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Abstract

This chapter discusses identification of common selection models of the labor market.
We start with the classic Roy model and show how it can be identified with exclusion
restrictions. We then extend the argument to the generalized Roy model, treatment
effect models, duration models, search models, and dynamic discrete choice models.
In all cases, key ingredients for identification are exclusion restrictions and support
conditions.
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1 Introduction

This chapter discusses identification of common selection models of the labor market.
We are primarily concerned with nonparametric identification. We view nonparametric
identification as important for the following reasons.

First, recent advances in computer power, more widespread use of large data sets,
and better methods mean that estimation of increasingly flexible functional forms is
possible. Flexible functional forms should be encouraged. The functional form and
distributional assumptions used in much applied work rarely come from the theory.
Instead, they come from convenience. Furthermore, they are often not innocuous.!

Second, the process of thinking about nonparametric identification is useful input
into applied work. It is helpful to an applied researcher both in informing her about
which type of data would be ideal and which aspects of the model she might have
some hope of estimating. If a feature of the model is not nonparametrically identified,
then one knows it cannot be identified directly from the data. Some additional type
of functional form assumption must be made. As a result, readers of empirical papers
are often skeptical of the results in cases in which the model is not nonparametrically
identified.

Third, identification is an important part of a proof of consistency of a nonpara-
metric estimator.

However, we acknowledge the following limitation of focusing on nonparametric
identification. With any finite data set, an empirical researcher can almost never be
completely nonparametric. Some aspects of the data that might be formally identified
could never be estimated with any reasonable level of precision. Instead, estimators
are usually only nonparametric in the sense that one allows the flexibility of the model
to grow with the sample size. A nice example of this is Sieve estimators in which
one estimates finite parameter models but the number of parameters gets large with
the data set. An example would be approximating a function by a polynomial and
letting the degree of the polynomial get large as the sample size increases. However,

in that case one still must verify that the model is nonparametrically identified in

LA classic reference on this is Lalonde (1986) who shows that parametric models cannot replicate
the results of an experiment. Below we present an example on Catholic Schools from Altonji, Elder,
and Taber (2005a) suggesting that parametric assumptions drive the empirical estimates.



order to show that the model is consistent. One must also construct standard errors
appropriately. In this chapter we do not consider the purely statistical aspects of
nonparametric estimation such as calculation of standard errors. This is a very large
topic within econometrics.?

The key issue in identification of most models of the labor market is the selection
problem. For example, individuals are typically not randomly assigned to jobs. With
this general goal in mind we begin with the simplest and most fundamental selection
model in labor economics, the Roy (1951) model. We go into some detail to explain
Heckman and Honoré’s (1990) results on identification of this model. A nice aspect
of identification of the Roy model is that the basic methodology used in this case can
be extended to show identification of other labor models. We spend the rest of the
chapter showing how this basic intuition can be used in a wide variety of labor market
models. Specifically we cover identification in the generalized Roy model, treatment
effect models, the competing risk model, search models, and forward looking dynamic
models. While we are clearly not covering all models in labor economics, we hope the
ideas are presented in a way that the similarities in the basic models can be seen and
can be extended by the reader to alternative frameworks.

The plan of this chapter is specifically as follows. Section 2 discusses some econo-
metric preliminaries. We consider the Roy model in section 3, generalize this to the
Generalized Roy model in section 4, and then use the model to think about identi-
fication of treatment effects in section 5. In section 6 we consider duration models
and search models and then consider estimation of dynamic discrete choice models in

section 7. Finally in section 8 we offer some concluding thoughts.

2 Econometric Preliminaries

2.1 Notation

Throughout this chapter we use capital letters with ¢ subscripts to denote random
variables and small letters without ¢ subscripts to denote possible outcomes of that

random variable. We will also try to be explicit throughout this chapter in denoting

2See Chen (2007) for discussion of Sieve estimators, including standard error calculation.



conditioning. Thus, for example, we will use the notation
E(Y;| X;=x)

to denote the expected value of outcome Y; conditional on the regressor variable X;

being equal to some realization z.

2.2 Identification

The word “identification” has come to mean different things to different labor economists.
Here, we use a formal econometrics definition of identification. Consider two different

models that lead to data generating processes. If the data generated by these two

models have exactly the same distribution then the two models are not separately

identified from each other. However, if any two different model specifications lead to

different data distributions, the two specifications are separately identified. We give

a more precise definition below. Our definition of identification is based on some of

the notation and set up of Matzkin’s (2007) following an exposition based on Shaikh

(2010).

Let P denote the true distribution of the observed data X. An econometric model
defines a data generating process. We assume that the model is specified up to an
unknown vector 6 of parameters, functions and distribution functions. This is known
to lie in space ©. Within the class of models, the element § € © determines the
distribution of the data that is observable to the researcher Fy. Notice that identification
is fundamentally data dependent. With a richer data set, the distribution P, would be
a different object.

Let P be the set of all possible distributions that could be generated by the class
of models we consider (i.e. P = {F,:0 € ©}). We assume that the model is correctly
specified which means that P € P. The identified set is defined as

O(P)={0cO:P=P}.

This is the set of possible 6 that could have generated data that has distribution P.
By assuming that P € P we have assumed that our model is correctly specified so this
set is not empty. We say that 0 is identified if O(P) is a singleton for all P € P.

The question we seek to answer here is under what conditions is it possible to

learn about 6 (or some feature of #) from the distribution of the observed data P.
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Our interest is not always to identify the full data generating process. Often we are
interested in only a subset of the model, or a particular outcome from it. Specifically,

our goal may be to identify
b =V(0)

where W is a known function. For example in a regression model Y; = X! + w;, the
feature of interest is typically the regression coefficients. In this case ¥ would take the

trivial form
v(g) = g.

However, this notation allows for more general cases in which we might be interested in
identifying specific aspects of the model. For example, if our interest is in identifying
the covariance between X and Y in the case of the linear regression model, we do not
need to know 6 per se, but rather a transformation of these parameters. That is we

could be interested in
U(0) = Cov(X,,Y;).

We could also be interested in a forecast of the model such as

for some specific z. The distinction between identification of features of the model as
opposed to the full model is important as in many cases the full model is not identified,
but the key feature of interest is identified.

To think about identification of 1) we define

T(O(P)) = {T(0) : 0 € O(P)}.

That is, it is the set of possible values of ) that are consistent with the data distribution
P. We say that v is identified if V(O(P)) is a singleton.

As an example consider the standard regression model with two regressors:
Yi = B0+ 51Xy + B2 Xoi + & (2.1)

with E(e; | X; = x) = 0 for any value z (where X; = (Xy;, X2;)). In this case
0 = (B, Fx.) where Fx_. is the joint distribution of (Xy;, Xo;,€;) and 8 = (B, 81, B2)-

One would write © as B x Fx . where B is the parameter space for # and Fx . is the



space of joint distributions between X; and ¢; that satisfy E(e; | X; = x) = 0 for all .
Since the data here is represented by (Xi;, Xo;,Y;), Py represents the joint distribution
of (X1, X9, Y;). Given knowledge of 5 and Fx . we know the data generating process
and thus we know Fy.

To focus ideas suppose we are interested in identifying § (i.e. ¥(f3, Fx.) = () in
regression model (2.1) above. Let the true value of the data generating process be §* =
(8%, F%..) so that by definition Py« = P. In this case O(P) = {(8, Fx,.) € BX Fx.: Psp,. = P},
that is it is the set of (0, Fix.) that would lead our data (X;,Y;) to have distribu-
tion P. In this case W(O(P)) is the set of values of 3 in this set (i.e. V(O(P)) =
{6:(B,Fx.) € O(P) for some Fx. € Fx_.}).

In the case of 2 covariates, we know the model is identified as long as X7; and Xo;
are not degenerate and not collinear. To see how this definition of identification applies
to this model, note that for any 5* # 3 the lack of perfect multicollinearity means that

we can always find values of (x, z5) for which

Bo + Brxy + Bowa # By + i1 + Byxa.

Since E(Y; | X; = x) is one aspect of the joint distribution of Py, it must be the case
that when 8* # (3, Py # P. Since this is true for any value of 5 # %, then V(O(P))
must be the singleton §*.

However, consider the well known case of perfect multicollinearity in which the

model is not identified. In particular suppose that
X 1; + Xgi =1.

For the true value of 3* = (3, 37, 3;) consider some other value 3 = (85 + 35, 37 —
B5,0). Then for any x,
E(Y; | Xi =) = 5 + Biz1 + Gy
= 05 + B + 55 (1 — 1)
=B + B3 + (67 = F3) 1
= Bo + Biz1.

If Fx. is the same for the two models, then the joint distribution of (V;, X;) is the

same in the two cases. Thus the identification condition above is violated because with



0 = (5, F%.), P; = P and thus 3 € U(O(P)). Since the true value * € U(O(P)) as
well, W(O(P)) is not a singleton and thus  is not identified.

2.3 Support

Another important issue is the support of the data. The simplest definition of support
is just the range of the data. When data are discrete, this is the set of values that occur
with positive probability. Thus a binary variable that is either zero or one would have
support {0, 1}. The result of a die roll has support {1,2,3,4,5,6}. With continuous
variables things get somewhat more complicated. One can think of the support of a
random variable as the set of values for which the density is positive. For example, the
support of a normal random variable would be the full real line (which we will often
refer to as “full support”). The support of a uniform variable on [0, 1] is [0,1]. The
support of an exponential variable would be the positive real line.

This can be somewhat trickier in dealing with outcomes that occur with mea-
sure zero. For example one could think of the support of a uniform variable as
0,1],(0,1],[0,1), or (0,1). The distinction between these objects will not be impor-
tant in what we are doing, but to be formal we will use the Davidson (1994) definition
of support. He defines the support of a random variable with distribution F' as the
set of points at which F' is (strictly) increasing.® By this definition, the support of a
uniform would be [0, 1]. We will also use the notation supp(Y;) to denote the uncondi-
tional support of random variable Y; and supp(Y; | X; = =) to denote the conditional
support.

To see the importance of this concept, consider a simple case of the separable
regression model

Yi=9(X;) +w

with a single continuous X; variable and E(u; | X; = ) = 0 for x € supp(X;). In this
case we know that
E(Y; | X; = o) = g(x).

Letting X be the support of X, it is straightforward to see that g is identified on the set
X. But g is not identified outside the set X’ because the data is completely silent about
these values. Thus if X = R, g is globally identified. However, if X only covers a subset

3He defines F (strictly) increasing at point x to mean that for any € > 0, F(x +¢) > F(z — ¢).
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of the real line it is not. For example, one interesting counterfactual is the change in the
expected value of Y; if X; were increased by d : E(g(X; +9)). If X = R this is trivially
identified, but if the support of X; were bounded from above, this would no longer be
the case. That is, if the supremum of X is & < oo, then for any value of x > Z — 9,
g(x +9) is not identified and thus the unconditional expected value of g(X; + J) is not
identified either. This is just a restatement of the well known fact that one cannot
project out of the data unless one makes functional form assumptions. Our point here
is that support assumptions are very important in nonparametric identification results.
One can only identify g over the range of plausible values of X; if X; has full support.
For this reason, we will often make strong support condition assumptions. This also
helps illuminate the tradeoff between functional form assumptions and flexibility. In
order to project off the support of the data in a simple regression model one needs to

use some functional form assumption. The same is true for selection models.

2.4 Continuity

There is one complication that we need to deal with throughout. It is not a terribly
important issue, but will shape some of our assumptions. Consider again the separable
regression model

Y = g(Xi) + w;. (2.2)
As mentioned above E(Y; | X; = x) = g(z) so it seems trivial to see that g is identified,
but that is not quite true. To see the problem, suppose that both X; and u; are

standard normals. Consider two different models for g,

Model 1:
0 z<14
g(x) =
1 2>14
versus
Model 2:
0 <14
g(x) = :
1 z2>14

These models only differ at the point © = 1.4, but since X; is normal this is a zero

probability event and we could never distinguish between these models because they
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imply the same joint distribution of (X;,Y;). For the exact same reason it isn’t really a
concern (except in very special cases such as if one was evaluating a policy in which we
would set X; = 1.4 for everyone). Since this will be an issue throughout this chapter
we explain how to deal with it now and use this convention throughout the chapter.

We will make the following assumptions.

Assumption 2.1. X; can be written as (X¢, X{) where the elements of X{ are con-
tinuously distributed (no point has positive mass), and X¢ is distributed discretely (all

support points have positive mass).

Assumption 2.2. For any 2% € supp(X2), g(x¢, %) is almost surely continuous across
2¢ € supp(X¢ | X = 29).

The first part says that we can partition our observables into continuous and discrete
ones. One could easily allow for variables that are partially continuous and partially
discrete, but this would just make our results more tedious to exposit. The second
assumption states that choosing a value of X at which ¢ is discontinuous (in the

continuous variables) is a zero probability event.

Theorem 2.1. Under assumptions 2.1 and 2.2 and assuming model 2.2 with E(u; |
X; =) =0 for x € supp(X;), g(x) is identified on a set X* that has measure 1.

(Proof in Appendix)

The proof just states that g is identified almost everywhere. More specifically it is

identified everywhere that it is continuous.

3 The Roy Model

The classic model of selection in the labor market is the Roy (1951) model. In the
Roy model, workers choose one of two possible occupations: hunting and fishing. They
cannot pursue both at the same time. The worker’s log wage is Y}; if he fishes and
Y} if he hunts. Workers maximize income so they choose the occupation with higher

wage. Thus a worker chooses to fish if Yy; > Y},. The occupation is defined as

f if Yfi > Yhz’

hoif Vi > Yy



and the log wage is defined as
Y, = max{Yy;, Yii}. (3.2)

Workers face a simple binary choice: choose the job with the highest wage. This
simplicity has led the model to be used in one form or another in a number of important
labor market contexts. Many discrete choice models share the Roy model’s structure.
Examples in labor economics include the choice of whether to continue schooling, what
school to attend, what occupation to pursue, whether to join a union, whether to
migrate, whether to work, whether to obtain training, and whether to marry.

As mentioned in the introduction, we devote considerable attention to identification
of this model. In subsequent sections we generalize these results to other models.

The responsiveness of the supply of fishermen to changes in the price of fish depends
critically on the joint distribution of (Y7;, Y};). Thus we need to know what a fisherman
would have made if he had chosen to hunt. However, we do not observe this but must
infer its counterfactual distribution from the data at hand. Our focus is on this selection
problem. Specifically, much of this chapter is concerned with the following question:
Under what conditions is the joint distribution of (Y;,Y};) identified? We
start by considering estimation in a parametric model and then consider nonparametric
identification.

Roy (1951) is concerned with how occupational choice affects the aggregate distri-
bution of earnings and makes a series of claims about this relationship. These claims
turn out to be true when the distribution of skills in the two occupations is lognormal.

Heckman and Honoré (1990) consider identification of the Roy model (i.e., the joint
distribution of (Y};, Y5:)). They show that there are two methods for identifying the
Roy model. The first is through distributional assumptions. The second is through
exclusion restrictions.*

In order to focus ideas, we use the following case:

Yfi = gf(Xfi, X(]Z) —+ é?fz' (33)
Yii = 9n(Xnis Xoi) + €ni (3.4)

4Heckman and Honoré discuss price variation as separate from exclusion restrictions. However, in
our framework price changes can be modeled as just one type of exclusion restriction so we do not

explicitly discuss price variation.



where the unobservable error terms (e;, €5;) are independent of the observable variables
X; = (Xpi, Xni, Xo;) and Yy; and Y),; denote log wages in the fishing and hunting
sectors respectively. We distinguish between three types of variables. Xj; influences
productivity in both fishing and hunting, Xy; influences fishing only, and Xj,; influences
hunting only. The variables Xy; and X}, are “exclusion restrictions,” and play a very
important role in the identification results below. In the context of the Roy model, an
exclusion restriction could be a change in the price of rabbits which increases income
from hunting, but not from fishing. The notation is general enough to incorporate a
model without exclusion restrictions (in which case one or more of the X;; would be
empty).

Our version of the Roy framework imposes two strong assumptions. First, that Y}; is
separable in ¢;(X;, Xo;) and €;; for j € {f, h}. Second, we assume that g;(X;;, Xo;) and
¢j; are independent of one another. Note that independence implies homoskedasticity:
the variance of €;; cannot depend on Xj;. There is a large literature looking at various
other more flexible specifications and this is discussed thoroughly in Matzkin (2007).
It is also trivial to extend this model to allow for a general relationship between Xy,
and (e, €p;) as we discuss in section 3.3 below.

We focus on the separable independent model for two reasons. First, the assump-
tions of separability and independence have bite beyond a completely general non-
parametric relationship. That is, to the extent that they are true, identification is
facilitated by these assumptions. Presumably because researchers think these assump-
tions are approximately true, virtually all empirical research uses these assumptions.
Second, despite these strong assumptions, they are obviously much weaker than the
standard assumptions that ¢ is linear (i.e. g¢(Xy;, Xoi) = X}ﬂff + X{ivos and that
€¢; is normally distributed. One approach to writing this chapter would have been to
go through all of the many specifications and alternative assumptions. We choose to
focus on a single base specification for expositional simplicity.

Heckman and Honoré (1990) first discuss identification of the joint distribution of
(Y, Yy,) using distributional assumptions. They show that when one can observe the
distribution of wages in both sectors, and assuming (Y7, Y};) is joint normally dis-
tributed, then the joint distribution of (Y7;, Y};) is identified from a single cross section

even without any exclusion restrictions or regressors. To see why, write equations (3.3)
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and (3.4) without regressors (so g5 = s, the mean of Yy;):

Yii=py+ep
Yhi = pn + €ni
where
e | _ N 0 | UJ% Ofh
Ehi 0 o O
Letting

(with ¢ and ® the pdf and cdf of a standard normal),

M=
\/O'J% + 07 — 204,
and for each j € {h, [},
o2 —o
7']' == J e

\/O'J2£+O'}2L—20'fh

One can derive the following conditions from properties of normal random variables

found in Heckman and Honoré (1990):

E(Yi—EY;| J; = f) =7iAe) [2X(¢) + 3eA(e) + & — 1] .

~ \_/ —~
~
|
SN— \/

E([Yi—E(Yi|JZ~_h | Ji = h) = TPM(—c) [2X%(—c) — 3cA(—c) + & — 1]

This gives us seven equations in the five unknowns s, i, UJ%, o2, and oyp,. It is straight-

forward to show that the five parameters can be identified from this system of equations.
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However, Theorems 7 and 8 of Heckman and Honoré (1990) show that when one
relaxes the log normality assumption, without exclusion restrictions in the outcome
equation, the model is no longer identified. This is true despite the strong assumption
of agent income maximization. This result is not particularly surprising in the sense
that our goal is to estimate a full joint distribution of a two dimensional object (Y;, Y4;),
but all we can observe is two one dimensional distributions (wages conditional on job
choice). Since there is no information in the data about the wage that a fisherman may
have received as a hunter, one cannot identify this joint distribution. In fact, Theorem
7 of Heckman and Honoré (1990) states that we can never distinguish the actual model

from an alternative model in which skills are independent of each other.

3.1 Estimation of the Normal Linear Labor Supply model

It is often the case that we only observe wages in one sector. For example, when
estimating models of participation in the labor force, the wage is observed only if
the individual works. We can map this into our model by associating working with
“fishing” and not working with “hunting.” That is, we let Y}; denote income if working
and let Y3, denote the value of not working.?

But there are other examples in which we observe the wage in only one sector. For
example, in many data sets we do not observe wages of workers in the black market
sector. Another example is return immigration in which we know when a worker leaves
the data to return to their home country, but we do not observe that wage.

In Section 3.2 we discuss identification of the nonparametric version of the model.
However, it turns out that identification of the more complicated model is quite similar
to estimation of the model with normally distributed errors. Thus we review this in
detail before discussing the nonparametric model. We also remark that providing a
consistent estimator also provides a constructive proof of identification, so one can also

interpret these results as (informally) showing identification in the normal model. The

5There are two common participation models. The first is the home production model in which
the individual chooses between home and market production. The second is the labor supply model
in which the individual chooses between market production and leisure. In practice the two types
of models tend to be similar and some might argue the distinction is semantic. In a model of home
production, Yj; is the (unobserved) gain from home production. In a model of labor supply, Yy, is

the leisure value of not working.
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model is similar to Willis and Rosen’s (1979) Roy Model of educational choices or Lee’s

(1978) model of union status and the empirical approach is analogous. We assume that
Vi = Xpvre + Xoor + €5
Yii = Xy ven + Xo:Yo0n + €ni

| _ N 0 UJ% O
Ehi 0 Ofth O'}zl
In a labor supply model where f represents market work, Y}; is the market wage which
will be observed for workers only. Y};, the pecuniary value of not working, is never
observed in the data. Keane, Todd, and Wolpin’s (this volume) example of the static
model of a married woman’s labor force participation is similar.
One could simply estimate this model by maximum likelihood. However we discuss
a more traditional four step method to illustrate how the parametric model is identi-
fied. This four step process will be analogous to the more complicated nonparametric
identification below. Step 1 is a “reduced form probit” of occupational choices as a
function of all covariates in the model. Step 2 estimates the wage equations by con-
trolling for selection as in the second step of a Heckman Two step (Heckman, 1979).
Step 3 uses the coefficients of the wage equations and plugs these back into a probit
equation to estimate a “structural probit.” Step 4 shows identification of the remaining

elements of the variance-covariance matrix of the residuals.

Step 1: Estimation of Choice Model
The probability of choosing fishing (i.e., work) is

Pr(Ji=f|Xi=2) = Pr(Yp>Y|Xi =2

I
)

v (@ vss + T0r €0 > TgYon + T Yhn + Eni)

|
)

r (5 — T vmn + 20 (Yo — Yon) > €ni — £5i)
<iff7ff — T3 Yrh + 2o (Yor — '70h))
O—*

(z'y") (3.5)

where @ is the cdf of a standard normal, o* is the standard deviation of (4, — i),

I
KA

I
KA

and

Yif —%h Yo — “Yoh
o*’ o* o*
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This is referred to as the “reduced form model” as it is a reduced form in the classical
sense: the parameters are a known function of the underlying structural parameters.
It can be estimated by maximum likelihood as a probit model. Let 7* represent the
estimated parameter vector. This is all that can be learned from the choice data alone.

We need further information to identify * and to separate oy from ~op,.

Step 2: Estimating the Wage Equation

This is essentially the second stage of a Heckman (1979) two step. To review the idea
behind it, let
" €ni —Efi

&=

Then consider the regression
eri = 7€ + G
where cov (¢f, (;) = 0 (by definition of regression) and thus:

cov (eg;,€F)
var (&¥)

()
g

O'fh—O']2c

O-*

The wage of those who choose to work is

= ayypr +agror + B (el + G| ef < a'y)
= Ty apyor +TE (67 | gf < a'y")

= x}'yff + xpv0r — TA (') (3.6)

Showing that E (¢ | ef < 2/v*) = —\ (2/7*) is a fairly straightforward integration prob-
lem and is well known. Because equation (3.6) is a conditional expectation function,
OLS regression of Y; on Xo;, Xy;, and A (XZ’WA*) gives consistent estimates of vr, Yof,
and 7. 7* is the value of v* estimated in equation (3.5).

Note that we do not require an exclusion restriction. Since \ is a nonlinear function,
but g; is linear, this model is identified. However, without an exclusion restriction,

identification is purely through functional form. When we consider a nonparametric
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version of the model below, exclusion restrictions are necessary. We discuss this issue

in section 3.2.

Step 3: The Structural Probit

Our next goal is to estimate 7y, and ;. In Step 1 we obtained consistent estimates
(M Jff ZOhh

* ) g* Y g*

of v* = ) and in Step 2 we obtained consistent estimates of vy and

Vs

When there is only one exclusion restriction (i.e. s is a scalar), identification
proceeds as follows. Because we identified v in Step 2 and ~¢/0* in Step 1, we can
identify o*. Once o* is identified, it is easy to see how to identify v, (because =22t is

identified) and 7o, (because M

and 7oy are identified).

In terms of estimation of these objects, if there is more than one exclusion restriction
the model is over-identified. If we have two exclusion restrictions, v¢; and ~y¢s/o* are
both 2 x 1 vectors, and thus we wind up with 2 consistent estimates of ¢*. The most

standard way of solving this model is by estimating the “structural probit:”

1
Prii=f|X;,=2)=9® <0 (277y + 20%07) — :):ﬁl%h x’o%) . (3.7)

That is, one just runs a probit of .J; on (Xj’cﬂ/f\f + X()ﬁo\f) , Xoi, and Xp,; where 777 and
Yoy are our our estimates of v and oy.

Step 3 is essential if our goal is to estimate the labor supply equation. If we are
only interested in controlling for selection to obtain consistent estimates of the wage

equation, we do not need to worry about the structural probit. However, notice that

oYy, = ;Cb (='y7).
and thus the labor supply elasticity is:
Olog[Pr(J; = f| X; =x)] _ oPr(Ji=f|Xi=x) 1 1 ¢(2'v")
Yy B Yy Pr(Ji=f|Xi=z) o ®(@y)

where, as before, Yy, is the log of income if working. Thus knowledge of o* is essential
for identifying the effects of wages on participation.

One could not estimate the structural probit without the exclusion restriction Xy;
as the first two components of the probit in equation (3.7) would be perfectly collinear.
For any ¢* > 0 we could find a value of 7, and 7y, to that delivers the same choice
probabilities. Furthermore, if these parameters were not identified, the elasticity of

labor supply with respect to wages would not be identified either.
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Step 4: Estimation of the Variance Matrix of the Residuals

Lastly, we identify all the components of 3, (aj%, o2, 0;p,) as follows. We have described

2
how to obtain consistent estimates of o* = \/ 012[ + 0?7 — 20, and T = Jf};* %% This
gives us two equations in three parameters. We can obtain the final equation by using

the variance of the residual in the selection model since
Var(ep | Ji=f,Xi=x) = Ufc + 72 [—A(m’y*)x’y* — >\2(x’7*)}

Let ¢ = 1,.., Ny index the set of individuals who choose J; = f and &y; is the residual
Yii — X375 — X070 Using “hats” to denote estimators we can estimate the model as

Ny
>

1 = 1% ~ / 1% 1%
O'J% = Ffz (Ef,' + T (Xlry*))2 _7_2 (_)\ (Xl,y )Xl,y* _ )\2 (Xl,y*))
i=1

Ofh =0} —T0*
—2

. /\*2 —~2 2/\
Op =0" —0f + 20¢p.

3.2 Identification of the Roy Model: the Non-Parametric Ap-

proach

Although the parametric case with exclusion restrictions is more commonly known, the
model in the previous section is still identified non-parametrically if the researcher is
willing to impose stronger support conditions on the observable variables. Heckman
and Honoré (1990, Theorem 12) provide conditions under which one can identify the
model nonparametrically using exclusion restrictions. We present this case below.

Assumption 3.1. (e, e4;) is continuously distributed with distribution function G,

support R?, and is independent of X;. The marginal distributions of € and €¢; — Epi

have medians equal to zero.
Assumption 3.2. supp(g;(X i, 7o), gn(Xni, 20)) = R? for all xg € supp(Xo;).

Assumption 3.2 is crucial for identification. It states that for any value of gy, (xp, xo),
97(X i, xo) varies across the full real line and for any value of g¢(xs,zo), gn(Xhi, o)
varies across the full real line. This means that we can condition on a set of variables
for which the probability of being a hunter (i.e. Pr(J; = h|X; = z)) is arbitrarily close
to 1. This is clearly a very strong assumption that we will discuss further.

We need the following two assumptions for the reasons discussed in section 2.4.
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Assumption 3.3. X; = (X, Xpi, Xoi) can be written as (X§;, X¢;, Xp, X, X, X))
where the elements of (X§;, Xp;, X§;) are continuously distributed (no point has posi-
tive mass), and (X}li, X X&) is distributed discretely (all support points have positive

mass).

Assumption 3.4. For any (xfc,xz,:cg) € supp(X}li,Xffi,Xgi), gf(xjc,xfc,xg,xg) and

gn (26, 2%, 25, ) are almost surely continuous across x¢ € supp(X¢ | X¢ = x4).

Under these assumptions we can prove the theorem following Heckman and Honoré(1990).

Theorem 3.1. If (J; € {f,h}, Yy if J; = f, Xi) are all observed and generated under
model (3.1)-(3.4), then under assumptions 3.1-8.4, gr, gn, and G are identified on a

set X* that has measure 1.
(Proof in Appendix)

A key theme of this chapter is that the basic structure of identification in this model
is similar to identification of more general selection models so we explain this result in
much detail. The basic structure of the proof we present below is similar to Heckman
and Honoré’s proof of their Theorems 10 and 12. We modify the proof to allow for the
case where Y}, is not observed.

The proof in the appendix is more precise, but in the text we present the basic ideas.
We follow a structure analogous to the parametric empirical approach when the residu-
als are normally distributed as presented in section 3.1. First we consider identification
of the occupational choice given only observable covariates and the choice model. This
is the nonparametric analogue of the reduced form probit. Second we estimate g; given
the data on Y}; which is the analogue of the second stage of the Heckman two step, and
is more broadly the nonparametric version of the classical selection model. In the third
step we consider the nonparametric analogue of identification of the structural probit.
Since we will have already established identification of gy, identification of this part
of the model boils down to identification of g;,. Finally in the fourth step we consider
identification of G' (the joint distribution of (e;,ep;)). We discuss each of these steps
in order.

To map the Roy model into our formal definition of identification presented in sec-
tion 2.2, the model is determined by 6 = (g¢, gn, G, F;;) where F, is the joint distribution
of (X, Xpi, Xoi). The observable data here is (X, Xpi, Xoi, Ji, 1(J; = f)Y};). Thus P
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is the joint distribution of this observable data and ©(P) represents the possible data

generating processes consistent with P.

Step 1: Identification of Choice Model

The nonparametric identification of this model is established in Matzkin (1992). We

can write the model as

Pr(Ji=f|Xi=2x)= Pr(en —ep < gg(wy, x0) — gn(zn, v0))

= Gu—y(9(wy,0) — gn(wn, 10)),

where G,_¢ is the distribution function of j; — €y;.
Using data only on choices, this model is only identified up to a monotonic trans-

formation. To see why, note that we can write J; = f when

gr(wg,20) — gn(Tn, To) > €ni — € (3.8)

but this is equivalent to the condition

M(gs(zs,70) — gn(wn, v0)) > M(eni — €5i) (3.9)

where M (.) is any strictly increasing function. Clearly the model in equation (3.8) can-
not be distinguished from an alternative model in equation (3.9). This is the nonpara-
metric analog of the problem that the scale (i.e., the variance of £;,; — ;) and location
(only the difference between gf(zy, xo) and gp(xp, zo) but not the level of either) of the
parametric binary choice model are not identified. Without loss of generality we can
normalize the model up to a monotonic transformation. There are many ways to do
this. A very convenient normalization is to choose the transformation M(-) = Gj,_(-)

because G,y (eni — £7;) has a uniform distribution.® So we define

g = Gh_f(c":‘hi—é?fi)

9(x) = Gny(gs(zs,20) — gnlTn, 20))-

6To see why note that for any =, Pr(Gn_s (epi — i) < x) = Pr(ep —ep; < G;if(a:)) =
Ghy (Gﬁif(x))) =z
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Pr(Ji = [ | Xi = x) = Pr(gs(zs, 20) = gn(2n, 20) > eni — £5i)
Pr(Gn-y(g¢(xs, o) — gn(@n, 0)) > Grylen — €5i))
Pr(ei < g(z))
= g(z).

Thus we have established that we can (i) write the model as J; = f if and only if
g(X;) > ¢; where ¢; is uniform [0, 1] and (ii) that ¢ is identified.

This argument can be mapped into our formal definition of identification from
Section 2.2 above. The goal here is identification of g so we define¥(f) = g. Note
that even though ¢ is not part of #, it is a known function of the components of 6.
The key set now is W(O(P)) which is now defined as the set of possible values g that
could have generated the joint distribution of (Xy;, Xpi, Xoi, Ji, 1(J; = f)Y}:). Since
Pr(J; = f | X; =z) = g(z), no other possible value of g could generate the data. Thus

U (O(P)) only contains the true value and is thus a singleton.

Step 2: Identification of the Wage Equation gy

Next consider identification of g; Median regression identifies
Med(Y; | X; =z, J; = f) = gf(xy,x0) + Med(ey; | Xi = x,6; < g(x)).

The goal is to identify gf(xf,z9). The problem is that when we vary (zy,z¢) we
also typically vary Med(er; | X; = x,9(x) > ;). This is the standard selection
problem. Because we can add any constant to gy and subtract it from ey without
changing the model, a normalization that allows us to pin down the location of g is
that Med(es;) = 0. The problem is that this is the unconditional median rather than
the conditional one. The solution here is what is often referred to as identification at
infinity (e.g. Chamberlain, 1986, or Heckman, 1990). For some value (2, x¢) suppose
we can find a value of xj to send Pr(e; < g(z)) arbitrarily close to one. It is referred to
as identification at infinity because if g, were linear in the exclusion restriction x;, this
could be achieved by sending z;, — —oo. In our fishing/hunting example, this could

be sending the price of rabbits to zero which in turn sends log income from hunting to
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—o00. Then notice that”
(li§n1Med(}ﬁ | Xi=x,Ji=f) = gs(xs, x0) + (li)mlMed(Ef,- | ei <g(z)) =gr(xs,20) + Med(sy; | € < 1)
g(x)— g(x)—

= gf(l’f, SL’Q) + Med(afi)
= gf(va xO)'

Thus gy is identified.

Conditioning on x so that Pr(J; = 1 | X; = z) is arbitrarily close to one is essentially
conditioning on a group of individuals for whom there is no selection, and thus there
is no selection problem. Thus we are essentially saying that if we can condition on a
group of people for whom there is no selection we can solve the selection bias problem.

While this may seem like cheating, without strong functional form assumptions
it is necessary for identification. To see why, suppose there is some upper bound of
supplg(X;)] equal to g* < 1 which would prevent us from using this type of argument.
Consider any potential worker with a value of €; > g". For those individuals it must be
the case that

e > g(Xi)

so they must always be a hunter. As a result, the data is completely uninformative
about the distribution of e4; for these individuals. For this reason the unconditional
median of €y would not be identified. We will discuss approaches to dealing with this
potential problem in the Treatment Effect section below.

To relate this to the framework from Section 2.2 above now we define ¥(6) = gy,
so U(O(P)) contains the values of gy consistent with P. However since

lim Med(Y; | X, =x,J; = f) = gs(xs, x0),

g(x)—o00

gy is the only element of W(O(P)), thus it is identified.

Identification of the Slope Only without “Identification at Infinity”

If one is only interested in identifying the “slope” of g and not the intercept, one
can avoid using an identification at infinity argument. That is, for any two points

(xf,20) and (T, o), consider identifying the difference gf (xf,z0) — g¢ (Tf, Zo). The

"We are using loose notation here. What we mean by limg(zy—1 is to hold (zy,x0) fixed, but take

a sequence of values of zj, so that g(z) — 1.
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key to identification is the existence of the exclusion restriction Xj;. For these two

points, suppose we can find values z;, and 7, so that

g(xy, xp, x0) = g(Ty, T, To).

There may be many pairs of (xy,, Zj,) that satisfy this equality and we could choose any
of them. Define & = (%, T, o). The key aspect of this is that since g(z) = g(z), and
thus the probability of being a fisherman is the same given the two sets of points, then
the bias terms are also the same:Med(cy; | €; < g(x)) = Med(cy; | €; < g(T)).

This allows us to write

Med(Y; | X;=x,J; = f) — Med(Y; | X =2,J; = f)
=g¢ (s, 20) + Med(ey; | € < g())
— g5 (&5, 20) + Med(gy; | € < g(2))]
=9 (xy,0) — g5 (Zy, Zo) -

As long as we have sufficient variation in X}; we can do this everywhere and identify

g up to location.

Step 3: Identification of g,

In terms of identifying gy, the exclusion restriction that influences wages as a fisherman
but not as a hunter (i.e. Xy;) will be crucial. Consider identifying g (zy, xo) for any

particular value (x, zo). The key here is finding a value of x; so that

Assumption 3.2 guarantees that we can do this. To see why equation (3.10) is useful,

note that it must be that for this value of (xy, zp, 2)
0.5 =Pr(ep; — e < gp(xy, 20) — gn(Tn, x0)) - (3.11)

But the fact that €;; — €, has median zero implies that

gh(zha l’()) = gf(Ifa $0)'
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Since g is identified, g, is identified from this expression.®

Again to relate this to the framework in Section 2.2 above, now ¥(f) = g5, and
U(O(p)) is the set of functions g, that are consistent with P. Above we showed that if
Pr(J; = f| X; =x) = 0.5, then g,(xp, o) = gf(xy, x9). Thus since we already showed
that g; is identified, gj, is the only element of W(O(p)).

Step 4: Identification of GG

Next consider identification of G given gy and g,. We will show how to identify the
joint distribution of (ey;,¢ep;) closely following the exposition of Heckman and Taber

(2008). Note that from the data one can observe

PI'(JZ = f, Yf, < S | XZ = ZE')
= Pr(gh(xh,xo) +en < gf(xf,:co) + 6fi,gf($f,£€0) + Eti < 8) (312)

= Pr(en —epi < gr(xy, 20) — gnl@n, 20), €50 < s — gy(xy, 20))

which is the cumulative distribution function of (e4; — €4, €;) evaluated at the point
(g7(xf,20) — gn(xn, T0),s — gr(ry, ). By varying the point of evaluation one can
identify the joint distribution of (ex; — €;,€5;) from which one can derive the joint
distribution of (e, €pi)-

Finally in terms of the identification conditions in Section 2.2 above, now ¥ (¢) = G
and ¥(O(P)) is the set of distributions G consistent with P. Since G is uniquely defined
by the expression (3.12) and since everything else in this expression is identified, G is

the only element of W(O(P)).

3.3 Relaxing Independence between Observables and Unob-

servables.

For expositional purposes we focus on the case in which the observables are independent
of the unobservables, but relaxing these assumptions is easy to do. The simplest case

is to allow for a general relationship between Xo; and (e;, €p:). To see how easy this

8Note that Heckman and Honoré (1990) choose a different normalization. Rather than normalizing
the median of €; — €4; to zero (which is convenient in the case in which Y}, is not observed) they
normalize the median of ep; to zero (which is more convenient in their case). Since this is just a
normalization, it is innocuous. After identifying the model under our normalization we could go back

to redefine the model in terms of theirs.
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is, consider a case in which X, is just binary, for example denoting men and women.
Independence seems like a very strong assumption in this case. For example, the
distribution of unobserved preferences might be different for women and men, leading
to different selection patterns. In order to allow for this, we could identify and estimate
the Roy model separately for men and for women. Expanding from binary Xy, to finite
support Xy, is trivial, and going beyond that to continuous Xj; is straightforward.
Thus one can relax the independence assumption easily. But for expositional purposes
we prefer our specification.

The distinction between X; and X(; was not important in steps 1 and 2 of our dis-
cussion above. When one is only interested in the outcome equation Yy; = g5( Xy, Xo;)+
£i, relaxing the independence assumption between Xy; and (e, €5;) can be done as
well. However, in step 3 this distinction is important in identifying g, and the inde-
pendence assumption is not easy to relax.

If we allow for general dependence between Xo; and (ey;, €4:), the “identification at
infinity” argument becomes more important as the argument about “Identification of
the Slope Only without Identification at Infinity” no longer goes through. In that case
the crucial feature of the model was that Med(ey; | &; < g(x)) = Med(ey; | €; < g(T)).
However, without independence this is no longer generally true because Med(cy; | X; =
x,J; = f) = Med(ey; | Xoi = xo,e; < g(z)). Thus even if g(z) = g(Z), when z # Zo,
in general Med(ey; | Xoi = ®o, € < g(x)) # Med(ey; | Xoi = To, & < 9(T)).

3.4 The Importance of Exclusion Restrictions

We now show that the model is not identified in general without an exclusion restric-

tion.? Consider a simplified version of the model,

; foifg(Xi) =& >0

h otherwise

Yii = gp(Xi) + e

9An exception is Buera (2006), who allows for general functional forms and does not need an
exclusion restriction. Assuming wages are observed in both sectors, and making stronger use of the
independence assumption between the observables and the unobservables, he shows that the model

can be identified without exclusion restrictions.
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where ¢; is uniform (0,1) and (g;,€y;) is independent of X; with distribution G and we
use the location normalization Med(ey; | X;) = 0. As in Section 3.2, we observe X;,
whether J; = f or h, and if J; = f then we observe Y.

We can think about estimating the model from the median regression

Med|Yy| X; = x] =g(X;) + Medle ;| X; = 2]
=07 (X;) + Med[e;|g(X;) > €]

=g5(Xi) + h(g(Xi)) (3.13)

Under the assumption that Med(ey; | X;) = 0 it must be the case that h(1) = 0, but
this is our only restriction on A and g. Thus the model above has the same conditional

median as an alternative model
Med[Yy|X; = o] =g;(X;) + h(g(X,)) (3.14)

where G7(X:) = g;(X;) + k(g(Xy) and h(g(X:)) = h(g(X:)) — k(g(X.). Bquations
(3.13) and (3.14) are observationally equivalent. Without an exclusion restriction, it
is impossible to tell if observed income from working varies with X; because it varies
with gy or because it varies with the labor force participation rate and thus the extent
of selection. Thus the models in equations (3.13) and (3.14) are not distinguishable
using conditional medians.

To show the two models are indistinguishable using using the full joint distribution
of the data, consider an alternative data generating model with the same first stage,
but now Y7; is determined by

Yii = g5(Xi) + &5

where €; is independent of X; with Med(gy; | X;) = 0. Let é(ai,gﬁ) be the joint
distribution of (e;,€f;) in the alternative model. We will continue to assume that
in the alternative model g;(X;) = g7(X;) + k(g9(X;)). The question is whether the
alternative model to be able to generate the same data distribution.

In the true model

Prie; < g(x), Yy <y) = Pr(e < g(x),9;(x) + 5 < y)

= Glyg(x),y — gs(x))
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In the alternative model

Pr(e; < g(x),Yp <y) = Pr(e; < g(x),gp(x) + 4 < y)

= G(g(x),y — gs(x))
Thus these two models generate exactly the same joint distribution of data and cannot

be separately identified as long as we define G so that!

Glg(x),y = g5(x)) = G(g(2),y — g5 (x))
= G9(2),y = g5 (x) + k(g(x)))-

4 The Generalized Roy Model

We next consider the “Generalized Roy Model” (as defined in e.g. Heckman and Vyt-
lacil, 2007a). The basic Roy model assumes that workers only care about their income.
The Generalized Roy Model allows workers to care about non-pecuniary aspects of the
job as well. Let Uy; and Uy, be the utility that individual ¢ would receive from being

a fisherman or a hunter respectively where for j € {f, h},
Uji = Y;Z -+ QOj(ZZ', X(]Z) -+ Vji- (41)

where ¢;(Z;, Xo;) represents the non-pecuniary utility gain from observables Z; and X;.
The variable Z; allows for the fact that there may be other variables that affect the taste
for hunting versus fishing directly, but do not affect wages in either sector.!' Note that
we are imposing separability between Y}; and ¢;. In general we can provide conditions
in which the results presented here will go through if we relax this assumption but we
impose it for expositional simplicity. The occupation is now defined as

f lfUZ>UhZ
J = ! . (4.2)

h if Uy < Up

190ne cannot do this with complete freedom as one needs G to be a legitimate c.d.f. That is, it
must be nondecreasing in both of its arguments. However, there will typically be many examples of
k for which G is a cdf and the model is not identified. For example, if k£ is a nondecreasing function

G will be a legitimate c.d.f.
UTn principle some of the elements of Z; may affect ¢ ¢ and others may affect ¢, but this distinction

will not be important here so we use the most general notation.
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We continue to assume that

Yi = g97(Xpi, Xoi) +ep

Yii = gn(Xni» Xoi) + €ni (4.3)

It will be useful to define a reduced form version of this model. Note that people
fish when

0 <Uf,' — U

=Y5i + 05(Zs, Xoi) + v5i) — (Yni + on(Zi, Xoi) + Vi)

=97 (Xpi, Xoi) + 05(Zi, Xoi) — 9 (Xnis Xoi) — on(Zis Xoi) + €5 + Vi — €hi — Vhi
In the previous section we described how the choice model can only be identified up
to a monotonic transform and that assuming the error term is uniform is a convenient
normalization. We do the same thing here. Let F* be the distribution function of
€hi + Vhi — €5 — Vi Then we define

v, = F* (5hz’ + Vp — €5 — I/fi) (45)

©(Zi, Xi) = F* (94(Xpi, Xoi) + 05(Zi, Xoi) — gn(Xnis Xoi) — on(Zi; Xoi)) . (4.6)
As above, this normalization is convenient because it is straightforward to show that
J; = f when ¢(Z;, X;) > v;

and that v; is uniformly distributed on the unit interval.
We assume that the econometrician can observe the occupations of the worker and

the wages that they receive in their chosen occupations as well as (X, Z;).

4.1 Identification

It turns out that the basic assumptions that allow us to identify the Roy model also
allow us to identify the generalized Roy model.

We start with the reduced form model in which we need two more assumptions.
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Assumption 4.1. (v;, e, €p;) is continuously distributed and is independent of (Z;, X;).
Furthermore, v; is distributed uniform on the unit interval and the medians of both € ;

and €y; are zero.

Assumption 4.2. The support of o(Z;, ) is [0,1] for all x € supp(X;).

We also slightly extend the restrictions on the functions to include ¢, and ¢j,.

Assumption 4.3. (Z;, X;) = (Z;, Xti, Xpi, Xoi) can be written as
(2§, 28, X G, X, Xy Xih, XGi, XG5) where the elements of (Z7, X§;, X5, X¢;) are con-
tinuously distributed (no point has positive mass), and (Z{, X¢,, X\, X¢,) is distributed

discretely (all support points have positive mass).

Assumption 4.4. For any (2%, 25,z 23) € supp(Z{, X, X7k, X&), gr(a5, x4, 2§, 23),

gn(x§, 28 28 xd), @r(2¢ 2% x5, 28) and @ (2°, 2%, 2§, 28) are almost surely continuous

across
(2¢,2°) € supp(Z{, X¢ | (28, X)) = (24, 2)).

Theorem 4.1. Under assumptions 4.1-4.4, ¢, g¢, gn and the joint distribution of (v;, € 1;)
and of (v;, en;) are identified from the joint distribution of (J;,Y;) on a set X* that has
measure 1 where (J;,Y;) are generated by model (4.1)-(4.4).

(Proof in Appendix)

The intuition for identification follows directly from the intuition given for the basic

Roy model. We show this in 3 steps:

1. Identification of ¢ is like the “Step 1: identification of choice model” section.
We can only identify ¢ up to a monotonic transformation for exactly the same
reason given in that section. We impose the normalization that v; is uniform in

assumption 4.2. Given that assumption
Pr(Ji=f|Zi=2zXi=1z)= (2 2)

so identification of ¢ from Pr(J; = f | Z; = z, X; = x) comes directly.
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2. Identification of gy and g are completely analogous to “Step 2: identification of

)

g¢” in section 3.2. That is

lim Med(Y; | Zi =2 X; =x,J; = f)

p(z,x)—1

=gr(rp,x0) + lUm Med(ep | Zi =2, X, =2, J; = f)

() —1

= gylap.ao) + lim Med(ess | v < plz0))
p(z,x)—

= gf(SL’f, LL’()) + Med(é‘fi)
= gf(va xO)'
The analogous argument works for g, when we send ¢(z,x) — 0.

3. Identification of the joint distribution of (v;,e;) and of (1, €p;) are analogous to
the “Step 4: identification of G” discussion in the Roy model. That is if we let
G, represent the joint distribution of (v;,ey;) then

PT(JZ = f7 Yfl S Yy ‘ (Z“XZ) = (Z,LU)) = PT(VZ' S (P(Z,x),gf(xf,x(]) _'_gfi S y)
= GV,af (SO(Za ZIZ'), Y= gf(xf> $0)) .

The analogous argument works for the joint distribution of (v, ep,).

Note that not all parameters are identified such as the non-pecuniary gain from
fishing ¢¢ — ¢p,. To identify the “structural” generalized Roy model we make two

additional assumptions:
Assumption 4.5. The median of ep; + vp; — €fi — Vi 1S zero.

Assumption 4.6. For any value of (z,x0) € supp(Z;, Xo:i), 95(X i, 0) — gn(Xhni, o)
has full support (i.e. the whole real line).

Theorem 4.2. Under Assumptions 4.1-4.6, ¢ f—pp, the distribution of (€p; + Vni — i — Vi €4i)s

and the distribution of (ep;i + Vhi — €fi — Vyi,€ni) are identified.
(Proof in Appendix)

Note that Theorem 4.1 gives the joint distribution of (v;,ey;) while Theorem 4.2
gives the joint distribution of (ep; + vp — €5 — vy, €4:) - Since v; = F* (ep; + Vpi — €5i — Vyi)

this really just amounts to saying that F™ is identified.

28



Furthermore, whereas gy and g, are identified in Theorem 4.1, ¢ — ¢}, is identified
in Theorem 4.2. Recall ¢y — ¢y, is the added utility (measured in money) of being a
fisherman relative to a hunter. The exclusion restrictions X; and X},; help us identify
this. These exclusion restrictions allow us to vary the pecuniary gains of the two
sectors, holding preferences ¢ — ), constant. Identification is analogous to the “Step

Y

3: identification of g;” in the standard Roy model. To see where identification comes

from, for every (z,xo) think about the following conditional median

= Pr(eni+vni —epi — vpi < gp(xg,20) + ¢5(2,70) — gn(Tn, o) — pu(2, 20)).

Since the median of ep; 4+ vp; — €4 — Vy; is zero, this means that

gf(xf7$0) + QOf(Z, 113'0) - gh(xha xO) - @h(z, 113'0) = 0,

and thus
or(2,20) — @n(z, o) = gnlzn, T0) — gr(zy, To).
Because gy and g, is identified, ¢ — ¢y, is identified also. The argument above shows
that we do not need both X; and Xj;, we only need Xy; or Xj;.
Suppose there is no variable that affects earnings in one sector but not preferences
(X or Xpi). An alternative way to identify ¢ — ¢y is to use a cost measured in
dollars. Consider the linear version of the model with normal errors and without

exclusion restrictions (Xp;, Xy;) so that

gh(fﬂo) = If)ﬂh
gf(xo) = Iéﬂf
SOf(Zaxo) - @h(Z, $0) = xf)ﬂo + Z/ﬂz-

The reduced form probit is:

o

o
where o is the standard deviation of p; +vp; — €4 — 4. Theorem 4.1 above establishes
that the functions ¢g; and g, (i.e., 75 and 7,) as well as the variance of ¢j,; and ey; are

identified. We still need to identify 3y, £. and . Thus we are able to identify

Y — Vh + 60 ﬂz
— ana —.
g g
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If Gy and [3, are scalars we still have three parameters (3, 3,,0) and two restrictions
(%ﬁﬁo, %) If they are not scalars, we still have one more parameter than restriction.
However suppose that one of the exclusion restrictions represents a cost variable that
is measured in the same units as Yy; — Y),;. For example in a schooling case suppose
that Y}, represents the present value of earnings as a college graduate, Y}; represents
the present value of high school graduate as a college graduate, and the exclusion
restriction, Z;, represents the present value of college tuition. In this case g, = —1
the coefficient on Z; is —1/0, so o is identified. Given o it is very easy to show that
the rest of the parameters are identified as well. Heckman, Lochner, and Taber (1998)

provide an example of this argument using tuition as in the style above. In section 7.3

we discuss Heckman and Navarro (2007) who use this approach as well.

4.2 Lack of Identification of the Joint Distribution of (cy;, 1)

In pointing out what is identified in the model it is also important to point out what is
not identified. Most importantly in the generalized Roy model we were able to identify
the joint distribution between the error terms in the selection equation and each of
the outcomes, but not the joint distribution of the variables in the outcome equation.
In particular the joint distribution between the error terms (e;,¢€p;) is not identified.
Even strong functional form assumptions will not solve this problem. Fir example, it is

easy to show that in the joint normal model the covariance of (ey;, €p;) is not identified.

4.3 Are Functional Forms Innocuous? Evidence from Catholic
Schools

As the theorems above make clear, nonparametric identification requires exclusion
restrictions. However, completely parametric models typically do not require exclusion
restrictions. In specific empirical examples, identification could primarily be coming
from the exclusion restriction or identification could be coming primarily from the
functional form assumptions (or some combination between the two). When researchers
use exclusion restrictions in data, it is important to be careful about which assumptions
are important.

We describe one example from Altonji, Elder, and Taber (2005b). Based on Evans
and Schwab (1995), Neal (1997), and Neal and Grogger (2000) they consider a bivariate
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probit model of Catholic schooling and college attendance.

CH; = (X8 + \Z; +u; > 0) (4.7)

where 1(-) is the indicator function taking the value one if its argument is true and
zero otherwise, C'H; is a dummy variable indicating attendance at a Catholic school,
and Y; is a dummy variable indicating college attendance. Identification of the effect
of Catholic schooling on college attendance (or high school graduation) is the primary
focus of these studies. The question at hand is in practice whether the assumed func-
tional forms for u; and &; are important for identifying the « coefficient and thus the
effect of Catholic schools on college attendance.

The model in equations (4.7)-(4.8) is a minor extension of the generalized Roy
model. The first key difference is that the outcome variable in equation (4.8) is binary
(attend college or not), whereas in the case of the Generalized Roy model the outcomes
were continuous (earnings in either sector). The second key difference is that the
outcome equation for Catholic versus Non-Catholic school only differs in the intercept
(). The error term (g;) and the slope coefficients () are restricted to be the same.
Nevertheless, the machinery to prove non-parametric identification of the Generalized
Roy model can be applied to this framework.!?

Using data from the National Longitudinal Survey of 1972, Altonji, Elder, and
Taber (2005b) consider an array of instruments and different specifications for equations
(4.7) and (4.8) . In Table 1 we present a subset of their results. We show four different
models. The “Single Equation Model” gives results in which selection into Catholic
school is not accounted for. The first column gives results from a probit model (with
point estimates, standard errors, and marginal effects). The second column give results
from a Linear Probability model. Next we present the estimates of o from a Bivariate
Probit models with alternative exclusion restrictions. The final row presents the results
with no exclusion restrictions. Finally we also present results from an instrumental

variable linear probability model with the same set of exclusion restrictions.

2Following Matzkin (1992), we need a monotonic normalization on the outcome model (such as
assuming the error term is uniform). Once we have done this, proving identification of this model is
almost identical to the generalized Roy model and is easily done with an exclusion restriction with
sufficient support.
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Table 1

Estimated Effects of Catholic Schools on College Attendance:

From Linear and Nonlinear Specifications

Single Equation Models

Probit OLS
0.239 0.239
[0.640]
(0.198) (0.070)
Two Equation Models
Excluded Variable Bivariate Probit 2SLS
Catholic 0.285 -0.093
[0.761]
(0.543) (0.324)
Catholicx Distance 0.478 2.572
[1.333]
(0.516) (2.442)
None 0.446
[1.224]
(0.542)

Notes: Source: Altonji, Elder, Taber (2005b). Urban Non-Whites from NLS-72.

The first set of results come from simple probits and from OLS.

The further results come from Bivariate Probits and from two stage least squares.

We present the marginal effect of Catholic high school attendance on college attendance.
[Point Estimate from Probit in Brackets]

(Standard Errors in Parentheses)

One can see that the marginal effect from the single equation probit is very similar
to the OLS estimate. It indicates that college attendance rates are approximately 23.9

percentage points higher for Catholic high school graduates than for public high school
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graduates. The rest of the table presents results from three bivariate probit models
and two instrumental variables models using alternative exclusion restrictions. The
problem is clearest when the interaction between the student coming from a Catholic
school and distance to the nearest Catholic school is used as an instrument. The 2SLS
gives nonsensical results: a coefficient of 2.572 with an enormous standard error. This
indicates that the instrument has little power. However, the bivariate probit result is
more reasonable. It suggests that the true marginal causal effect is around 0.478 and
the point estimate is statistically significant. This seems inconsistent with the 2SLS
results which indicated that this exclusion restriction had very little power. However
it is clear what is going on when we compare this result to the model at the bottom of
the table without an exclusion restriction. The estimate is very similar with a similar
standard error. The linearity and normality assumptions drive the results.

The case in which Catholic religion by itself is used as an instrument is less prob-
lematic. The IV result suggests a strong amount of positive selection but still yields a
large standard error. The bivariate probit model suggests a marginal effect that is a bit
larger than the OLS effect. However, note that the standard error for the model with
and without an exclusion restriction are quite similar which seems inconsistent with the
idea that the exclusion restriction is providing a lot of identifying information. Further
note that the IV result suggests a strong positive selection bias while the bivariate
probit without exclusion restrictions suggests a strong negative bias. The bivariate
probit in which Catholic is excluded is somewhere between the two. This suggests that
both functional form and exclusion restrictions are important in this case. We should
emphasize the “suggests” part of this sentence as none of this is a formal test. It does,
however, make one wonder how much trust to put in the bivariate probit results by
themselves.

Another paper documenting the importance of functional form assumptions is Das
et al. (2003), who estimate the return to education for young Australian women. They
estimate equations for years of education, the probability of working, and wages. When
estimating the wage equation they address both the endogeneity of years of education
and also selection caused because we only observe wages for workers. They allow for
flexibility in the returns to education (where the return depends on years of education)

and also in the distribution of the residuals. They find that when they assume normality
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of the error terms, the return to education is approximately 12%, regardless of years
of education. However, once they allow for more flexible functional forms for the error
terms, they find that the returns to education decline sharply with years of education.
For example, they find that at 10 years of education, the return to education is over

15%. However, at 14 years, the return to education is only about 5%.

5 Treatment Effects

There is a very large literature on the estimation of treatment effects. For more com-
plete summaries see Heckman and Robb (1986), Heckman, Lalonde and Smith (1999),
Heckman and Vytlacil (2007a,2007b), Abbring and Heckman (2007), or Imbens and
Wooldridge (2009).'* DiNardo and Lee (2010) provide a discussion that is complemen-
tary to ours. Our goal in this section is not to survey the whole literature but provide
a brief summary and to put it into the context of identification of the Generalized Roy
Model.

The goal of this literature is to estimate the value of receiving a treatment defined
as:

T, — Yfi - Yhi- (51)

In the context of the Roy model, 7; is the income gain from moving from hunting to
fishing. This income gain potentially varies across individuals in the population. Thus
for people who choose to be fishermen, ; is positive and for people who choose to be
hunters, m; is negative.

Estimation of treatment effects is of great interest in many literatures. The term
“treatment effect” makes the most sense in the context the medical literature. Choice
f could represent taking a medical treatment (such as an experimental drug) while h
could represent no treatment. In that case Y}; and Y3, would represent some measure
of health status for individual ¢ with and without the treatment. Thus the treatment
effect m; is the effect of the drug on the health outcome for individual 7.

The classic example in labor economics is job training. In that case, Y}; would

B There is also a substantial literature on the tradeoffs between different empirical approaches. Key
papers include Leamer (1983), Heckman (1979, 1999, 2000), Angrist and Imbens (1999), Rosenzweig
and Wolpin (2000), Deaton (2009), Heckman and Urzua (2009), Imbens (2009), Angrist and Pischke
(2010), Sims (2010).
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represent a labor market outcome for individuals who received training and Yj; would
represents the outcome in the absence of training.

In both the case of drug treatment and job training, empirical researchers have
exploited randomized trials. Medical patients are often randomly assigned either a
treatment or a placebo (i.e., a sugar pill that should have no effect on health). Likewise,
many job training programs are randomly assigned. For example, in the case of the
Job Training Partnership Act, a large number of unemployed individuals applied for
job training (see e.g. Bloom et. al., 1997). Of those who applied for training, some
were assigned training and some were assigned no training.

Because assignment is random and affects the level of treatment, one can treat
assignment as an exclusion restriction that is correlated with treatment (i.e., the prob-
ability that J; = f) but is uncorrelated with preferences or ability because it is random.
In this sense, random assignment solves the selection problem that is the focus of the
Roy model. As we show below, exogenous variation provided by experiments allows the
researcher to cleanly identify some properties of the distribution of Y}; and Y3, under
relatively weak assumptions. Furthermore, the methods for estimating these objects
are simple, which adds to their appeal.

The treatment effect framework is also widely used for evaluating quasi-experimental
data as well. By quasi-experimental data, we mean data that are not experimental,

but exploit variation that is “almost as good as” random assignment.

5.1 Treatment Effects and the Generalized Roy Model
Within the context of the generalized Roy model note that in general
7 = g (X, Xoi) — 9n(Xnir Xoi) + €50 — €
An important special case of the treatment effect defined in equation (5.1) is when
95 (Xpi, Xoi) = gn(Xni, Xoi) + mo (5.2)
€fi = Ehi- (5.3)

In this case, the treatment effect 7, = Y}, — Y, = mp is a constant across individuals.
Identification of this parameter is relatively straightforward. However, there is a sub-

stantial literature that studies identification of heterogeneous treatment effects. As we
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point out above, treatment effects are positive for some people and negative for others
in the context of the Roy model. Furthermore, there is ample empirical evidence that
the returns to job training are not constant, but instead vary across the population
(Heckman, LaLonde, and Smith, 1999).

In section 4.2 we explain why the joint distribution of (e, €5,) is not identified. This
means that the distribution of 7; is not identified and even relatively simple summary
statistics like the median of this distribution is not identified in general. The key
problem is that even when assignment is random, we do not observe the same people
in both occupations.

Since the full generalized Roy model is complicated, hard to describe, and very de-
manding in terms of data, researchers often focus on a summary statistic to summarize

the result. The most common in this literature is the Average Treatment Effect (ATE)
defined as

ATE = E(r,)
=E(Yy)— E(Yi).
From Theorem 4.1 we know that (under the assumptions of that theorem) the

distribution of Y}; and Y}, are identified. Thus, their expected values are also identified

under the one additional assumption that these expected values exist.

Assumption 5.1. The expected values of Yy and Yy, are finite

Theorem 5.1. Under the assumptions of Theorem 4.1 and Assumption 5.1, the Av-
erage Treatment effect is identified.

(Proof in Appendix)

To see where identification of this object comes from, abstract from X; so that
the only observable is Z;, which affects the non-pecuniary gain in utility from occu-
pation across occupations. With experimental data, Z; could be randomly generated

assignments to occupation. Notice that

p(z)—1 p(2)—0
= lim E(Yy | v <@(2)— lim E(Yy | v > ¢(2))
p(z)—1 ¢(2)—0
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Thus the exclusion restriction is the key to identification. Note also that we need
groups of individuals where ¢(Z;) &~ 1 (who are always fishermen) and ¢(Z;) ~ 0 (who
are always hunters); thus “identification at infinity” is essential as well. For the reasons
discussed in the nonparametric Roy model above, if ¢(Z;) were never higher than some
©(2") < 1 then E(Y};) would not be identified. Similarly if ¢(Z;) were never lower
then some (2) > 0, then E(Y};) would not be identified.

While one could directly estimate the the ATE using “identification at infinity,”
as described above this is not the common practice and not something we would ad-
vocate. The standard approach would be to estimate the full Generalized Roy Model
and then use it to simulate the various treatment effects. This is often done using a
completely parametric approach as in, for example, the classic paper by Willis and
Rosen (1979). However, there are quite a few nonparametric alternatives as well, in-
cluding construction of the Marginal Treatment effects as discussed in section 5.3 and
5.4 below.

As it turns out, even with experimental data, it is rarely the case that p(Z;) is
identically one or zero with positive probability. In the case of medicine, some people
assigned the treatment do not take the treatment. In the training example, many
people who are offered subsidized training decide not to undergo the training. Thus,
when compliance with assignment is less than 100%, we cannot recover the ATE. In
Section 5.2 we discuss more precisely what we do recover when there is less than 100%
compliance.

It is also instructive to relate the ATE to instrumental variables estimation. Let Y;

be the outcome of interest

vi={"'

and let Dy; be a dummy variable indicating whether J; = f. Consider estimating the

model

Y, = ﬂo + /GlDfi -+ u; (54)

using instrumental variables with Z; as an instrument for Dy;. Assume that Z; is
correlated with Dy; but not with Yy, or Yj,. Consider first the constant treatment

effect model described in equations (5.2) and (5.3) so that m; = m, for everyone in the
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population. In that case

=Yy + Dsi(Yyi — Yii)

= Yhi + Dfiﬂ'o.

Then two stage least squares on the model above yields

PN Cov(Z,Y;
plimf; = COU((ZZ', sz)
_ Cov(Zs,Yyi + Dyimo)
B Cov(Z;, Dy;)
_ Cov(Z;,Yyi) | Cov(Z;, mgDy;)
-~ Cov(Z;, D) Cov(Z;, Dy;)

= Tg-

Thus in the constant treatment effect model, instrumental variables provides a con-
sistent estimate of the treatment effect. However, this result does not carry over to
heterogeneous treatment effects and the average treatment effects as Heckman (1997)
shows. Following the expression above we get
o~ Cou(Z;, Yy + Dy
pllmﬁ1 _ ( iy L hi fi z)
CO'U(ZZ', sz)
. CO'U(ZZ', Dfiﬂ'i)
N COU(ZZ',DfZ')
# ATE (5.5)

in general. In sections 5.2 and 5.3 below, we describe what instrumental variables
identifies.
In practice there are two potential problems with the assumptions behind Theorem

5.1 above

e The researcher may not have a valid exclusion restriction. We discuss some of

the options for this case in Sections 5.5, 5.6, and 5.7.

e Even if they do, the variable may not have full support. By this we mean that the
instrumental variable Z; may not vary enough so that for some observed values

of Z; everyone is always a fisherman and for other observed values of Z; everyone
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is always a hunter. We discuss what can be identified using exclusion restrictions

with limited support in Sections 5.2, 5.3, 5.4, and 5.6.

We discuss a number of different approaches some of which assumes an exclusion re-
striction but relaxes the support conditions and others that do not require exclusion

restrictions.

5.2 Local Average Treatment Effects

Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) consider identifica-
tion when the support of Z; takes on a finite number of points. They show that when
varying the instrument over this range, they can identify what they call a Local Aver-
age Treatment Effect. Furthermore, they show how instrumental variables can be used
to estimate it. It is again easiest to think about this problem after abstracting from X,
as it is straightforward to condition on these variables (see Imbens and Angrist, 1994,
for details). For simplicity’s sake, consider the case in which the instrument Z; is bi-
nary and takes on the values {0,1}. In many cases not only is the instrument discrete,
but it is also binary. For example, in randomized medical trials, Z; = 1 represents
assignment to treatment, whereas Z; = 0 represents assignment to the placebo. In
job training programs, Z; = 1 represents assignment to the training program, whereas
Z; = 0 represents no assigned training.

It is important to point out that not all patients assigned treatment actually receive
the treatment. Thus J; = f if the patient actually takes the drug and J; = h if the
individual does not take the drug. Likewise, not all individuals who are assigned
training actually receive the training, so J; = f if the individual goes to training and
J; = h if she does not. The literature on Local Average Treatment Effects handles this
case as well as many others. However, we do require that the instrument of assignment
has power: Pr(J; = f| Z;=1)# Pr(J; = f | Z; = 0). Without loss of generality we
will assume that Pr(J; = f | Z;=1) > Pr(J;=f| Z;=0).

Using the reduced form version of the generalized Roy model the choice problem is

where v; is uniformly distributed.
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The following six objects can be learned directly from the data:

Pr(J; = flZ;=0) = Pr(v; < ¢(0))

Pr(Ji=flZi=1) = Pr(v; < ¢(1))

The above equations show that our earlier assumption that Pr(J; = f|Z; = 1) >
Pr(J; = f|Z; = 0) implies Pr(v; < ¢(1)) > Pr(v; < ¢(0)). This, combined with the

structure embedded in equation (5.6) means that
Pr(vi < ¢(1)r: < ¢(0)) =1, (5.7)

so then an individual who is a fisherman when Z; = 0 is also a fisherman when Z; = 1.
Similar reasoning implies Pr(v; < ¢(1)]¢(0) < v; < (1)) = 1. Using this and Bayes
rule yields

Pr(vi < (1) | v < 9(0))Pr(v; < ¢(0))
Pr(v; < (1))

Pr(v; < p(0) | v; < (1)) =

(5.8)

Prpl0) < 1 < (1) | 1 < (1)) = 2RO 20 = PUREE0) < < 2

_Pr(p(0) < v < ¢(1))
Pr(v; < (1))

(5.9)

Using the fact that Pr(y; < ¢(1)) = Pr(v; < ¢(0)) + Pr(¢(0) < v; < ¢(1)), one can
show that

E(Yyi [ vi <¢(1)) =E(Yyi [ vi < 9(0))Pr(vi < ¢(0) | vi < (1))

+ E(Yyi | 9(0) < < (1) Pr(e(0) <vi < o(1) | v < p(1))
(5.10)
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Combining equation (5.10) with equations (5.8) and (5.9) yields

B | < pla)) =202 L2 O < 20

L B [(0) < vi < (1) Prip(0) < vi < ¢(1))
Pr(v; < ¢(1))

Rearranging equation (5.11) shows that we can identify

(5.11)

E(Yy | ¢(0) <v < (1))
_E(i | Zi=1,Ji = f)Pr(J;

Ji
P’/’(JZ

| Zi
| Zi =

)= E(Yy | Zi=0,J;= f)Pr(Ji=f | Z; =0)
)—Pr(Ji=f1|2;=0)

f 1
[ 1

(5.12)

since everything on the right hand side is directly identified from the data.

Using the analogous argument one can show that

EYn | ¢(0) < < (1))
EYw|Zi=0,Ji=h)Pr(Ji=h|Zi=0)—EYu | Zi=1,Ji=h)Pr(Ji=h|Z; =1)
Pr(Ji=f|Zi=1)—Pr(Ji=f|Z =0)

is identified. But this means that we can identify

E(mi [ (0) <vi<e()) = E(Yp =Y [ ¢(0) v < (1)) (5.13)

which Imbens and Angrist (1994) define as the Local Average Treatment Effect. This
is the average treatment effect for that group of individuals who would alter their
treatment status if their value of Z; changed. Given the variation in Z;, this is the only
group for whom we can identify a treatment effect. Any individual in the data with
v; > (1) would never choose J; = f, so the data are silent about E(Yy; | v; > ¢(1)).
Similarly the data is silent about E (Y | v; < ¢(0)).

Imbens and Angrist (1994) also show that the standard linear Instrumental Vari-
ables estimator yield consistent estimates of Local Average Treatment Effects. Consider

the instrumental variables estimator of equation (5.4)
Y = Bo + 51Dy + uy

In equation (5.5) we showed that
31 ﬁ)CO'U(Z,’,DfﬂT,')
CO'U(ZZ', sz)
E(DyiZ;) — E(Dy;) E(Z;)
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Let P, denote the probability that Z; = 1. The numerator of the above expression
is
E(m; Dy Z;) — E(m;Dyi) E (Z;)
= P,E(mDy; | Z; =1)— E(m;Dy;) P,
= P,E(mDy; | Z;=1)— [P,E(m;Dy; | Z; =1)+ (1 — P,) E(m;, Dy; | Z; = 0)] P,
= P.(1-P,)[E(mDy; | Zi=1) = E(mDy; | Z; = 0)]
= P.(1-P)E(m | ¢(0) <vi <9 (1))Pr(p(0) <v; <p(1))

where the key simplification comes from the fact that

= E (m [1 (s < 0(0) + 1 (0(0) < v < (1))

= E(miDyi | Z; = 0) + E(m; | (0) < v < (1))Pr(p(0) <v; < o(1)).
Next consider the denominator

E(DyiZ;) — E(Dy) E(Z;)
— P.E(Dji | Z=1)— E(Dy) P.
= P.EWDy; | Z;=1) = [P.E(Dy; | Zi=1)+ (1 = P.) E(Dy; | Z; = 0)] P,
= P.(1=P)[E(Dy; | Zi =1) = E(Dy; | Z; = 0)]
= P.(1-P.)Pr(e(0) <v; <¢(1))

5 » E(mDpZ) — B (miDgy) B (2)

' E(DsuZ)— E(Dp)E(Z)

P(1=P)E(m | p(0) <v <9 (1))Pr(p(0) <v < ¢(1))
P.(1=P.)Pr(p(0) <v; < (1))

=FE(m | ¢0) <v; <p(l)

Imbens and Angrist never explicitly use the generalized Roy model or the latent
index framework. Instead, they write their problem only in terms of the choice prob-
abilities. However, in order to do this they must make one additional assumption.

Specifically, they assume that if J; = f when Z; = 0 then J; = f when Z; = 1. Thus
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changing Z; = 0 to Z; = 1 never causes some people to switch from fishing to hunting.
It only causes people to switch from hunting to fishing. They refer to this as a mono-
tonicity assumption. Vytlacil (2002) points out that this is implied by the latent index
model when the index ¢(Z;) is separable from v; as we assumed in equation (5.6). Asis
implied by equation (5.7), increasing the index ¢(Z;) will cause some people to switch
from hunting to fishing, but not the reverse.'*

Throughout, we use the latent index framework that is embedded in the Generalized
Roy model, for three reasons. First, we can appeal to the identification results of the
Generalized Roy model. Second, the latent index can be interpreted as the added utility
from making a decision. Thus we can use the estimated model for welfare analysis.
Third, placing the choice in an optimizing framework allows us to test the restrictions
on choice that come from the theory of optimization.

As we have pointed out, not everyone offered training actually takes the training.
For example, in the case of the JTPA, only 60% of those offered the training actually
received it (Bloom et al., 1997). Presumably, those who took the training are those
who stood the most to gain from the training. For example, the reason that many
people do not take training is that they receive a job offer before training begins. For
these people, the training may have been of relatively little value. Furthermore, 2% of
those who applied for and were not assigned training program wind up receiving the
training (Bloom et al., 1997). Angrist, Imbens and Rubin (1996) refer to those who
were assigned training, but did not take the training as never-takers. Those who receive
the training whether or not they are assigned are always-takers. Those who receive the
training only when assigned the training are compliers. In terms of the latent index
framework, the never-takers are those for whom (v; > ¢(1)), the compliers are those
for whom (¢ (0) < v; < ¢(1)), and the always-takers are those for whom (v; < ¢(0)).

The monotonicity assumption embedded in the latent index framework rules out
the existence of a final group: the defiers. In the context of training, this would be
an individual who receives training when not assigned training but would not receive
training when assigned. At least in the context of training programs (and many other

contexts) it seems safe to assume that there are no defiers.

4However, he points out that the non-separable model Dy; = 1(f(Z;,v;) > 0) does not necessarily
give rise to monotonicity. All other differences between the latent variable framework and the LATE

framework are extremely technical and minor.
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5.3 Marginal Treatment Effects

Heckman and Vytlacil (1999, 2001, 2005, 2007b) develop a framework that is useful for
constructing many types of treatment effects. They focus on the marginal treatment

effect (MTE) defined in our context as
AMTE(x vy = BE(m | Xi = 2,1 = v).

They show formally how to identify this object. We present their methodology using
our notation.

Note that if we allow for regressors X;, let the exclusion restriction Z; to take on
values beyond zero and one, then if (2%, z) and (2", ) are in the support of the data,

then equation (5.12) can be rewritten as

E(Yyi | ¢ (%, 2) < v < (2", 2), Xi = 2)

By | (Zi, X3) = (2" x), J; = [)Pr(Ji= [ | (Zi,X;) = (2", x))
)

CPr(di= [ (2, X)) = (Pa) = Pr(di= [ [ (Zi, Xi) = (¢, 2)
_ E(Yfl ‘ (Z“XZ> = (zévx)v JZ = f)PT( i f ‘ (Z17X2> = (szx)) (514>
Pr(Ji = f| (2, Xi) = (2" 2)) = Pr(Ji = [ | (Z;, X;) = (2%, 2))
for ¢ (2%, ) < ¢(z", z). Now notice that for any v,
lim E(Yy | e (2 2) <y <oz 2), X =2) = EYy | vi = v, X; = 2).

go(zl,w)Tu,ap(zh,x)lu
Thus if (z,v) is in the support of (X;, ¢(Z;, X;)), then E(Yy; | v; = v, X; = ) is
identified. Since the model is symmetric, under similar conditions E(Y}; | v; = v, X; =
x) is identified as well. Finally since
AMTE(z,v) = B(m; | Xi = ,v; = v)
:E(Yfz | I/Z‘:V,XZ':LU)—E(YM | I/Z':I/,XZ':LU), (515)
the marginal treatment effect is identified.
The marginal treatment effect is interesting in its own right. It is the value of the
treatment for any individual with X; = x and v; = v. In addition, it is also useful

because the different types of treatment effects can be defined in terms of the marginal

treatment effect. For example

ATE = / /0 IAMTE(:C, v)dvdG(z).
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One can see from this expression that without full support this will not be identified

AMTE (1) will not be identified everywhere.

because
Heckman and Vytlacil (2005) also show that the instrumental variables estimator

defined in equation (5.5) (conditional on z) is

1
/ AMTE (g ) hyy (2, v)dy
0

where they give an explicit functional form for h;y. It is complicated enough that we
do not repeat it here but it can be found in Heckman and Vytlacil (2005).

This framework is also useful for seeing what is not identified. In particular if
©(Z;, x) does not have full support so that it is bounded above or below the average
treatment effect will not be identified. However, many other interesting treatment
effects can be identified. For example, the Local Average Treatment Effect in a model

with no regressors () is
1
ars TS
p(1) — ¢(0)

More generally, in this series of papers, Heckman and Vytlacil show that the

(5.16)

marginal treatment effect can also be used to organize many ideas in the literature.
One interesting case is policy effects. They define the policy relevant treatment effect
as the treatment resulting from a particular policy. They show that if the relation-
ship between the policy and the observable covariates is known, the policy relevant

treatment effect can be identified from the marginal treatment effects.

5.4 Applications of the Marginal Treatment Effects Approach

Heckman and Vytlacil (1999,2001,2005) suggest procedures to estimate the marginal

?

treatment effect. They suggest what they call “local instrumental variables.” Using
our notation for the generalized Roy model in which J; = f when ¢(X;, Z;) —v; > 0
where v; is uniformly distributed, they show that

N ov

AMTE(I’, I/)
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To see why this is the same definition of MTE as in equation (5.15), note that
OE(Y; | X; =z, (X, Zi) = v)

O[E(Yy | )?Z-V: z,v; <v)Pr(v, <v)+ E(Yu | Xi = z,v; > v)Pr(y; > v)]
v
) [fo” E(Vy | vi=w, X; = 2)dw + [ E(Yai | v = w, X; = x)dw]
- v
=EYy|lvi=v,X,=2)—EYy |vi=v.X;,=1x)
= AMTE(2 v).

Thus one can estimate the marginal treatment effect in three steps. First estimate
v, second estimate E(Y | X; = x,¢(X;, Z;) = v) using some type of nonparametric
regression approach, and third take the derivative.

Because as a normalization v; is uniformly distributed
olx,z)=Pr(v, < o(Xi, Z;) | Xi =x,Z; = 2)
=Pr(Ji=f|Xi=x,2,=2)
=EDy | X, =2,Z; = z).

Thus we can estimate ¢(z, z) from a nonparametric regression of Dy; on (X;, Z;).

A very simple way to do this is to use a linear probability model of Dy; regressed
on a polynomial of Z;. By letting the terms in the polynomial get large with the
sample size, this can be considered a nonparametric estimator. For the second stage
we regress the outcome Y; on a polynomial of our estimate of ¢(Z;). To see how this
works consider the case in which both polynomials are quadratics. We would use the

following two stage least squares procedure:

Dy =0 +nZ;i + 722 + 1. Xi + €, (5.17)
— 2
Yi =00+ 61Dy + Bo2Dyi + B X + i, (5.18)

where l/?; =Y + N1Z; + V222 + 7, X; is the predicted value from the first stage. The
(o coefficient may not be 0 because as we change l/?; the instrument affects different
groups of people. The MTE is the effect of changing l/?; on Y;. For the case above the
MTE is:

= B, +2B:Dr. 5.19
oD, 1 2Dy (5.19)
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Although the polynomial procedure above is transparent, the most common technique
used to estimate the MTE is local linear regression.

French and Song (2010) estimate the labor supply response to Disability Insurance
(DI) receipt for DI applicants. Individuals are deemed eligible for DI benefits if they
are “unable to engage in substantial gainful activity”-i.e., if they are unable to work.
Beneficiaries receive, on average $12,000 per year, plus Medicare health insurance.
Thus, there are strong incentives to apply for benefits. They continue to receive these
benefits only if they earn less than a certain amount per year ($10,800 in 2007). For
this reason, the DI system likely has strong labor supply disincentives. A healthy DI
recipient is unlikely to work if that causes the loss of DI and health insurance benefits.

The DI system attempts to allow benefits only to those who are truly disabled.
Many DI applicants have their case heard by a judge who determines those who are
truly disabled. Some applicants appear more disabled than others. The most disabled
applicants are unable to work, and thus will not work whether or not they get the
benefit. For less serious cases, the applicant will work, but only if she is denied benefits.
The question, then, is what is the optimal threshold level for the amount of observed
disability before the individual is allowed benefits? Given the definition of disability,
this threshold should depend on the probability that an individual does not work,
even when denied the benefit. Furthermore, optimal taxation arguments suggest that
benefits should be given to groups whose labor supply is insensitive to benefit allowance.
Thus the effect of DI allowance on labor supply is of great interest to policy makers.

OLS is likely to be inconsistent because those who are allowed benefits are likely to
be less healthy than those who are denied. Those allowed benefits would have had low
earnings even if they did not receive benefits. French and Song propose an IV estimator
using the process of assignment of cases to judges. Cases are assigned to judges on a
rotational basis within each hearing office, which means that for all practical purposes,
judges are randomly assigned to cases conditional on the hearing office and the day.
Some judges are much more lenient than others. For example, the least lenient 5%
of all judges allow benefits to less than 45% of the cases they hear, whereas the most
lenient 5% of all judges allow benefits to 80% of all the cases they hear. Although
some of those who are denied benefits appeal and get benefits later, most do not. If

assignment of cases to judges is random then the instrument of judge assignment is a
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plausibly exogenous instrument. Furthermore, and as long as judges vary in terms of
leniency and not ability to detect individuals who are disabled,'® the instrument can
identify a MTE.

French and Song use a two stage procedure. In the first stage they estimate the
probability that an individual is allowed benefits, conditional on the average judge
specific allowance rate. They estimate a version of equation (5.17) where Dy; is an
indicator equal to 1 if case ¢ was allowed benefits and Z; is the average allowance rate
of the judge who heard case i. In the second stage they estimate earnings conditional on
whether the individual was allowed benefits (as predicted by the judge specific allowance
rate). They estimate a version of equation (5.18) where Y; is annual earnings 5 years
after assignment to a judge. Figure 1 shows the estimated MTE (using the formula
in equation (5.19)) using several different specifications of polynomial in the first and
second stage equations. Assuming that the treatment effect is constant (i.e., s = 0),
they find that annual earnings 5 years after assignment to a judge are $1,500 for those
allowed benefits and $3,900 for those denied benefits, so the estimated treatment effect
is $2,400. This is the MTE-linear case in Figure 1. However, this masks considerable
heterogeneity in the treatment effects. They find that when allowance rates rise, the
labor supply response of the marginal case also rises. When allowing for the quadratic
term (2 to be non-zero, they find that less lenient judges (who allow 45% of all cases)
have a MTE of a $1,800 decline in earnings. More lenient judges (who allow 80% of
all cases) have a MTE of $3,200 decline in earnings. Figure 1 also shows results when
allowing for cubic and quartic terms in the polynomials in the first and second stage
equations. This result is consistent with the notion that as allowance rates rise, more
healthy individuals are allowed benefits. These healthier individuals are more likely to
work when not receiving DI benefits, and thus their labor supply response to DI receipt
is greater.

One problem with an instrument such as this is that the instrument lacks full
support. Even the most lenient judge does not allow everyone benefits. Even the
strictest judge does not deny everyone. However, the current policy debate is whether

the thresholds should be changed by only a modest amount. For this reason, the MTE

I5Tf judges vary in terms of ability to detect disability, then a case that is allowed by a low allowance
judge might be denied by a high allowance judge. This would violate the monotonicity assumption

shown in equation (5.7).
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Figure 1: MARGINAL TREATMENT EFFECT

on the support of the data is the effect of interest, whereas the ATE is not.

Doyle (2007) estimates the Marginal Treatment Effect of foster care on future earn-
ings and other outcomes. Foster care likely increases earnings of some children but
decreases it for others. For the most serious child abuse cases, foster care will likely
help the child. For less serious cases, the child is probably best left at home. The
question, then, is at what point should the child abuse investigator remove the child
from the household? What is the optimal threshold level for the amount of observed
abuse before which the child is removed from the household and placed into foster care?

Only children from the most disadvantaged backgrounds are placed in foster care.
They would have had low earnings even if they were not placed in foster care. Thus,
OLS estimates are likely inconsistent. To overcome this problem, Doyle uses IV. Case

investigators are assigned to cases on a rotational basis, conditional on time and the
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location of the case. Case investigators are assigned to possible child abuse cases
after a complaint of possible child abuse is made (by the child’s teacher, for example).
Investigators have a great deal of latitude about whether the child should be sent into
foster care. Furthermore, some investigators are much more lenient than others. For
example, one standard deviation in the case manager removal differential (the difference
between his average removal rate and the removal rate of other investigators who handle
cases at the same time and place) is 10%. Whether the child is removed from the home
is a good predictor of whether the child is sent to foster care. So long as assignment of
cases to investigators is random and investigators only vary in terms of leniency (and
not ability to detect child abuse) then the instrument of investigator assignment is a
useful and plausibly exogenous instrument.

Doyle uses a two stage procedure where in the first stage he estimates the probability
that a child is placed in foster care as a function of the investigator removal rate. In the
second stage he estimates adult earnings as a function of whether the child was placed
in foster care (as predicted by the instrument). He finds that children placed into
foster care earn less than those not placed into foster care over most of the range of the
data. Two stage least squares estimates reveal that foster care reduces adult quarterly
earnings by about $1000, which is very close to average earnings. Interestingly, he finds
that when child foster care placement rates rise, earnings of the marginal case fall. For
example, earnings of the marginal child handled by a lenient investigator (who places
only 20% of the children in foster care) are unaffected by placement. For less lenient
investigators, who place 25% of the cases in foster care, earnings of the marginal case
decline by over $1500.

Carneiro and Lee (2009) estimate the counterfactual marginal distributions of wages
for college and high school graduates, and examine who enters college. They find that
those with the highest returns are the most likely to attend college. Thus, increases
in college cause changes in the distribution of ability among college and high school
graduates. For fixed skill prices, they find that a 14% increase in college participation
(analogous to the increase observed in the 1980s), reduces the college premium by 12%.
Likewise, Carneiro, Heckman and Vytlacil (2010) find that while the conventional IV
estimate of the return to schooling (using distance to a college and local labor market

conditions as the instruments) is 0.095, the estimated marginal return to a policy that
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expands each individual’s probability of attending college by the same proportion is

only 0.015.

5.5 Selection on Observables

Perhaps the simplest and most common assumption is that assignment of the treat-
ment is random conditional on observable covariates (sometimes referred to as uncon-
foundedness). The easiest way to think about this is that the selection error term is

independent of the other error terms:

Assumption 5.2.
Ji = f when o(X;) > v

where v; is independent of (€ i, €ni).

We continue to assume that Yy = g¢(Xpi, Xoi) + €5 and Y = gn(Xnis Xoi) + ni-
Note that we have explicitly dropped Z; from the model as we consider cases in which
we do not have exclusion restrictions. The implication of this assumption is that
unobservable factors that determine one’s income as a fisherman do not affect the
choice to become a fisherman. That is while it allows for selection on observables in a
very general way, it does not allow for selection on unobservables.

Interestingly, this is still not enough for us to identify the Average Treatment Effect.
If there are values of observable covariates X; for which Pr(J; = f | X; = x) =1 or
Pr(J; = f | X; = x) = 0 the model is not identified. If Pr(J; = f | X; = z) = 1 then
it is straight forward to identify E(Y}; | X; = x), but E(Y}; | X; = x) is not identified.

Thus we need the additional assumption

Assumption 5.3. For almost all x in the support of X;,

0<Pr(fi=f|Xi=2)<1

Theorem 5.2. Under assumptions 5.2 and 5.3 the Average Treatment Effect is iden-
tified

(Proof in Appendix)

o1



Estimation in this case is relatively straightforward. One can use matching!® or

regression analysis to estimate the average treatment effect.

5.6 Set Identification of Treatment Effects

In our original discussion of identification we defined ¥(©(P)) as “the set of values of
1 that are consistent with the data distribution P.” We said that ¢ was identified if
this set was a singleton. However, there is another concept of identification we have
not discussed until this point which is set identification. Sometimes we may be inter-
ested in a parameter that is not point identified, but this does not mean we cannot
say anything about it. In this subsection we consider the case of set identification (i.e.
trying to characterize the set W(O(P))) focusing on the case in which v is the Average
Treatment Effect. Suppose that we have some prior knowledge (possibly an exclusion
restriction that gives us a LATE). What can we learn about the ATE without making
any functional form assumptions? In a series of papers Manski (1989,1990,1995,1997)
and Manski and Pepper (2000,2009) develop procedures to derive set estimators of
the Average Treatment Effect and other parameters given weak assumptions. By “set
identification” we mean the set of possible Average Treatment Effects given the as-
sumptions placed on the the data. Throughout this section we will continue to assume
that the structure of the Generalized Roy model holds and we derive results under these
assumptions. In many cases the papers we mentioned did not impose this structure
and get more general results.

Following Manski (1990) or Manski (1995), notice that
E(Yy)=EYw | Ji=h)Pr(Ji=h)+ EYs | Ji = f)Pr(J; = f). (5.21)
We observe all of the objects in equations (5.20) and (5.21) except E(Yy; | J; = h)
and E(Yy; | J; = f). The data are completely uninformative about these two objects.

However, suppose we have some prior knowledge about the support of Y; and Y3;. In

particular, suppose that the support of Y}; and Y},; are bounded above by y* and from

160ur focus is on identification rather than estimation. Thus we avoid a discussion of matching
estimators. See Heckman, Lalonde, and Smith (1999), Imbens and Wooldridge (2009), or Dinardo
and Lee (2010) for discussion.
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below by y‘. Thus, by assumption y* > E(Yy; | Ji = h) > y* and y* > E(Yi | J; =
f) > y*. Using these assumptions and equations (5.20) and (5.21) we can establish
that
E(Yyi |J; = [)Pr(J; = [) + 4 Pr(Ji = h)
E(Yy; |J; = h)Pr(J; = h) + y'Pr(J; = f)
<

S E(Yw) < E(Yy | Ji=h)Pr(J; =h) +y“Pr(J; = [). (5.23)

Using these bounds and the definition of the ATE
ATE = E(Yy;) — E (Yu) (5.24)
yields
(E(Yf,- | J; = £)Pr(Ji = f)+y*Pr(J; = h)) — (E(Yhi | J; = h)Pr(J; = h) + y"“Pr(J;
<ATFE <
(E(Yf,- | Ji= f)Pr(Ji = f) +y"Pr(J; = h)) — (E(Yhi | Ji = h)Pr(J; = h) +y"Pr(J;

In practice the bounds above can yield wide ranges and are often not particularly
informative. A number of other assumptions can be used to decrease the size of the
identified set.

Manski (1990,1995) shows that one method of tightening the bounds is with an
instrumental variable. We can write the expressions (5.20) and (5.21) conditional on

Z; = z for any z € supp(Z;) as for each j € {f, h},

Since Z; is, by assumption, mean independent of Y}; and Y, (it only affects the proba-
bility of choosing one occupation versus the other), then E (Yy;|Z; = 2) = E (Y};) and

E (Yyi|Z; = z) = E(Yy). Assume there is a binary instrumental variable, Z;, which

equals either 0 or 1. We can then follow exactly the same argument as in equations
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(5.22) and (5.23), but conditioning on Z; and using equation (5.25) yields

EYpl|Ji=f,Zi=1)Pr(Ji=f|Zi=1)+y'Pr(Ji=h|Z =1)
<E(Yy) <
<EYn|Ji=fZ=1)Pr(Ji=f|Zi=1)+y"Pr(Ji=h|Z =1) (5.26)
EYyi | Ji=h,Z;=0)Pr(J;=h|Z;=0)+y Pr(J;= f| Z =0)
<E (Yn) <
EYp|Ji=hZi=0)Pr(Ji=h|Z;=0)+y"Pr(J;=f| Z;=0). (5.27)
Thus we can bound ATE = E(Y};) — E(Y};) from below by subtracting (5.27) from
(5.26):
EYy|Ji=f,Zi=10)Pr(Ji=f| Zi=1)+y'Pr(Ji=h| Zi=1)
—EYy | Ji=hZ;=0)Pr(Ji=h|Z;=0)+y"Pr(Ji=f| Z; =0)
<ATE <
EYul|Ji=f,Zi=1)Pr(Ji=f|Zi=1)+y"Pr(Ji=h|Z =1)
—EYp | Ji=h,Z=0)Pr(Ji=h|Z =0)+y'Pr(J;=f| Z =0). (528)
Our choice of a binary value of Z; can be trivially relaxed. In the cases in which
Z; takes on many values one could choose any two values in the support of Z; to get
upper and lower bounds. If our goal is to minimize the size of the set we would choose
the values z¢ and 2" to minimize the difference between the upper and lower bounds

in (5.28):
(yu—?/) [PT(Ji:h | Zi :zh)—l—Pr(J,-:f | ZZ.:ZZ)}

The importance of support conditions once again becomes apparent from this ex-

pression. If we could find values z‘ and z"such that

Pr(Ji=h|Z;=2:")=0
Pr(Ji=f|Z;=2)=0

then this expression is zero and we obtain point identification of the ATE. When

Pr(J; =h | Z; = z) or Pr(J; = f | Z; = z) are bounded from below we are only
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able to obtain set estimates. A nice aspect of this is that it represents a nice middle
point between identifying LATE versus claiming the ATE is not identified. If the
identification at infinity effect is not exactly true, but approximately true so that one
can find values of z¢ and 2" so that Pr(J; = h | Z; = 2") and Pr(J; = f | Z; = 2*) are
small, then the bounds will be tight. If one cannot find such values, the bounds will
be far apart.

In many cases these bounds may be wide. Wide bounds can be viewed in two ways.
One interpretation is that the bounding procedure is not particularly helpful in learning
about the true ATE. However, a different interpretation is that it shows that the data,
without additional assumptions, is not particularly helpful for learning about the ATE.
Below we discuss additional assumptions for tightening the bounds on the ATE, such as
Monotone treatment response, Monotone treatment selection, Monotone instruments.
In order to keep matters simple, below we assume that there is no exclusion restriction.
However, if a exclusion restriction is known, this allows us to tighten the bounds.

Next we consider the assumption of Monotone Treatment Response introduced in

Manski (1997) which we write as

Assumption 5.4. Monotone Treatment Response
Yii > Y

with probability one.

In the fishing/hunting example this is not a particularly natural assumption, but
for many applications in labor economics it is. Suppose we are interested in knowing
the returns to a college degree, and Y7; is income for individual 7 if a college graduate
whereas Y}; is income if a high school graduate. It is reasonable to believe that the
causal effect of school or training cannot be negative. That is, one could reasonably
assume that receiving more education can’t causally lower your wage. Thus, Monotone
Treatment Response seems like a reasonable assumption in this case. This can lower

the bounds above quite a bit because now we know that
E(Yyi|Ji=h)> EY|Ji=h) (5.29)
EWy | Ji=[f) < EXp | Ji= ). (5.30)
From this Manski (1997) shows that

0 < ATE
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Another interesting assumption that can also help tighten the bounds is the Monotone
Treatment Selection assumption introduced in Manski and Pepper (2000). In our

framework this can be written as

Assumption 5.5. Monotone Treatment Selection: for j = f or h,
E(ji|Ji=Ff)=E(Y;|Ji=h)

Again this might not be completely natural for the fishing/hunting example, but
may be plausible in many other cases. For example it seems like a reasonable as-
sumption in schooling if we believe that there is positive sorting into schooling. Put
differently, suppose the average college graduate is a more able person than the average
high school graduate and would earn higher income, even if she did not have the college
degree. If this is true, then the average difference in earnings between college and high
school graduates overstates the true causal effect of college on earnings. This also helps

to further tighten the bounds as this implies that
ATE<EYy | Ji=f)—EYu|Ji=h).
Note that by combining the MTR and MTS assumption, one can get the tighter bounds:
0<ATE<E(Y} | Ji=f)—Eu|J=h).

Manski and Pepper (2000) also develop the idea of a monotone instrumental vari-
able. An instrumental variable is defined as one for which for any two values of the

instrument z, and z,
E(}/;Z | ZZ = Za) = E(Y;Z ‘ Zz = Zb).

In words, the assumption is that the instrument does not directly affect the outcome
variable Y};. It only affects one’s choices. Using somewhat different notation, but their

exact wording they define a monotone instrumental variable in the following way

Assumption 5.6. Let Z be an ordered set. Covariate Z; is a monotone instrumental
variable in the sense of mean-monotonicity if, for j € {f, h},each value of x, and all
(2, 20) € (£ x Z) such that z, > z,,

EYj | Xi=2,Zi=2)>EY; | Xi=2,7Z; = 2,).
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This is a straight generalization of the instrumental variable assumption, but im-
poses much weaker requirements for an instrument. It does not require that the instru-
ment be uncorrelated with the outcome, but simply that the outcome monotonically
increase with the instrument. An example is that parental income has often been used
as an instrument for education. Richer parents are better able to afford a college degree
for their child. However, it seems likely that the children of rich parents would have
had high earnings, even in the absence of a college degree.

They show that this implies that

2a<z

2p>2

<ATE <

2p>2

za<z

One can obtain tighter bounds by combining the Monotone Instrumental Variable as-
sumption with the Monotone Treatment Response assumption but we do not explicitly
present this result.

Blundell et al. (2007) estimate changes in the distribution of wages in the United
Kingdom using bounds to allow for the impact of non-random selection into work.
They first document the growth in wage inequality among workers over the 1980s and
1990s. However, they point out that rates of non-participation in the labor force have
grown on the UK over the same time period. Nevertheless, they show that selection
effects alone cannot explain the rise in inequality observed among workers: the worst
case bounds establish that inequality has increased. However, worst case bounds are
not sufficiently informative to understand such questions as whether most of the rise in
wage inequality is due to increases in wage inequality within education groups versus
across education groups. Next, they add in additional assumptions to tighten the
bounds. First, they assume the probability of work is higher for those with higher
wages, which is essentially the Monotone Treatment Selection assumption shown in

Assumption 5.5. Second, they make the Monotone Instrumental Variables assumption

57
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shown in Assumption 5.6. They assume that higher values out of work benefit income
are positively associated with wages. They show that both of these assumptions tighten
the bounds considerably. They find that when these additional restrictions are made,

then they can show that both within group and between group inequality has increased.

5.7 Using Selection on Observables to Infer Selection on Un-

observables

Altonji, Elder, and Taber (2005a) suggest another approach which is to use the amount
of selection on observable covariates as a guide to the potential amount of selection on
unobservables. To motivate this approach, consider an experiment in which treatment
status is randomly assigned. The key to random assignment is that it imposes that
treatment status be independent of the unobservables in the treatment model. Since
they are unobservable, one can never explicitly test whether the treatment was truly
random. However, if randomization was carried out correctly, treatment should also
be uncorrelated with observable covariates. This is testable and applying this test is
standard in experimental approaches.

Researchers use this same argument in non-experimental cases as well. If a re-
searcher wants to argue that his instrument or treatment is approximately randomly
assigned, then it should be uncorrelated with observable covariates as well. Even if
this is strictly not required for consistent estimates of instrumental variables, readers
may be skeptical of the assumption that the instrument is uncorrelated with the un-
observables if it is correlated with the observables. Researchers often test for this type
of relationship as well.!” The problem with this approach is that simply testing the
null of uncorrelatedness is not that useful. Just because you reject the null does not
mean it isn’t approximately true. We would not want to throw out an instrument with
a tiny bias just because we have a data set large enough to detect a small correlation
between it and an observable. Along the same lines, just because you fail to reject the
null does not mean it is true. If one has a small data set with little power one could fail
to reject the null even though the instrument is poor. To address these issues, Altonji,
Elder, and Taber (2005a) design a framework that allows them to describe how large

the treatment effect would be if “selection on the unobservables is the same as selection

17 Altonji, Elder, and Taber (2005a) discuss a number of studies that do so.
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on the observables.”
Their key variables are discrete, so they consider a latent variable model in which

a dummy variable for graduation from high school can be written as

where Y;* can be written as

K
Y;" = o+ aDp + Z Wi;B;

=1
K K

= fo+aDgi+ Y Wi+ Y (1~ 5)Wyb;
j=1 =1

= Bo+aDg+ X+ v,

Wi; represent all covariates, both those that are observable to the econometrician and
those that are unobservable, the variable S; is a dummy variable representing whether
the covariate is observable to the empirical researcher, X!3 = Zszl S;Wi;B; represents
the observable part of the index, and v; = Z]K:l(l — S, )W;;3; denotes the unobservable
part.

Within this framework, one can see that different assumptions about what dictates
which observables are chosen (5;) can be used to identify the model. Their specific
goal is to quantify what it means for “selection on the observables to be the same as
selection on the unobservables.” They argue that the most natural way to formalize
this idea is to assume that S; is randomly assigned so that the unobservables and
observables are drawn from the same underlying distribution.

The next question is what this assumption implies on the data that can be useful

for identification. They consider the projection:
proj(Zi | XiB,vi) = o + ¢ X3 + bevi
where Z; can be any random variable. They show that if S; is randomly assigned,
¢ = @e.

This restriction is typically sufficient to insure identification of o.!®

18Tn some cases it is not point identification, but either 2 or 3 different points.
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Altonji, Elder and Taber (2005) argue that for their example this is an extreme
assumptions and the truth is somewhere in between this assumption and the assump-
tion that Z; is uncorrelated with the unobservables which would correspond to ¢. = 0.
They assume that when ¢ > 0,

0<¢. <o

There are at least three arguments for why selection on unobservables would be ex-
pected to be less severe than selection on observables (as it is measured here). First,
some of the variation in the unobservable is likely just measurement in the dependent
variable. Second, data collectors likely collect the variables that are likely to be corre-
lated with many things. Third, there is often a time lapse between the time the baseline
data is collected (the observables) and when the outcome is realized. If unanticipated
events occur in between these two time periods, that would lead to the result.

Notice that if ¢ = 0 then assuming ¢. = ¢ is the same as assuming ¢. = 0. However,
if ¢ were very large the two estimates would be very different which would shed doubt
on the assumption of random assignment. Since ¢ essentially picks up the relationship
between the instrument and the observable covariates, the bounds would be wide when
there is a lot of selection on observables and will be tight when there is little selection
on observables.

Altonji, Elder, and Taber consider the case of whether the decision to attend
Catholic high school affects outcomes such as test scores and high school graduation
rates. Those who attend Catholic schools have higher graduation rates than those
who do not attend Catholic schools. However, those who attend Catholic may be very
different than those who do not. They find that (on the basis of observables) while
this is true in the population, it is not true when one conditions on the individuals
who attend Catholic school in eighth grade. To formalize this, they use their approach
and estimate the model under the two different assumptions. In their application the
projection variable, Z;, is the latent variable determining whether an individual at-
tends Catholic school. First they estimate a simple probit of high school graduation
on Catholic high school attendance as well as many other covariates. This corresponds
to the ¢. = 0 case. They find a marginal effect of 0.08 meaning that Catholic school
raises high school graduation by eight percentage points. Next they estimate a bivari-

ate probit of Catholic high school attendance and high school graduation subject to the
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constraint that ¢. = ¢. In this case they find a Catholic high school effect of 0.05. The
closeness of these two estimates strongly suggests that the Catholic high school effect
is not simply a product omitted variable bias. The tightness of the two estimates arose
both because ¢ was small and because they use a wide array of powerful explanatory

variables.

6 Duration Models and Search Models

In this section we relate the previous discussion to the competing risks model and the
search model. We show that the competing risk model can be written in a way that
is almost identical to the Roy model. We also show how the basic ideas of exclusion

restrictions can be used to identify a version of a search model.

6.1 Competing Risks Model

With duration data a researcher observes the elapsed time until some event occurs.
The prototypical example in labor economics is the duration of unemployment and we
focus on that example. We explain why identification of this model is almost identical
to identification of the Roy model. Let T; denote the length of an unemployment spell.
There are (at least) four different ways to characterize the distribution of 7;. The first
is the cumulative distribution function F(¢) = Pr(¢ > T;), which in the context of
unemployment durations is the probability the individual found a job. The second is

the density function f. The third is the survivor function defined as
S(t)=Pr(T; >t)=1— F(t).

The fourth is the hazard function, which is the job finding rate at time ¢, given that

the individual was unemployed at time t¢:

. Pr(T, <t+46|T; >1t)
lim

6—0 5

f()

S(t)

h(t)
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The link between the hazard rate and survivor function is:

_f(t)  dF(t)/dt

=50 50)
_dS(t)/dt
(1)

_ —dlogS(t)
= — (6.1)

There is a large literature on identification of duration models. Heckman and Taber
(1994), Van den Berg (2001), and Abbring (2010) provide excellent surveys of this
literature.!® Rather than survey the full literature here we relate it to our previous
discussion. Given that T; must be positive, it is natural to model T; using the basic

framework we have been using all along:
log(T3) = g(Xi) + &

Clearly if we could observe the distribution of log(7T;) conditional on X;, identification
of g and the distribution of ¢; would be straightforward.

However, often we cannot observe the full duration of T; because the spell (or our
observation of it) is truncated before the worker is re-employed. For example, the
worker may die, be lost from the data, or the survey may end. In the classic medical
example we might want to estimate the duration until a patient has a heart attack, but
if she dies from cancer we never observe this event. Hence the name “competing risk
model.” To put this in the context of our Roy model example, suppose an unemployed
worker would take the first offer they received and they can get an offer as a fisherman

or a hunter. Define the model as

log(Tyi) = g;(Xi) + €5 (6.2)
l0g(Thi) = gn(Xi) + €ni (6.3)
where T%; and T},; are the amount of time it would take until the worker received an offer

as a fisherman or as a hunter, X; denotes observable variables that are independent

of the unobservables (e, eni).2% The econometrician can observe whether the worker

9Key papers include Elbers and Ridder (1982), Heckman and Singer (1984a,b), Ridder (1990),

Honoré (1993), and Abbring and Ridder (2009).
20We do not need to make use of exclusion restrictions here so we do not distinguish between

observables that may enter differently.
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becomes a fisherman or a hunter and the length of the unemployment spell. However,
notice that as Heckman and Honoré (1990) point out, this is just another version of
the Roy model. Rather than observe the maximum of Y}; and Y},;, the econometrician
observes the minimum of log(Ty;) and log(T};).

The specification (6.2) and (6.3) above is not the way that many researchers choose
to model duration data. Often they model the hazard function directly as it is some-
times easier to interpret. Moreover, if the observable covariates change over time, the
hazard model is a more reasonable way to model the durations. The most common

specification is the mixed proportional hazard model
h(t | X; = ) = &(t)o(x)w; (6.4)

where £(t) is referred to as the baseline hazard, w; is an unobservable variable which is
independent of the observables, and X; denotes observable characteristics. Most stud-
ies find that the hazard rate for finding a job tends to decline with the unemployment
duration. The model above allows for two possible interpretations of this empirical reg-
ularity. First, it could be that as unemployment durations lengthen, skills depreciate,
making it harder to find a job. This is captured by £(t). Second, it could be that some
people are just less able to find a job than others in ways not captured by observables.
This is captured in w;. Van den Berg (1999) provides a thorough discussion of this
model.

Heckman and Honoré (1989) show how to map the hazard specification into a
framework that is similar to what we use in our analysis of the Roy model. The
transformation is simplest is when £(¢) = 1. In that case one can write the survivor
function as

Pr(Ty >t X, = 2,w; = w) = e 0@« (6.5)

It is straightforward to derive equation (6.4) using the survivor function (6.5) and
equation (6.1). Define g(-) = —log(¢(-)) and F, to be the distribution of w;. In

order to obtain the cumulative density function of unemployment durations we must
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integrate over the distribution of unemployed individuals:
Pmﬂgtu&:xy:/1—emwwwa
— [ 1= cap(-copllog(t) ~ g(x) + log())dE.
= F(log(t) — g(x)) (6.6)

where Fy is defined implicitly by this relationship. Note that Fj is a legitimate CDF,
as it is strictly increasing from 0 to 1.2! Thus one can think of the data generating

process as

log(T;) = g(Xi) + @i

where w; is distributed according to F; and is independent of X;.
In the more general case in which £(¢) is not constant, it is well known that one

can write the survivor function as

e E(P(Xi)w; (6.7)
where = is the integrated hazard

széawt

Equation (6.7) differs from equation (6.5) by the term =(¢) instead of ¢. Thus replacing
t with Z() in equation (6.6) yields

log(Z(T;)) = g(X;) + @;.

Heckman and Honoré (1989) use a more general framework to think about the
competing risks model in which the probability of not getting a fishing job by time ¢
and not getting a hunting job by time ¢, S(ts,t, | X; = x), can be written as

Sty tn | Xi = 2) = K(exp{=Z(t;)os(2)}, exp{=Zn(tn)on(z)})
where ¢;(x) = exp(—g;(x)) for j = f, h. This is a generalization of a model in which

log(Z(Th:)) = g5(Xi) + Wy

1og(En(Thi)) = gn(Xi) + Op

21Tt is the distribution of a convolution between log (w;) and an extreme value.
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because

Sty tn | Xi = x) = Pr{log(E¢(Ty:)) > log(Z¢(ty)), 10g(En(Thi)) > log(En(tn)) | Xi = 7]
= Prigp(x) + @i > 1og(Ef(ty)), gn(x) + Oni > 1og(En(ts))]
= Pr-wp < —1og(Es(ty)) + g5(x), —0ni < —10g(Zn(tn)) + gn(z)]
= F g5, (= 10g(Es(ty)) + g7(x), — 10g(En(tn)) + gn(x))

= K(exp{~Z4(t/)65(2)}, exp{—En(tn)én(2)}) (6.8)

where F 5, 5, is the joint CDF of (-w};, —wy;), and K is defined implicitly as
K(a,b) = Fg;, -5, (= log(—log(a)), — log(—log(b))).
Heckman and Honoré (1989), Theorem 1 contains the following result. We repro-

duce their result, only altering the notation.

Theorem 6.1. Assume that (Ty;, Ty;) has the joint survivor function as given in (6.8).
Then =Z¢, Zp, @5, &, and K are identified from the identified minimum of (T't;, Th;)

under the following assumptions

1. K is continuously differentiable with partial derivatives Ky and Ko for i = 1,2
the limit as n — oo of K;(1n, Non) 18 finite for all sequences of Ny, Non for which
Mn — 1 and ng, — 1 for n — co. We also assume that K s strictly increasing

in each of its arguments in all of [0,1] x [0, 1].

2. Z¢(1) = L,E2x(1) = 1, ¢4(z0) = 1 and ¢n(zo) = 1 for some fized point xy in the
support X .

3. The support of {¢s(z), dn(x)} is (0,00) x (0, 00).

4. Zf and =5, are nonnegative, differentiable, strictly increasing functions, except

that we allow them to be oo for finite t.
(Proof in Heckman and Honoré, 1989 )

Since the model is almost identical to the Roy model, the intuition for identification
is very similar so we don’t review it here. We do mention a few things about these
assumptions. First note that assumption (2) in Theorem 6.1 is just a normalization
as one cannot separate the scales of ¢f, =, and vy. The more notable difference

between this and the theorem we presented in the Roy model section above is the lack
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of exclusion restrictions. What is crucial in being able to do this is the assumptions
about K in assumption (1). In their proof they show that for any x in the support of
Xi

8Pr(Tfi<t,T,”- >Tfi‘Xi =x)

: ot —
15% OPr(Ty;<t, Ty >Tyi| Xi=x0) - ¢f(x)
ot

One could in principle use this form of identification for the Roy model, but it is
somewhat less natural in the Roy framework as taking the limit as ¢ — 0 corresponds
to taking limits as the log of wages become arbitrarily large. It also makes heavy use of
the independence assumption which is not necessary for identification of g; when one
has exclusion restrictions. Finally, the basic approach will not expand to the “labor
supply” model in which we only observe wages in one sector and to the generalized
Roy model in the same way that exclusion restrictions do.

Abbring and van den Berg (2003) extends Heckman and Honoré’s (1989) results
on the mixed proportional hazards competing risk models in a few ways including
generalizing the assumptions for identification somewhat and considering identification

in the case in which researchers observe multiple spells.

6.2 Search Models

Eckstein and van den Berg (2007) present a nice survey of Empirical Search models.
We avoid a general discussion, but rather combine the proportional hazard model with
a search model. In a well known result Flinn and Heckman (1982) show that the search
model is not fully identified. They use the Lippman and McCall (1976) search model
in which workers search for jobs until their wage exceeds their reservation wage. In this
model, one essentially assumes that the worker stays at the job forever. All workers
are assumed to be ex-ante identical and face the same distribution of offered wages
which we denote by F. The reservation wage w" is the point at which the individual
is indifferent between taking the job and continued search. It is defined implicitly by

the formula
A o
c+w" = —/ (x —w")dF(x)

r

T

where c is search cost, r is the interest rate, and A is the hazard rate of finding a job.
Flinn and Heckman (1982) assume that one observes the time until finding a job

(T;) and the wage a worker receives conditional on finding the job. The only source of
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heterogeneity in the model comes from the timing of the job offers and the draw from
the wage offer distribution. Clearly one can identify the distribution of accepted wage
offers which is the distribution of observed wages. The reservation wage is the lowest
acceptable wage, so a one can identify w" as the minimum observed wage. Then they

can identify
f(z)
1— F(wn)
They can also identify the hazard rates of job finding which is

for z > w".

AL — F(uw").

However, this is all that can be identified. In particular, one cannot separate A from
(1 — F(w")). Furthermore, the distribution of wage offers below the reservation wage
is not identified. This is quite intuitive. Since nobody works at a salary below the
reservation wage, we do not have any information from the data on what that distri-
bution might look like.?? Furthermore, identification of the model above relies on the
strong assumption that people are identical. All dispersion in observed wages comes
from identical people with identical skills being offered different wages. It also implies
a constant hazard rate of finding jobs A, which is at odds with the data.

By using exclusion restrictions and using some of the ideas from the Roy model with
the arguments from the mixed proportional hazard model, most of the components of

the model can be identified. In particular let the arrival rate of job offers be
Ai = H(Xni, Xoi)w (6.9)

where now X); is an exclusion restriction that influences the arrival rate, but not any

other aspect of the model. We assume that search cost is defined as
L0g(Ci) = gn(Xni» Xoi) + eni- (6.10)
Finally we assume the wage offer that individual ¢ would receive at time ¢ is

log(Writ) = g7(X i, Xoi) + i (6.11)

220f course this raises an interesting question. What does it mean for a firm to make an offer that
it knows no worker would ever take? In most wage posting models, a firm would never post a wage
that no worker would take (see e.g. Burdett and Mortensen, 1998). However, if there is a job match
component, one can also write down a model in which one could define the counterfactual wage at
which a worker would be paid at a job in which he would never take (whether that offer is actually

“extended” or not is largely a semantic issue).
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The complicated aspect of this model is that workers may reject the first offer they
receive, and then receive a second different offer. Thus we need the time subscript
on €y to denote that this draw can be different. The second issue is that one would
expect the distribution of offered € to not be identical across workers. We assume
that the distribution of €y; is individual specific coming from distribution Fj, ;- That
is each time a worker gets a new offer it is a draw from the distribution of Fi.,. As
above X; is observable and independent of (v, € fit, €ps)-

Using the Lippman and McCall (1976) model, define W;* as the solution to the

equation

i [ - Xog)bers
Ci+ W= _/l (6gf(Xf27X01)+5fzt _ W/i*)dﬂsf(@fit)- (6.12)

T Jiog(Wy)—g(Xs:,Xo0:)

The reservation wage is defined as
W = maz{W},0} (6.13)

If search costs are sufficiently high, W;* could be negative. But because the distribution
of wages is bounded below at 0, the reservation wage would be 0.
The added assumptions to identify the model are completely analogous to those we

used for the Roy model earlier

Assumption 6.1. (¢, ep,14) is continuously distributed with support R3, and is in-
dependent of X;.

Assumption 6.2. supp(d(Xxi, Xoi), 97(X i, o), gn(Xni, 20)) = RT x R? for all zy €
supp(Xoi)-

Assumption 6.3. The marginal distributions of €,ep:, and v; have expected values

equal to zero. Moreover, the expected value of e fit is finite.

Assumption 6.4. X; = (Xy;, Xp;, Xoi, Xoi) can be written as
(X6, X%, Xp, Xk, XS5, X5, X6, X§) where the elements of X© = (X6, X5, X5, X§))
are continuously distributed (no point has positive mass), and X¢ = (X}li, X}li, X X4)

is distributed discretely (all support points have positive mass).

Assumption 6.5. For any (xjf,xz,xﬁl\,xg) € supp(X}li, Xd o Xd X3, gy (5, xjﬁ,xﬁ, zd),
gn (26, 2%, 2§, 23), and ¢(x5, 24, 2§, x) are almost surely continuous across (z¢) € supp(X¢ |

X = z?).
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Theorem 6.2. Under assumptions 6.1- 6.5 and that ¢ and the distribution of w; satisfy
the assumptions in Heckman and Honoré (1989), given that we observe T; and wyr,
from the model determined by equations (6.9)-(6.13), we can identify ¢ and g; on their

support, and g up to location on a set X* that has measure 1.
(Proof in Appendix)

Unlike some of the other models, we have not completely identified the error structure
(or the location of g;,). This is probably not surprising given the complexity of Fj.,
and the relatively modest data conditions.??

We conclude this section after making three comments. First, it is not clear that
one cares about the location of gp.

That is, for many interesting policy counterfactuals, identification of the aspects
above should be sufficient. Second, with more structure, more features of the model
should be identified.?* Third, if a researcher observes multiple spells on the same
worker, this can add much identifying information. The identification problem arises
because if we see one worker making more than another we do not know if it is because
the first worker is more productive or if they just happened to get a fortunate draw
from offer distribution. With panel data, if we see that the first worker consistently
earns more money across many employers, this would suggest that the difference has
more to do with ability than with draws from the offer distribution.

We have barely scratched the surface of identification of search models. Many
papers being estimated today are based on equilibrium models such as Mortensen and

Pissarides (1994), Burdett and Mortensen (1998), or Postel-Vinay and Robin (2002).

We think there is much work to be done on identification in these models.?®

23Some aspects of the distribution of wages can be identified. For example identification of the
marginal distribution of w; is straightforward. Describing the distribution of Fi, is difficult because
it is a distribution of distributions. Given the cost in setting up notation to discuss this, we do not try
to characterize this distribution. A typical assumption would be that we could write € ¢;x = €¢; + Cfir

where €y; is an individual specific term that does not vary across wages and (s is i.i.d.
24Proving identification in nonlinear models such as this one is often quite difficult. This might

not be problematic in practice as researchers can search for multiple solutions in the data. If there
are multiple solutions, all can be reported. If only one solution exists, this should give a consistent

estimate of the truth.
25Canals-Cerda (2010) provides a recent example which adds measurement error in wages to the

Flinn and Heckman (1982) framework. Barlevy (2008) shows how to non-parametrically identify the
wage offer distribution in the presence of measurement error in wages and unobserved heterogeneity

in skills.
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7 Forward Looking Dynamic Models

In this section we discuss an extension of the generalized Roy model into a dynamic
framework with uncertainty and forward looking behavior. We show that the basic
identification ideas presented above can be generalized to dynamic models. The iden-
tification results for the simple models on which we focus can be extended to more
complicated environments. We begin with a two period model which in which there
are three choices made over two periods. We then discuss some general issues with
identifying the components of the Bellman Equation. Finally we present a dynamic
Generalized Roy model that one can use for dynamic treatment effect evaluation. Once
again, we do not provide a full review of the literature, but focus on expanding the
generalized Roy model into a forward looking dynamic model. Abbring (2010) includes

a more complete discussion.?%

7.1 Two period Discrete Choice Dynamic Model

We begin with the framework of Taber (2000) who considers a simple version of a
dynamic model. To think of this model as an extension of the basic Roy model we
go from two occupational choices to three. While we could modify the fishing/hunting
example to a dynamic context, it is easiest to think about this in terms of an education
model as Taber does. In particular, a student first decides whether to graduate from
high school or not. After graduating from high school, she decides whether to attend
college or enter the labor market directly. Extending beyond 3 choices is straightfor-
ward, but as in Taber we stick to the 3 choice model for expositional purposes. We
focus on identification of the choice model and ignore data on earnings until section
7.3.

First consider the case in which there was no uncertainty or dynamics. We specify

the model using the three value functions
Vei = ge(Xei, Xoi) + €ei
Vai = 94(Xai, Xoi) + €ai

Vii =0

26Recent papers that cover aspects of identification not discussed here include Kasahara and Shi-
motsu (2009) and Hu and Shum (2009).
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where V,; is the value function for a college student, V},; the value function for an
individual with exactly a high school degree, and Vj; the value function for high school

dropout. Individuals choose the option with the highest value function. That is
Ji = argmax {Vy, Vi, Vei}-

If there were no uncertainty in this model it would be a simple polychotomous choice
model. Matzkin (1993) considers identification a general class of polychotomous choice
modes under a number of different assumptions. One result is that since choices are
only identified up to monotonic transformations, V},; = 0 is a location normalization
that we impose at this point. Adding dynamics and uncertainty does not change this
result.

Our goal now is to add dynamics and uncertainty to the model. The timing can be

seen in the following figure

Enter Labor Force (h)

Grad. H.S.(g

College (c)

Drop Out(d)

In the first period the agent chooses whether to graduate from high school. If she
graduates in the first period, she then chooses whether to go to college in the second.
The key aspect of the model is that information will be revealed between the first and
second period. The agent’s preferences are summarized by lifetime reward function
Vj; at each terminal state j € {c, h,d}. Taber defines Vj; so that it is known at the
time the high school graduation choice is made. Then in period two, V,; and V}; are
known when the choice between ¢ and h is made. That is, in period one the agent
does not know X, or £.. The first period information is assumed to be contained in
(Xoi, X14,€1;) where X7; is observable in period one and will be informative about X,;
while e1; is unobservable and informative about ¢.;. We assume that decisions are made

in order to maximize expected lifetime reward. Thus the reward function at node g in
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the first period takes the value
‘/g](xla Xd, Lo, 61) = E[max{‘/cia th} | (Xlia Xdi7 XOZ) - (xly Td, xO) y €16 = 61]'

The agent chooses node d if Vg > V,(X1;, Xai, Xoi, €1:) and chooses node g otherwise.
If she chooses ¢ in the first period she chooses node ¢ in the second if V; > V}; and
node h otherwise.

We let G(Xu | (X4, Xai, Xoi) = (%1, 24, 70)) denote the distribution of X.; condi-

tional on (Xy;, X4, Xoi) = (1, x4, 70). We can summarize the information structure as

follows
Known to the Agent Learned by the Agent | Observed by
at time one at time two the Econometrician
€1is Edi Eci Xois X1, Xai
Xois X1, Xai Xei Xei
G(Xei | (Xuiy Xais Xoi) = (21, T4, 20)) Ji

We first consider identification of g. and g4 up to monotonic transformations. We

follow Taber (2000) closely except that we use our notation and use stronger assump-

tions than he does to avoid adding more notation.?”

Assumption 7.1. For any (x., xo) €supp{ X, Xoi} ,

supples} = R = supp{9a(Xa, o) | (Xei» Xoi) = (¢, o)}
supp{eci} = R

This assumption is analogous to what we have been assuming all along. In order

to estimate the full model, we need full support of g; conditional on (X;, Xo;).

Assumption 7.2. For any (v4,z9) €supp{Xau, Xoi},y € R, and a € (0,1), there

exists a set Xy(xy, xo,y,a) with positive measure such that for x1 € Xy(x¢, x0,y, a),

(a) Pr(g.(Xei,xo) <y | (X1, Xai, Xoi) = (21,24, 20)) > a

2TTaber (2000) allows for the possibility that the support of the error term could be bounded which

allows for weaker support condition on the observables.
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(b) The distribution of g.(Xe,xo) conditional on (Xii, Xai, Xoi)) = (21, 2a,To) 1S

stochastically dominated by the unconditional distribution of g.(X, xo).

This is a stochastic analogue of a support condition. In the case in which X,
were known at time one so that X;; = X, this would be implied be a standard
support condition. However, is general enough to allow for the distribution of X,; to
not be known at time one, but we still need a time one variable X;; that is useful in
forecasting X;. For example X, could be a variable like family income while the child
is in college while X7; is a variable like family income while the child is in high school.
This assumption states that we can condition on the value of this variable so that
the conditional probability that the agent chooses option ¢ in the second period can
become arbitrarily small. In the family income example this means we could condition
on families whose income while the child is in high school are sufficiently low that

college seems like a very unlikely outcome for the child.

Assumption 7.3. (e1;,€4;,¢c) 15 independent of (Xi;, Xai, Xeiy Xoi), for any €1 €

supp(€1i),
E(‘&ci‘ | E1 = 61) < 00

and for any ($1, $d7$0) € SUPP(XM,Xdi,Xo@');

E(|ge (Xei, zo)| | (X1i, Xaiy Xoi) = (21, 24, T0)) < 00

Assumption 7.3 is the separable independent assumption that we have been making
throughout this chapter. We also need to assume that the stochastic components have

finite expectations so that Vj is finite.

Theorem 7.1. Under assumption 7.1,7.2, and 7.3, from data on (X1;, Xai, Xeiy Xois Ji)

gq and g. are identified up to monotonic transformation.
(Proof in Taber, 2000)

The basic strategy used in this proof is a stochastic extension of “identification
at infinity.” This should not be surprising as this looks very much like the type of
selection problem we have discussed throughout this chapter: we can not observe the

choice between ¢ and h unless individuals have already rejected d.
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We identify g, in almost exactly the same was as we identified g as presented for
the Roy Model. With an exclusion restriction we can condition on g4 arbitrarily low
so that the probability of selecting node d is close to zero. This leaves us with a simple
binary choice model in which the agents choose between h and c¢. The type of exclusion
restriction used here is a variable that enters g4, but does not influence g, directly. One
can see this in the following expression

gd(xd’l;g:_oo Pr(J;=c| X;=12x)

= lim Prlgi(za, xo) + cai < Vy(x1, Ta, %0, €14), ge(Te, To) + i > 0]

9d(x4,0)——00

= Pr[gc(zc, xo) + € > 0].

Using standard identification strategies for the binary choice model described in the
first step of identification of the Roy model, g. is identified.

Identification of g4 is somewhat trickier but one can use essentially the same idea.
In a static model one could use an identification at infinity argument by eliminating
¢ as an option and could compare the binary choice of d versus h. In this stochastic
case this is can not be done because the value of X is not known at time 1. Thus we
need a somewhat different type of exclusion restriction, a variable known at time one
that does not enter g4 directly, but does have predictive power for the distribution of
g. above and beyond X;. To see how this works, suppose we have a variable Xy; that
satisfies these conditions and that as x; gets small the conditional distribution of g,
shifts to the left. In this case

lim  F [max (g.(Xe, o) + e, 0) | (X145, Xaiy Xoi) = (21,24, %0) , 1 = €1] = 0,

Z‘l ——0Q0

so that,

Tr1——00

= lim Pl"[gd(SCdafCo) +eg > FE [max(‘/civo) | (XliaXdiaXOi) = (I17$d,3€0) , €14 = 61]]

T1——00

:Pr[gd(l’d,l’o) + Eqi > 0]

From this piece we can identify g; up to a monotonic transformation. This type of

variable will satisfy assumption 7.2. Note that the type of exclusion restriction we
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need here is something that is known at time 1, is useful in forecasting X,;, but does
not affect Vy;.

Taber (2000) goes on to consider identification of the distribution of the error terms.
The most general version of the full model above can not be identified without further
assumptions so he instead studies a few interesting cases. Identification of the error
terms requires a different kind of exclusion restriction. His key assumption requires
variation in g.(z.) holding x; fixed. Thus we need some uncertainty from the point of
view of the agents. The full model is not identified if agent’s have perfect information
about future values of X.. A natural way to satisfy this exclusion restriction is with

time varying observables. The details can be found in Taber (2000).

7.2 Identification of the Components of the Bellman Equation

While the model above is dynamic, we have not used Bellman’s equation. A natural
way to parameterize the model would be to define period specific utility functions
W (Xniys Xois €ni) » e (Xeis Xoi, €ci) » and ug (X1, Xo;, €1;) in each of the three nodes above
other than the dropout node. If we think of the model as a two period model we can
define uy(t, Xa;, Xoi, €4;) to be the period specific utility of individual 7 if she drops out

at time ¢t. Conditional on graduating, she enters college if
e (Xei, Xoi, €ci) > n (Xni, Xoi, €ni) -
The Bellman equation for the high school graduate is
V@1, 4, ko, €1) = ug(x1, X0, €1)
+ BEmax{u. (Xei, Xois €ci)  un (Xni, Xow €ni) | (X1, Xai, Xoi) = (21, 24, 20) , €15 = €1

Mapping back to the notation in the subsection above, the rest of the value functions

are defined as
Vi =ua(l, Xai, Xoiy €ai) + Bua(2, Xaiy Xois €ai)
Vii =ug(X1i, Xoi, €1i) + Bup (Xni, Xois €hi)

Vi :ug(Xlia Xoi, 511') + ﬁuc (Xcia Xoi, Eci) .

An obvious question arises as to whether one can separately identify the components

of the value functions (3, uy, u., and uy. Unfortunately, in general one can not do this.
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Consider a full certainty version of the model. In this case the decision of which
occupation to enter would depend on Vi, V},;, and V,; only. One can choose any 3 > 0
and any ug, but then always find a value of u, and wy, to leave V;; and V}; unchanged.
For a simple model such as the one Taber (2000) presents, parameterizing the model
in terms of the terminal value functions (i.e. Vg, Vj;, and V,;) avoids this problem as
one does not need to decompose them into their components.

However, Taber’s parameterization is clearly not feasible for an infinitely lived
model. Furthermore, it is not convenient in an finite time model with many periods
and state variables. It does not take advantage of the dimension reducing advantages
of the Bellman formulation: the functions would depend on the whole history of state
variables rather than just the current set.

Next we consider Rust’s (1994) model. Note that we use his notation exactly even
though it is inconsistent with our previous notation. Let S; represents the current state
and D; represents the discrete choice. In general S; will contain elements that are both
observed and unobserved by the econometrician. He writes the Bellman equation as

olscd) = ulsd)+ 3 [ max 0(SL DS | = 5.D; =)
where v is the value function, u is the period specific utility function, 3 is the discount
rate, D(s) is the choice set in state of the world s, and p is the transitional probability
distribution of the state variables. Rust (1994) shows that one can not separately

identify the model above from an alternative with the same 3 and p, but with

u(s,d) = u(s,d) + f(s) 6/fS/ (ds' | S;=s,D; =d).

Intuitively this is close to the discussion above in the simple model in which you can
change the timing at which the innovation to utility takes place, without changing the
value function.

Magnac and Thesmar (2002) discuss this issue in much greater detail. They not only
show that the model is not identified, but document the extent of underidentification.

They additionally assume that one can write
u(Si, d) = ua(X;) + €a;

where X; is the observable part of the state space and the unobservable ¢4; is mean

independent of = and independent across periods (conditional on x and d). That is S;
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represents the state space, so if one knows S;, they also know X; and ¢4;. They show

that given knowledge of 3 and the joint distribution of the 4, one can identify

i 6/ e D)lp(dS; | Xi =z, D; = k)
D’ED(S’

where k is one of the elements of D(s). They further explore the model with additional
identifying information and correlated random effects.

How problematic it is that the model is not fully identified? The answer to this
question depends on the purpose of the model. That is, even if the model is not fully
identified, one may still be able to identify policy counterfactuals of interest. Ichimura
and Taber (2002) provide one example of a case in which the policy counterfactual
can be identified. They start with the model of Keane and Wolpin (2001) and show
how one can estimate a semiparametric reduced form version of this model and use it
to evaluate the effect of a tuition subsidy on college enrollment. They key is having
enough structure on the model to map variation in the data to the counterfactual
tuition subsidy.

Aguirregabiria (2010) presents a different and somewhat more general example of
policy evaluation in a finite time dynamic discrete choice model. We do not get into
the details as it is different from the types of labor models we study here, but he shows
that despite the fact that his full model is not identified, the welfare effect function
resulting from the policy change can be identified. Thus one can do welfare analysis

even though the full model is not identified.

7.3 Dynamic Generalized Roy Model

Heckman and Navarro (2007) provide another example showing that one can identify
interesting counterfactuals even when the full model is not identified. Their study
complements the discussion in this chapter as it extends the work on identification in
dynamic discrete choice models into the treatment effects literature discussed in section
5 above. They consider a finite time optimal stopping problem. Using the notation
used above in section 7.2, D; is either zero or one, and once it is one it remains 1
forever. Their main example is a schooling model in which students decide at which

time to leave school (assuming that after leaving they cannot come back). The model
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is essentially a dynamic generalized Roy model. Let T}, and L;, respectively denote
the level of schooling and a dummy for whether individual 7 is out of school at age a.

Using a somewhat modified version of their notation we can write time a earnings as
Y;',a,t,ﬁ = ,U(CL, L, f, XZ) + Eia,tl

where ¢ and /¢ represent potential outcomes of T;, and L;,. Heckman and Navarro

(2007) also assume that the cost of schooling can be written as

Cip=®(t, Xi, Z;) + wiy.

)

In order to keep our notation complete and consistent across sections we will assume
that random variable ©; , summarizes all information (both observables and unobserv-
ables) that individual i has at age a. This means that if we know ©;, we also know
(Xi, Zi, T gy Li g, €iat.0,wit), 50 when we condition on ©;, = 6, we are conditioning on
(Xi, Zi,Tiay Lig, €iapiswin) = (2,2, 0, €q10,w). We will make use of this notation
below.

Once a student leaves school they make no further decisions, so if a student leaves
school at age a with t years of schooling, lifetime utility discounted to the time one

leaves school is written as
T 1 j
R(a,t,0)=F —— ) Yy O,a=10].
00 =8 (3 (77 Yiowar 030 0]
The only decision that agents make is whether they will drop out of school or not.

For a student at age a with ¢ years of schooling the value function when they make

this decision is written as

Va,t,0) = max{R(a,t,0),

,U(Cl,,t, O,l’) + Ea,t,O — (I)(t,l', Z) — Wt + < ) FE [V(CL + 1, t+ 1, @i,a—i-l | @i,a = 9]}

1+7r

This is basically a dynamic version of the generalized Roy model. Identification follows
by essentially combining the arguments used by Taber (2000) for the dynamic aspects
of the model with the arguments for identification of the generalized Roy model. Heck-

man and Navarro (2007) use higher level assumptions to avoid the use of exclusion
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restrictions.?® They also use a factor structure on the distribution of the error term
to reduce dimension. We refer readers interested in these generalizations and in the
details of their proof to their paper. Here we attempt to give an intuitive feel for iden-
tification of this model and show how it is related to identification of the generalized
Roy model presented in section 3.3.

Identification of reduced form choice model

In this case they do not derive an explicit reduced form, but note that
PrT,o=t|X,=2,Z; = z)

can be identified directly from the data.
Identification of the Farnings Equation u
With exclusion restrictions this can be done in exactly the same way as in the static
model. Assuming that ¢; ., has a zero mean,
Ii EY; a4 Xi, Z;) = ) = 6, 1,x).
g Wi | (X0 Z) = (@2)] = pla+ it 1.0)

li EY;aa XZ7ZZ = 4 - ,a,0, ).
P"(Ti,a>t|(X1:IZli)=(%Z))—>1 Yiaao | ( )= (@2)) = ula,a,0,2)

Thus this is a version of an “identification at infinity argument.” Heckman and Navarro
(2007) do not use this explicit argument because they avoid exclusion restrictions with
a higher order assumption. However, they do use identification at infinite.

Identification of ®

Next consider the identification of the cost of schooling function ®. The best way
to think about identification in these types of models is to start with the final period
and work backward.

Since the maximum length of schooling is 7', the final decision is made when the
individual has T' — 1 years of schooling. At that point the student decides whether to
attend the final year of school or not. Heckman and Navarro (2007) use an “identifi-

cation at infinity” argument so that Pr(T; > T — 2| X; = v, Z; = z) =~ 1. Then the

28This relates back to our discussion of identification and exclusion restrictions in the sample
selection model at the very end of section 3. Exclusion restrictions prevent one from setting
gr(z) = gr(z) + h(g(x)) but shape restrictions on g and gy can do this as well. Their “higher
level assumptions” are essentially assuming that we make restrictions on gy so that we can not add

h(g(x)) to it and remain in the permissible class of g¢ functions.
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problem becomes analogous to a static problem.? That is

lim Pr(Tye=T|X;=2,7; = 2)

Pr(Ty>T—-2|X;=2,Z;=2)—1

= Pr (R(T - 17T - 17 @i,T—l) < M(T - 17 T - 17 07 .CL’) + €, T—1,T—1,0

_ 1 L
—O(T'—1,2,2) —w; 71+ (1 n 7,) b [R(T, T,0;r) | @i,T—l] | Xi=2,2Z; = Z) .

This is analogous to identification of the g, function in the Roy model.*

Now one can just iterate backward given knowledge of all variables at T and T — 1.
That is, the distribution of (ﬁ) E[V(I'=1,T —1,0;7_, | ©;7_,] has been identified
so once again we can use the identification approach of the static problem and can use
the same basic style of proof. That is we can condition on a set of variables so that
Pr(t >T -2 | X, =x,7; = z) ~ 1 so that identification is analogous to the static
problem. Consider the decision with 7" — 2 years of schooling.
Pr(Ti>T—3\l;(rin:x7Zi=z)—>1Pr(E’T_l =Tl Xi=02=2)

= Pr (R(T - 27T - 27 @i,T—2) < M(T - 27 T — 27 07 .CL’) + €iT—2,T—2,0 — (I)(T - 27 z, Z)

1 _ _
—W; -2 T <1 —I—T) E [V(T -1,T-1,0;74 | ®i,T—2] | Xi =2, 2; = Z) .

One can keep iterating on this procedure so that ® is identified in all periods.
Identification of the Distribution of the Error Terms

Heckman and Navarro (2007) impose a factor structure so that
/
Eiatl = VapTi T Eiate
/
wip = NTi + &y

where 7; is a vector random variable, the ’s and ¢’s are all independently distributed,
and the o and X terms are factor loadings. Given this structure and that the other

components of the model have been identified, identification of the distribution of the

290nce again, Heckman and Navarro (2007) use higher order assumptions that do not require
exclusion restrictions. For example they allow for either an exclusion restriction or a cost variable to

identify the scale (such as tuition described in section 4 above).
30Note that we have violated one convention in this chapter which is to make conditioning explicit

such as F(- | X; = x). When we condition on ©, 7_; we cannot do this explicitly because while the
expectation inside the expression conditions on its outcome, the probability expression (immediately

after the = sign) treats ©, 7_; as a random variable.
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error terms and factor loadings can be done by varying the indices in much the same

way as in the static model. We do not show this explicitly.

8 Conclusions

In this chapter we have presented identification results for models of the labor market.
The main issue in all of these models is the issue of sample selection bias. We start
with the classic Roy model and devote much space to explaining how this model can be
identified. We then show how these results can be extended to more complicated cases,
the generalized Roy model, treatment effect models, duration data, search models,
and forward looking dynamic models. We show the importance of both exclusion

restrictions and support conditions for all of these models.

Technical Appendix

Proof of Theorem 2.1

Let X'* be the set of points (2¢, 2¢) at which g is continuous in z¢. For any (z¢, z%) € X*
and 6 > 0, E (Y; | || X¢ — 2°|| < &, X = 2) is identified directly from the data.

Since g is continuous at (x¢, 29),
lim £ (Vi | [[X7 =2 < 0, X} = &) = g(a*,2),

so g(x¢, x?) is identified on X*. By assumption 2.2, X* has measure one. O

Proof of Theorem 3.1

Let X* be the set of points (z%, z‘}, x5, 28, 2§, 28) at which g, and g; are continuous in

I.C

First notice that for any = = (2%, 2, zf;, 21, 2§, 23) € &,

lim Pr(J; = f | |X] = 2% <4, X! =a")=Pr(J; = f| X; = x)
=9(z)
is identified.

81



Thus we have thus established that we can write the model as J; = f if and only if
g(X;) > ¢; where ¢; is uniform [0, 1] and that g is identified.

Next consider identification of g at the point (zf, o). This is basically the standard
selection problem. As long as g is continuous on the continuous covariates at this point,

we can identify
limMed(; | || X5, — o] < 0. X, = o 165 — agll < 6.X = o, 11— g(X)] <8, = f).
=gy (s, To)+
lim Med(eyi | 165 — 2| < 8, X4 = 2%, |X¢5 — af]| < 6, X& = al, [1 - g(X;)| <6, J; = f)
=gy(xs, To).

Thus gy is identified. Note that having an exclusion restriction with strong sup-
port conditions is necessary to guarantee that the measure of the set of X, satisfying
|1 — g(X;)| < ¢ is not zero.

Next we show how to identify g,. Note that for any (z,x¢) where g is continuous

in the continuous covariates and o > 0 we can identify the set
X(wn,w0,0) = {7 € X1 |75 — || < 6,30 = b |6 — asll < 8,58, = o, 0.5 — ()] < 5}

where & = (T, Zp,Zo). Under our assumptions it has positive measure.

The median zero assumption guarantees that
lgglé\f(:vh,a:oﬁ) ={TeX" Ty =a4,T0=120,05=Pr(J;=F| X;,=172)}
= {i’ - X* : i’h = S(Zh,i’(] = 1’0,0.5 = P’/’(&?hi — c":‘fi S gf(i’f,l’o) — gh(l’h,l’o))}
={T € X" : &y, = xp, To = 20, 9(T5,0) = gn(Th, T0)}

is identified. Since g(Zy, ) is identified, g is identified.
Finally consider identification of G given g; and g;,. Note that from the data one
can identify
lim Pr(J; = f.log(Yr) < s | | X7 — 2] <o, X =)
= 1(}{10”1P1"(9h(Xm,X0¢) +eni < g5(Xpi, Xog) + €51, 95(X pi, Xog) + e < s | |1 X7 — 2 < 6, X = 29)

= Pr(en — g4 < gr(xy, 20) — gnl@n, xo), €5 < s — gy(ws, To))
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which is the cumulative distribution function of (e4; — €4, €;) evaluated at the point
(g7(xs,20) — gn(xn, T0),s — gr(xy, ). By varying the point of evaluation one can
identify the joint distribution of (ex; — €;,€5;) from which one can derive the joint

distribution of (e, £pi)- O

Proof of Theorem 4.1

As in the proof of Theorem 3.1, let X* be the set of points (2¢, 24, 5, xjf, x5, xf, w8 xd)
at which g, g, ¢n and ¢y are continuous in (2¢, 29, x?,:c‘},:zz,ati,:cg, xd).

d d d

First notice that for any (z,z) = (2%, 2%, 25, 2§, zj,, 2}, x5, xf) € X,

: o c_ . c_ ,C d xd)y — (,d ,d
lmPr(g, = £ I — o] < 8,125 = < 8, (20, X) = (=4, )
= Pr(v; < p(z,2))
= p(z,x).

Thus ¢ is identified on the relevant set. Next consider gy and the joint distribution of

(v;,€:). Note that for all (z,z,xp, x9) € X* and any y € R, we can identify

i = < C_ o€ [ d ydy _ (,d ..d
ImPr(J; = f,Yp <y [ 1X7 = 2%l < 6,127 = =%l < 6, (2], X{) = (=%,27))

= Pr(v; < (z,2),97(xs,20) + € < )
which is the joint distribution of (v;, gf(zf, xo) +€y;) evaluated at (p(z, z),y). Holding
(xf,x0) constant and varying (¢(z,x),y) we can estimate this joint distribution. Since
the median of e; is zero, gy is identified and given g; the joint distribution of (v;, ;)

is identified. Since the model is symmetric in h and f, g, and the joint distribution of

(v, €ni) are identified using the analogous argument. O

Proof of Theorem 4.2

The first part is analogous to step three of identification of the Roy model presented
in the text. Note that for any (z,x¢) and ¢ we can identify the set

X(z,20,0) ={(5,F) € X"+ ||7° = 2°|| < 6,2 = 2%, ||7§ — a|| < 6,58 = 20,(0.5 — ¢(2,7))| < &}
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and it has positive measure where the elements of (Z, Z) are defined in the obvious way.

The median zero assumption guarantees that

lglnolé\f(z,xo,é) ={(2,2) e X" :Z2=2,30=120,05=Pr(J; =F | (Z;,X;) = (2,2))}

= {(2,:%) eX*: zZ= Z,i’o = 1’0,0.5 = PT({:‘M —E&fi < gf(i’f,l’o) + QO(Z,SL’(]) - gh(i’h,l’o)) — QO(Z,SL’O)}
={(2,7) € X" : Z = 2,30 = 70, 95(2,20) — n(2,20) = gn(Tn, x0) — g1 (Ty, 20)}
Since g5 and gy are identified by Theorem 4.1, ¢f(z,z9) — pn(2,20) is also iden-

tified. Given this we can identify the distribution of (ep; + vpi — €4 — vpi,€p:) and

(€ni + Vni — €5 — Vyi, €hi) since in general
lim Pr(J, = £, Yy <y | 12— ] < 6,20 = 21 X5 — 2] < 6,5 = %)

= Pr(en; + v —epi — v < gp(xr, x0) + 05(2,20) — gn(h, To) — @n(2,20), €5 <y — gr(xys, T0)),
and

lglnqur(Ji =1 Y <y|l|Z -2 <, Zid = 24, | X7 — x| <6, Xid = :Eg)

= Pr(— (eni + vni — €5i — Vi) < gn(an, x0) + on(2,20) — gp(wg, 20) — @©5(2,%0), €0 < Y — gnlTn, 20)).

O

Proof of Theorem 5.1

Theorem 4.1 shows that the marginal distributions of €;; and €j; are identified. Since
their expectations are finite, E(ey;) and E(ey;) are identified. We also showed that g
and g, are identified over a set of measure 1. Note that E(m;) = E(Yy;) — E(Yw) =
E(gp(Xyi, Xoi) + €5i) — E(gn(Xni, Xoi) + eni) = 95(Xgi, Xoi) — gn(Xni, Xoi) + Elepi) —
E(ep;). Because all the components of F(m;) are identified, E(m;) is identified as well.

]

Proof of Theorem 5.2

The marginal distribution of X;, the joint distribution of (X, Y};) conditional on J; = f
and the joint distribution of (Xj, Y},;) conditional on .J; = h are identified directly from
the data. Assumption 5.2 guarantees that for both fishing and hunting (5 € {f, h}),
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the conditional distribution of Yj; conditional on X; and J; = j is the same as the
conditional distribution of Yj; conditional on X; alone. From each of these conditional
distributions and the marginal distribution of X;, one can identify E(Y};) and thus the

average treatment effect is identified by taking the difference between the two. O

Proof of Theorem 6.2

Let X* be the set of points (z¢, 2%) at which the functions are all continuous in z°.

First note that in this model the hazard rate of finding for any individual can be
written as

A(Xni, Xog)vi[1 — EEf(lOg(Wir) — 95(Xri, Xoi)))-

Our first goal is for any (zf, x) x9) € X, to identify the values of x), that send g (xp, zo)
arbitrarily large so that all offers are accepted. Since the reservation wage is strictly
decreasing in g, the hazard rate is strictly increasing in g, we can do this by fix-
ing (Xyi, Xo;) within some neighborhood of (xf, () and finding the value of x; that
minimizes the job finding rate.

More formally for any (zy, zy, o) and J, define
2n(8) = argminE(T; | || X7 — (2, 25.(6), a5, 25) || < 6, (X{' = («F, 27(0), 2%, 27)))-

Note that this minimum will be such that as 6 — 0, W — 0 so that

(2

lgglPr(log(Ti) < t,log(Wri) <w | || X5 — (x?,xﬁ(é),xi,xﬁ)“ <6 Xt = (x?,xﬁ(é),xi,xg))

= G o(t + log(¢(x, 20)), w — gy (s, 7))

where G is the joint distribution between a convolution of w;; and an extreme value and
of 4. Given G, applying the identification arguments for the mixed proportional haz-
ard model one can identify ¢. Furthermore, gy can be identified through the standard
argument for identification of the regression model.

Finally, recovering g;, can be done in an analogous was as for the Roy model. Notice
that the reservation wage is scalable so that if we increase both C; and W by 10%,
then the reservation wage increases by 10% and the probability of job acceptance does

not change. That is for any 0 > 0 if w] solves
DY
eIn(XnisXoi)+eni 4 w = 7 (egf(Xfi,XOi)+5fit _ w:)dFief (£5it)
" Jiog(w}) =g (X fi,X0i)
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then w}e® solves

X i, X0i)+0+€ £ * 0
= — (egf( 7i-Xoi) it —w’e )dFiEf(Efit),

e9n(Xni Xoi)+0+eni +w;~ke‘5
T Jiog(wf)—g5(X yi,Xo0i)

but the probability of accepting a job and thus the expected duration remains the
same.

Thus as in the identification of the slope that we discuss in Step 2 of identification
of the Roy model, for any (zy, zo) and (Z, o) suppose we want to identify gy (x5, zo) —
9n (Tn, To) . Fix x) and T, so that ¢(xy, x9) = ¢(Zx, To). Then the key here is finding

values xy and Z; so that
lim E(log(Z(T,)) | | X7 = 2% < 6. X = a) = lim E(log(Z(T)) | |1 X7 — 2 < 8, X} = &)
But if this is the case it must be that

95(@s, 0) = gn(n, x0) = g7 (T, To) — gn(Tn, To)

but then
gn(Th, T0) — gu(Zn, To) = gr(xys, x0) — g5(Ty, Zo)

where the right hand side has already been identified. Thus g, is identified up to

location on the set X™*. O
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