

\(^{13}\)See Nicolini (1998) for a further discussion of this.
Under the Friedman rule the price level will be decreasing at the rate of time preference, \(P_{t+1} = \beta P_t \), \(t \geq 0 \). The following path for the money supply supports the optimal allocation and prices: \(M_{t+1} = \beta M_t \), \(t \geq 1 \), and \(M_1 = \beta \frac{\omega K}{c_0} M_0 \). Notice that the growth rate of money is higher at time zero than from time one on.

5.2. Optimal monetary policy without commitment

In this section we discuss the implications of relaxing the assumption that the government is able to commit to monetary policy. We maintain the assumption of commitment to fiscal policy while monetary policy is sequentially decided and implemented. Such a regime is consistent with an institutional arrangement where there exists a well developed commitment technology for fiscal policy (e.g., fiscal policies are infrequently revised and have to be approved by parliaments), while that may not be the case for monetary policy. As we will see, once the government is committed to an optimal fiscal policy, there are no incentives for the monetary policy to deviate from the optimal Friedman rule. The reason is that government expenditures and alternative tax revenues are determined in period zero, and, furthermore, the monetary authority can not reduce revenues in future periods. Thus, it has no incentive to increase revenues either. The following proposition states the time consistency of monetary policy.

Proposition 5 Assume that the government can commit to tax policy. Then, monetary policy is time consistent.

Proof. In each period \(t \geq 1 \), the problem of a government that considers revising the Ramsey monetary policy is to maximize

\[
\sum_{s=0}^{\infty} \beta^s [u(c_{t+s}^1) + u(c^R) - \alpha (c_{t+s}^1 + c^R + g)]
\]

subject to the implementability condition

\[
\sum_{s=1}^{\infty} \beta^s \left\{ \left[\frac{u'(c_{t+s}^1)}{\alpha} - 1 \right] c_{t+s}^1 + \tau^R c^R - g \right\} + \tau^R c^R - g - c_{t}^1 - d_{t}^R \beta^{-1} = 0 \quad (5.13)
\]

and subject to the restriction that the nominal interest rate is non-negative. Given (5.4), the latter restriction can be written as \(c_{t+s}^1 \leq c^R \). Let \(\phi_{t+s} \) be the multipliers
of these constraints and \(\gamma \), the multiplier of the implementability condition. Then the first order conditions are

\[
 u'(c^1_t) = \alpha + \gamma \\
 u'(c^1_{t+s}) = \frac{\alpha + \gamma + \varphi_{t+s}}{1 + \frac{\omega}{\alpha}[1 - \rho]}, \quad s \geq 1
\]

If the constraint that the nominal interest rate cannot be negative is not binding, so that \(\varphi_{t+s} = 0, \quad s \geq 1 \), then since \(\rho < 1 \), \(u'(c^1_{t+s}) < u'(c^1_t), \quad s \geq 1 \). Therefore \(c^1_t < c^1_{t+s} \leq c^R, \quad s \geq 1 \), but, then, since \(u'(c^1_{t+s}) - \alpha > 0 \), \(s \geq 0 \), there are no incentives to deviate from the full commitment path with \(c^1_{t+s} = c^R, \quad s \geq 0 \). Similarly, if -as it is the case- the zero bound constraint is binding, so that \(c^1_{t+s} = c^R, \quad s \geq 1 \), in order to satisfy the budget constraint it must be that \(c^1_t \leq c^R \). It follows that \(c^1_t = c^R \). Since there are no incentives to deviate from period \(t \geq 1 \) on, the Ramsey policy is time consistent.

6. Concluding Remarks

The development of electronic payment systems has drastically reduced intermediation costs for the banking system, making inside money a closer substitute for outside money. Somewhat surprisingly, little attention has been paid to how those developments may affect the conduct of monetary policy. This paper sheds light on this and related issues.

We have shown that inside money competition may enhance efficiency, and that would certainly be the case if the provision of increasingly efficient inside money would compete with a fully committed central bank aiming at maximizing revenues. In this case, lower costs of producing inside money drive down inflation rates and, in the zero-cost limit, the Friedman rule is implemented. There are however two main qualifications to the view that inside-outside money competition works as standard product competition.

The first qualification is that competitive pressure may be exercised as an interplay between two forms of inefficiency; between the inefficiency of using costly produced inside money and the inefficiency generated by pursuing sequential monetary policies when there is limited commitment. This is the case when a revenue maximizer central bank can not commit to future interest rates. As the supply of inside money becomes increasingly efficient, equilibrium inflation rates are driven down to the point where the inflationary rents supporting valued currency vanish,
and the more efficient –even if more costly– inside money drives outside money out.

The second qualification is that the competitive pressure from inside money may be irrelevant when there is a benevolent government that delegates the implementation of monetary policy maintaining full commitment to fiscal policy. In this context monetary policy is efficient and time consistent. A Ramsey government chooses the Friedman rule with full commitment and, therefore, there is no disciplinary role for inside money competition. It turns out that such efficient policy is time consistent when there is commitment to fiscal policy. The time consistency of the Friedman rule results from the fact that there is no incentive to raise initial revenues, when the zero bound on interest rates does not allow for revenues to be reduced in the future. It follows that, even without commitment, there is no disciplinary role for inside money competition.

Although we do not analyze it in this paper, it should be clear that if the Ramsey solution implies an inflationary policy –for example, if seigniorage has to be collected because other taxes are not available– or if there is no commitment to a tax policy, then the Friedman rule is no longer time-consistent and inside money competition may affect equilibrium outcomes. In particular, in our economies the loss of confidence on outside money, following a deviation of the monetary authority, is characterized by a shift to a cashless economy. Since the technological inferiority of the inside money determines the welfare in the cashless economy, it follows that inside money competition would determine the sustainability of the Ramsey policy in these contexts.

Can the observed increased efficiency in the provision of currency substitutes justify the low inflation rates in most developed economies in the last two decades? Possibly, as we have seen, but then we should also be aware that the pressure for low inflation rates can threat the value of currency. We have also learnt that low inflation rates can also be the outcome of properly motivated and designed fiscal and monetary institutions, even when the latter are allowed to make discretionary choices.

References

Working Paper Series

A series of research studies on regional economic issues relating to the Seventh Federal Reserve District, and on financial and economic topics.

Dynamic Monetary Equilibrium in a Random-Matching Economy
Edward J. Green and Ruilin Zhou
WP-00-1

The Effects of Health, Wealth, and Wages on Labor Supply and Retirement Behavior
Eric French
WP-00-2

Market Discipline in the Governance of U.S. Bank Holding Companies: Monitoring vs. Influencing
Robert R. Bliss and Mark J. Flannery
WP-00-3

Using Market Valuation to Assess the Importance and Efficiency of Public School Spending
Lisa Barrow and Cecilia Elena Rouse
WP-00-4

Employment Flows, Capital Mobility, and Policy Analysis
Marcelo Veracierto
WP-00-5

Does the Community Reinvestment Act Influence Lending? An Analysis of Changes in Bank Low-Income Mortgage Activity
Drew Dahl, Douglas D. Evanoff and Michael F. Spivey
WP-00-6

Subordinated Debt and Bank Capital Reform
Douglas D. Evanoff and Larry D. Wall
WP-00-7

The Labor Supply Response To (Mismeasured But) Predictable Wage Changes
Eric French
WP-00-8

For How Long Are Newly Chartered Banks Financially Fragile?
Robert DeYoung
WP-00-9

Bank Capital Regulation With and Without State-Contingent Penalties
David A. Marshall and Edward S. Prescott
WP-00-10

Why Is Productivity Procyclical? Why Do We Care?
Susanto Basu and John Fernald
WP-00-11

Oligopoly Banking and Capital Accumulation
Nicola Cetorelli and Pietro F. Peretto
WP-00-12

Puzzles in the Chinese Stock Market
John Fernald and John H. Rogers
WP-00-13

The Effects of Geographic Expansion on Bank Efficiency
Allen N. Berger and Robert DeYoung
WP-00-14

Idiosyncratic Risk and Aggregate Employment Dynamics
Jeffrey R. Campbell and Jonas D.M. Fisher
WP-00-15
Post-Resolution Treatment of Depositors at Failed Banks: Implications for the Severity of Banking Crises, Systemic Risk, and Too-Big-To-Fail
George G. Kaufman and Steven A. Seelig

The Double Play: Simultaneous Speculative Attacks on Currency and Equity Markets
Sujit Chakravorti and Subir Lall

Capital Requirements and Competition in the Banking Industry
Peter J.G. Vlaar

Financial-Intermediation Regime and Efficiency in a Boyd-Prescott Economy
Yeong-Yuh Chiang and Edward J. Green

How Do Retail Prices React to Minimum Wage Increases?
James M. MacDonald and Daniel Aaronson

Financial Signal Processing: A Self Calibrating Model
Robert J. Elliott, William C. Hunter and Barbara M. Jamieson

An Empirical Examination of the Price-Dividend Relation with Dividend Management
Lucy F. Ackert and William C. Hunter

Savings of Young Parents
Annamaria Lusardi, Ricardo Cossa, and Erin L. Krupka

The Pitfalls in Inferring Risk from Financial Market Data
Robert R. Bliss

What Can Account for Fluctuations in the Terms of Trade?
Marianne Baxter and Michael A. Kouparitsas

Data Revisions and the Identification of Monetary Policy Shocks
Dean Croushore and Charles L. Evans

Recent Evidence on the Relationship Between Unemployment and Wage Growth
Daniel Aaronson and Daniel Sullivan

Supplier Relationships and Small Business Use of Trade Credit
Daniel Aaronson, Raphael Bostic, Paul Huck and Robert Townsend

What are the Short-Run Effects of Increasing Labor Market Flexibility?
Marcelo Veracierto

Equilibrium Lending Mechanism and Aggregate Activity
Cheng Wang and Ruilin Zhou

Impact of Independent Directors and the Regulatory Environment on Bank Merger Prices:
Evidence from Takeover Activity in the 1990s
Elijah Brewer III, William E. Jackson III, and Julapa A. Jagtiani

Does Bank Concentration Lead to Concentration in Industrial Sectors?
Nicola Cetorelli
Working Paper Series (continued)

On the Fiscal Implications of Twin Crises
Craig Burnside, Martin Eichenbaum and Sergio Rebelo

Sub-Debt Yield Spreads as Bank Risk Measures
Douglas D. Evanoff and Larry D. Wall

Productivity Growth in the 1990s: Technology, Utilization, or Adjustment?
Susanto Basu, John G. Fernald and Matthew D. Shapiro

Do Regulators Search for the Quiet Life? The Relationship Between Regulators and The Regulated in Banking
Richard J. Rosen

Learning-by-Doing, Scale Efficiencies, and Financial Performance at Internet-Only Banks
Robert DeYoung

The Role of Real Wages, Productivity, and Fiscal Policy in Germany’s Great Depression 1928-37
Jonas D. M. Fisher and Andreas Hornstein

Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy
Lawrence J. Christiano, Martin Eichenbaum and Charles L. Evans

Outsourcing Business Service and the Scope of Local Markets
Yukako Ono

The Effect of Market Size Structure on Competition: The Case of Small Business Lending
Allen N. Berger, Richard J. Rosen and Gregory F. Udell

Deregulation, the Internet, and the Competitive Viability of Large Banks and Community Banks
Robert DeYoung and William C. Hunter

Price Ceilings as Focal Points for Tacit Collusion: Evidence from Credit Cards
Christopher R. Knittel and Victor Stango

Gaps and Triangles
Bernardino Adão, Isabel Correia and Pedro Teles

A Real Explanation for Heterogeneous Investment Dynamics
Jonas D.M. Fisher

Recovering Risk Aversion from Options
Robert R. Bliss and Nikolaos Panigirtzoglou

Economic Determinants of the Nominal Treasury Yield Curve
Charles L. Evans and David Marshall

Price Level Uniformity in a Random Matching Model with Perfectly Patient Traders
Edward J. Green and Ruilin Zhou

Earnings Mobility in the US: A New Look at Intergenerational Inequality
Bhashkar Mazumder
The Effects of Health Insurance and Self-Insurance on Retirement Behavior
Eric French and John Bailey Jones

The Effect of Part-Time Work on Wages: Evidence from the Social Security Rules
Daniel Aaronson and Eric French

Antidumping Policy Under Imperfect Competition
Meredith A. Crowley

Is the United States an Optimum Currency Area?
An Empirical Analysis of Regional Business Cycles
Michael A. Kouparitsas

A Note on the Estimation of Linear Regression Models with Heteroskedastic Measurement Errors
Daniel G. Sullivan

The Mis-Measurement of Permanent Earnings: New Evidence from Social Security Earnings Data
Bhashkar Mazumder

Pricing IPOs of Mutual Thrift Conversions: The Joint Effect of Regulation and Market Discipline
Elijah Brewer III, Douglas D. Evanoff and Jacky So

Opportunity Cost and Prudentiality: An Analysis of Collateral Decisions in Bilateral and Multilateral Settings
Herbert L. Baer, Virginia G. France and James T. Moser

Outsourcing Business Services and the Role of Central Administrative Offices
Yukako Ono

Strategic Responses to Regulatory Threat in the Credit Card Market*
Victor Stango

The Optimal Mix of Taxes on Money, Consumption and Income
Fiorella De Fiore and Pedro Teles

Expectation Traps and Monetary Policy
Stefania Albanesi, V. V. Chari and Lawrence J. Christiano

Monetary Policy in a Financial Crisis
Lawrence J. Christiano, Christopher Gust and Jorge Roldos

Regulatory Incentives and Consolidation: The Case of Commercial Bank Mergers and the Community Reinvestment Act
Raphael Bostic, Hamid Mehran, Anna Paulson and Marc Saidenberg

Technological Progress and the Geographic Expansion of the Banking Industry
Allen N. Berger and Robert DeYoung
Choosing the Right Parents: Changes in the Intergenerational Transmission of Inequality — Between 1980 and the Early 1990s
David I. Levine and Bhashkar Mazumder

The Immediacy Implications of Exchange Organization
James T. Moser

Maternal Employment and Overweight Children
Patricia M. Anderson, Kristin F. Butcher and Phillip B. Levine

The Costs and Benefits of Moral Suasion: Evidence from the Rescue of Long-Term Capital Management
Craig Furfine

On the Cyclical Behavior of Employment, Unemployment and Labor Force Participation
Marcelo Veracierto

Do Safeguard Tariffs and Antidumping Duties Open or Close Technology Gaps?
Meredith A. Crowley

Technology Shocks Matter
Jonas D. M. Fisher

Money as a Mechanism in a Bewley Economy
Edward J. Green and Ruilin Zhou

Optimal Fiscal and Monetary Policy: Equivalence Results
Isabel Correia, Juan Pablo Nicolini and Pedro Teles

Real Exchange Rate Fluctuations and the Dynamics of Retail Trade Industries on the U.S.-Canada Border
Jeffrey R. Campbell and Beverly Lapham

Bank Procyclicality, Credit Crashes, and Asymmetric Monetary Policy Effects: A Unifying Model
Robert R. Bliss and George G. Kaufman

Location of Headquarter Growth During the 90s
Thomas H. Klier

The Value of Banking Relationships During a Financial Crisis: Evidence from Failures of Japanese Banks
Elijah Brewer III, Hesna Genay, William Curt Hunter and George G. Kaufman

On the Distribution and Dynamics of Health Costs
Eric French and John Bailey Jones

The Effects of Progressive Taxation on Labor Supply when Hours and Wages are Jointly Determined
Daniel Aaronson and Eric French
Working Paper Series (continued)

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Working Paper Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-industry Contagion and the Competitive Effects of Financial Distress Announcements:</td>
<td>Elijah Brewer III and William E. Jackson III</td>
<td>WP-02-23</td>
</tr>
<tr>
<td>Evidence from Commercial Banks and Life Insurance Companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Market Consolidation and Bank Productive Efficiency</td>
<td>Douglas D. Evanoff and Evren Örs</td>
<td>WP-02-25</td>
</tr>
<tr>
<td>Life-Cycle Dynamics in Industrial Sectors. The Role of Banking Market Structure</td>
<td>Nicola Cetorelli</td>
<td>WP-02-26</td>
</tr>
<tr>
<td>Private School Location and Neighborhood Characteristics</td>
<td>Lisa Barrow</td>
<td>WP-02-27</td>
</tr>
<tr>
<td>Teachers and Student Achievement in the Chicago Public High Schools</td>
<td>Daniel Aaronson, Lisa Barrow and William Sander</td>
<td>WP-02-28</td>
</tr>
<tr>
<td>The Crime of 1873: Back to the Scene</td>
<td>François R. Velde</td>
<td>WP-02-29</td>
</tr>
<tr>
<td>Estimating the Returns to Community College Schooling for Displaced Workers</td>
<td>Louis Jacobson, Robert LaLonde and Daniel G. Sullivan</td>
<td>WP-02-31</td>
</tr>
<tr>
<td>A Proposal for Efficiently Resolving Out-of-the-Money Swap Positions at Large Insolvent Banks</td>
<td>George G. Kaufman</td>
<td>WP-03-01</td>
</tr>
<tr>
<td>Depositor Liquidity and Loss-Sharing in Bank Failure Resolutions</td>
<td>George G. Kaufman</td>
<td>WP-03-02</td>
</tr>
<tr>
<td>Subordinated Debt and Prompt Corrective Regulatory Action</td>
<td>Douglas D. Evanoff and Larry D. Wall</td>
<td>WP-03-03</td>
</tr>
<tr>
<td>When is Inter-Transaction Time Informative?</td>
<td>Craig Furfine</td>
<td>WP-03-04</td>
</tr>
<tr>
<td>Tenure Choice with Location Selection: The Case of Hispanic Neighborhoods in Chicago</td>
<td>Maude Toussaint-Comeau and Sherrie L.W. Rhine</td>
<td>WP-03-05</td>
</tr>
<tr>
<td>Distinguishing Limited Commitment from Moral Hazard in Models of Growth with Inequality*</td>
<td>Anna L. Paulson and Robert Townsend</td>
<td>WP-03-06</td>
</tr>
<tr>
<td>Resolving Large Complex Financial Organizations</td>
<td>Robert R. Bliss</td>
<td>WP-03-07</td>
</tr>
</tbody>
</table>
Working Paper Series (continued)

The Case of the Missing Productivity Growth:
Or, Does information technology explain why productivity accelerated in the United States but not the United Kingdom?
Susanto Basu, John G. Fernald, Nicholas Oulton and Sylaja Srinivasan
WP-03-08

Inside-Outside Money Competition
Ramon Marimon, Juan Pablo Nicolini and Pedro Teles
WP-03-09