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Can Standard Preferences Explain the Prices

of Out-of-the-Money S&P 500 Put Options?

Abstract

The 1987 stock market crash occurred with minimal impact on observable economic variables

(e.g., consumption), yet dramatically and permanently changed the shape of the implied volatil-

ity curve for equity index options. Here, we propose a general equilibrium model that captures

many salient features of the U.S. equity and options markets before, during, and after the crash.

The representative agent is endowed with Epstein-Zin preferences and the aggregate dividend

and consumption processes are driven by a persistent stochastic growth variable that can jump.

In reaction to a market crash, the agent updates her beliefs about the distribution of the jump

component. We identify a realistic calibration of the model that matches the prices of short-

maturity at-the-money and deep out-of-the-money S&P 500 put options, as well as the prices

of individual stock options. Further, the model generates a steep shift in the implied volatility

‘smirk’ for S&P 500 options after the 1987 crash. This ‘regime shift’ occurs in spite of a mini-

mal impact on observable macroeconomic fundamentals. Finally, the model’s implications are

consistent with the empirical properties of dividends, the equity premium, as well as the level

and standard deviation of the risk-free rate. Overall, our findings show that it is possible to

reconcile the stylized properties of the equity and option markets in the framework of rational

expectations, consistent with the notion that these two markets are integrated.

Key words. Volatility Smile; Volatility Smirk; Implied Volatility; Option Pricing; Portfolio

Insurance; Market Risk.

JEL Classification Numbers. G12, G13.



1 Introduction

The 1987 stock market crash has generated many puzzles for financial economists. Although

there was little change in observable macroeconomic fundamentals, market prices dropped 20-25%

and interest rates dropped about 2%. Moreover, the crash generated a permanent regime shift

in the prices of index options. Indeed, prior to the market crash, implied ‘volatility smiles’ for

index options were relatively flat. However, since the crash the Black-Scholes (B/S) formula has

been significantly underpricing short-maturity, deep out-of-the-money S&P 500 put options. This

property, termed the ‘volatility smirk,’ has been documented by, e.g., Rubinstein (1994) and Bates

(2000) using S&P 500 option data up to the early 1990s. Here we show that this regime shift

has persisted up to the present date. Indeed, Figure 1 reports the spread of in-the-money (ITM)

and out-of-the-money (OTM) implied volatilities relative to at-the-money implied volatilities from

1985-2006. Prior to the crash, 10% OTM puts had an average implied volatility spread of 1.83%

with standard deviation of 1.18%. Similarly, the spread for 2.5% ITM put options averaged −0.13%

prior to the crash with a standard deviation of 0.34%. On some dates the implied volatility function

had the shape of a mild ‘smile’ and on others it was shaped like a mild ‘smirk’. Overall, the Black

Scholes formula priced all options relatively well prior to the crash, underpricing deep OTM options

only slightly. This all changed on October 19, 1987, when the spread for OTM puts spiked up to

a level above 10%. Since then, implied volatilities for deep OTM puts have averaged 8.21% higher

than ATM implied volatilities, with standard deviation of 1.66%. Moreover, since the crash, implied

volatilities for ITM options have been systematically lower than ATM implied volatilities, with an

average spread of −1.34%.

Another puzzle associated with option prices is that the implied volatility functions for indi-

vidual stock options are much flatter and more symmetric compared to the steep ‘volatility smirk’

associated with S&P 500 options (see, e.g., Bollen and Whaley (2004), Bakshi, Kapadia, and Madan

(2003), and Dennis and Mayhew (2002)). Indeed, from their analysis, Bollen and Whaley (2004)

conclude that the relative difference in the implied volatility functions for options on individual

firms and the S&P 500 cannot be explained solely by the underlying asset return distribution.

In this paper, we attempt to capture these empirical features within a rational-expectations

general equilibrium setting. In particular, we propose a framework that can simultaneously explain:

• prices of deep OTM put options for both individual stocks and the S&P 500 index;

• why the slope of the implied volatility curve changed so dramatically after the crash;

• why the regime shift in the ‘volatility smirk’ has persisted for the past twenty years;

• how the market can crash with little change in observable macroeconomic variables.

Motivated by the empirical failures of the B/S model in post-crash S&P 500 option data, prior

studies have examined more general option pricing models (see, e.g., Bates (1996), Duffie et al.
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Figure 1: Pre- and Post-Crash Implied Volatility Smirk for S&P 500 Options with One Month to

Maturity. The plot in Panel A depicts the spread between implied volatilities for S&P 500 options

with a strike-to-price ratio X = K/S − 1 = −10% and at-the-money implied volatilities. The plot

in Panel B depicts the spread between implied volatilities for options with a strike-to-price ratio

X = K/S − 1 = 2.5% and at-the-money implied volatilities. Additional details on how the series

are constructed are given in Appendix A.

(2000), Heston (1993)). Several authors have tested these extensions empirically.1 Overall, this

literature concurs that a model with stochastic volatility and jumps significantly reduces the pricing

and hedging errors of the B/S model, both in- and out-of-sample.2 These previous studies, however,

focus on post-1987 S&P 500 option data. Further, they follow a partial equilibrium approach and

let statistical evidence guide the exogenous specification of the underlying return dynamics.

Reconciling the findings of this literature in a rational expectations general equilibrium setting

1Among recent contributions, Bakshi et al. (1997, 2000), Bates (2000), and Huang and Wu (2004) extract in-

formation about the model parameters of the underlying returns process from derivatives prices alone. Pan (2002),

Broadie et al. (2004), Chernov and Ghysels (2000), Jones (2003), Eraker (2004), and Benzoni (2002) use data on

both underlying and derivatives prices to fit the model.
2A related literature investigates the profits of option trading strategies (e.g., Coval and Shumway (2001) and

Santa-Clara and Saretto (2004)) and the economic benefits of giving investors access to derivatives when they solve

the portfolio choice problem (e.g., Constantinides et al. (2004), Driessen and Maenhout (2004) and Liu and Pan

(2003)). Overall, these papers suggest that derivatives are non-redundant securities and, in particular, that volatility

risk is priced. These findings are consistent with the evidence in Bakshi and Kapadia (2003) and Buraschi and

Jackwerth (2001), as well as with the results of the studies that use data on both underlying and derivatives prices

to fit parametric stochastic volatility models.
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has proven difficult. For instance, Pan (2002) notes that the compensation demanded for the

‘diffusive’ return risk is very different from that for jump risk. Consistent with Pan’s finding,

Jackwerth (2000) shows that the risk aversion function implied by S&P 500 index options and

returns post-1987 crash is partially negative and increasing in wealth (similar results are presented

in Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2000)). This evidence eludes the standard

general equilibrium model with constant relative risk aversion utility and suggests that there may

be a lack of integration between the option market and the market for the underlying stocks.

Here, we examine a representative-agent general equilibrium endowment economy that simulta-

neously captures the stylized properties of the S&P 500 options, the options on individual stocks,

and the underlying stock returns. To this end, we expand on the insights of Bansal and Yaron

(2004, BY) by considering Epstein and Zin (1989) preferences and specifying the expected growth

rate of dividends to be driven by a persistent stochastic variable that follows a jump-diffusion pro-

cess. As noted by BY and Shephard and Harvey (1990), it is very difficult to distinguish between

a purely i.i.d. process and one which incorporates a small persistent component. As such, the

dividend process implied by the model fits the properties of actual dividends well. Nevertheless,

the presence of a small persistent component can have important asset pricing implications.

We solve the model using standard results in recursive utility (e.g., Duffie and Epstein (1992a,b),

Duffie and Skiadas (1994), Schroder and Skiadas (1999, 2003), and Skiadas (2003)). We show that

the price-dividend ratio satisfies an integro-differential equation that is non-linear when the EIS is

different from the inverse of the coefficient of risk aversion. To solve such equations, we use the

approximation method of Collin-Dufresne and Goldstein (2005), which is itself an extension of the

Campbell-Shiller approximation (see Campbell and Shiller (1988)).

We illustrate the properties of the model through a realistic calibration of its coefficients. Con-

sistent with the findings of BY, the model matches the empirical properties of dividends and

consumption, and generates a realistic 1% real risk-free rate, a 6% equity premium, and a price-

dividend ratio of 20. Furthermore, the model also captures certain features of the stock market

that elude the BY specification.3 Specifically, an unexpected jump in the predictable component

of consumption and dividend growth rate can generate a market crash without a jump in the con-

sumption process itself. In addition, the model is consistent with a large drop in the risk-free rate

on crash dates, consistent with the 1987 market crash.

In our baseline case, a put option with maturity of one month and a strike price that is 10%

out-of-the-money has an implied volatility of approximately 24%. In contrast, a one-month, at-the-

money option has an implied volatility of approximately 14%. That is, consistent with empirical

evidence, we find a 10% volatility smirk. Sensitivity analysis shows that the main qualitative results

are robust to a wide range of parameter calibrations.

3Most existing models that capture the equity premium (e.g., BY and Campbell and Cochrane (1999)) specify

the dividend growth rate process as continuous. As such, these models cannot account for the high premium on

near-term out-of-the-money put options, nor the possibility of a market crash.
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The intuition for these results is similar to that discussed in BY. Epstein and Zin preferences

allow for a separation of the elasticity of intertemporal substitution (EIS) and risk aversion. When

the EIS is larger than one, the intertemporal substitution effect dominates the wealth effect. Thus,

in response to higher expected growth the demand function for assets of the representative agent

increases, and consequently prices rise. The opposite occurs when there is a decrease in expected

growth, e.g., because of an unexpected downward jump in the predictable component of dividends

that triggers a market crash. In this framework, the risky asset exhibits positive returns when the

state is good, while it performs poorly in the bad state. As such, investors demand a high equity

premium and are willing to pay a high price for a security that delivers insurance in the bad state,

like, e.g., a put option on the S&P 500 index.

The model also reproduces the stylized properties of the implied volatility functions for indi-

vidual stock option prices. We specify individual firm stock dynamics by first taking our model for

S&P 500 index dynamics, and then adding on idiosyncratic shocks, both of the diffusive-type and

the jump-type. We then calibrate the coefficients of the idiosyncratic components to match the

distribution of returns for the ‘typical’ stock. In particular, we match the cross-sectional average of

the high-order moments (variance, skewness, and kurtosis) for the stocks in the Bollen and Whaley

(2004) sample. We simulate option prices from this model and compute B/S implied volatilities

across different moneyness. Consistent with the evidence in Bollen and Whaley (2004), Bakshi,

Kapadia, and Madan (2003), and Dennis and Mayhew (2002), we find an implied volatility function

that is considerably flatter than that for S&P 500 options. Bakshi, Kapadia, and Madan (2003)

conclude that the differential pricing of individual stock options is driven by the degree of skew-

ness/kurtosis in the underlying return distribution in combination with the agent’s high level of

risk aversion. Here, we propose a plausible endowment economy that in combination with recursive

utility yields predictions consistent with their empirical findings.

Further, the model captures the stark change in the S&P 500 options implied volatility pattern

that has been observed since the 1987 market crash. We note that an extreme event such as the

1987 crash is likely to dramatically change the investor’s perception about the nature of possible

future market fluctuations. To formalize this intuition, we consider a Bayesian setting in which the

agent formulates a prior on the average value of the jump size, and then updates her prior when

she observes an extreme event such as the 1987 crash. Note that the updating of beliefs only occurs

at crash dates. As such, her posterior beliefs on the average value of the jump size are potentially

very long lived, and hence can explain why the volatility smirk has remained high even twenty

years after the crash.

We find that the model can capture the implied volatility pattern of option prices both before

and after the 1987 crash. Specifically, we present simulation results in which the steepness of the

volatility smirk (i.e., the difference between implied volatilities of 10%-out-of-the-money and at-

the-money puts) is lower than 3%, a number that is consistent with the pre-crash evidence. At the

same time, the occurrence of a jump triggers the updating of the agent’s beliefs about the expected

4



value of the jump size. As such, after the crash, out-of-the-money put options are perceived to

be more valuable, and the volatility smirk becomes as steep as 10%. Furthermore, consistent with

observation the model predicts a downward jump in the risk-free rate during crash events.

Consistent with the 1987 crash, the model produces these results in spite of minimal change in

observable macroeconomic variables. At the time of the crash, dividends remain smooth. Indeed,

jumps occur only for the estimate of the magnitude of future crashes and the expected consumption

growth rate. It is the updating of the agent’s beliefs about the likelihood of future jumps of this

magnitude that generates a regime shift. As such, the jump risk premium increases and this effect

pushes stock prices further down and makes out-of-the-money puts more valuable.

The rest of the paper is organized as follows. We first discuss related literature. Then, in Section

3, we present an option pricing model that explains the post-1987 volatility smirk in S&P 500 prices

as well as the pricing of individual stock options. In Section 4, we extend our setting to incorporate

Bayesian updating of the agent’s believes. We use this setting to show that an event such as the

1987 market crash can generate a change in the S&P 500 price that is qualitatively consistent

with what we observe in the data. In Section 5 we conclude and discuss possible extensions of our

analysis.

2 Related Literature

Several papers have investigated the ability of equilibrium models to explain post-1987 S&P 500

option prices. Liu, Pan, and Wang (2005, LPW) consider an economy in which the endowment is

an i.i.d. process that is subject to jumps. They show that in this setting neither constant relative

risk aversion, nor Epstein and Zin (1989) preferences can generate a volatility smirk consistent with

post-1987 evidence on S&P 500 options. They argue that in order to reconcile the prices of options

and the underlying index, agents must exhibit ‘uncertainty aversion’ towards rare events that is

different from the standard ‘risk-aversion’ they exhibit towards diffusive risk. As such, they provide

a decision-theoretic basis to the idea of crash aversion advocated by Bates (2001), who proposed

an extension of the standard power utility that allows for a special risk-adjustment parameter for

jump risk distinct from that for diffusive risk. These prior studies assume that the dividend level is

subject to jumps, while the expected dividend growth rate is constant. That is, in these models a

crash like that observed in 1987 is due to a 20-25% downward jump in the dividend level.4 Further,

their model predicts no change in the risk free rate during the crash event. In contrast, in our

setting, it is not the consumption or dividend process itself, but rather the expected growth rate

that is subject to jumps (and the Bayesian-updated distribution of future jumps). In combination

with recursive utility, our model delivers different option pricing implications, while allowing for a

4Barro (2006) makes a similar assumption about the output dynamics in his model. His model captures the

contractions associated with the Great Depression and the two World Wars, but it does not match the evidence

around the 1987 crash, when the output level remained smooth.
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smooth dividend process. Further, it predicts a large downward jump in the riskfree rate around

crash events, consistent with empirical evidence.

David and Veronesi (2002) consider an economy in which the expected growth rate in dividends

switches between two unobservable states, interpreted as ‘booms’ and ‘recessions.’ Investors use

past realizations of dividends to infer the current drift rate of the economy. They fit the model

on S&P 500 real earnings growth rates for the 1960-1998 period. In their model, the shape of

the volatility smirk depends on the agent’s belief about the state of the economy. In economic

expansions, the model generates a downward-sloping volatility smirk across exercise prices, i.e.,

out-of-the-money S&P 500 puts are expensive. However, it also implies an upward sloping smirk

during recessions (i.e., out-of-the-money S&P 500 puts are cheap in the early 1990s). In contrast

our model predicts a permanent change in the shape of the volatility smirk after 1987, consistent

with the evidence observed in S&P 500 option data since the crash and, in particular, during the

early 1990s recession (see Figure 1).

Other studies have explored the option pricing implications of a model with state dependence

in preferences and/or fundamentals. For instance, Chabi-Yo, Garcia, and Renault (2004) show that

the regime switching model of Garcia, Luger, and Renault (2003) for the endowment process, in

combination with state-dependent preferences, can reproduce the features identified by Jackwerth

(2000) and Aı̈t-Sahalia and Lo (2000).5 We note, however, that their regime switching model for

the endowment process, as well as the one in Garcia et al. (2001), will share the same properties

of the setting considered by David and Veronesi (2002). That is, the shape of the volatility smirk

will depend on the state of the economy and, in particular, the smirk will be upward sloping (i.e.,

out-of-the-money S&P 500 put options are cheap) during economic recessions, which is inconsistent

with the evidence in Figure 1.

In focusing on the pricing of both out-of-the-money put options and the equity index, our

paper is related to the recent literature that searches for a pricing kernel derived within a general

equilibrium setting that can simultaneously capture the salient features of equity returns, risk-

free rates, and the prices of derivative securities. For example, Chen et al. (2004) investigate

the ability of the BY and Campbell and Cochrane (1999) models to jointly price equity and risky

(defaultable) corporate debt. Bansal et al. (2007) examine the implications of the BY and Campbell

and Cochrane (1999) models for the pricing of at-the-money options on a stock market index as

well as on consumption and wealth claims.

5Related, Garcia et al. (2001) consider a model with regime shifts in the conditional mean and the volatility of

the dividend and consumption growth rates. They show that such a model can produce various shapes of the implied

volatility function. Brown and Jackwerth (2004) consider a representative agent model in which the marginal utility

of the representative agent is driven by a second state variable that is a function of a ‘momentum’ state variable.

Bondarenko (2003) argues that in order to explain S&P 500 put prices a candidate equilibrium model must produce a

path-dependent projected pricing kernel. Finally, Buraschi and Jiltsov (2006) consider a model in which heterogeneity

in beliefs over the dividend growth rate generates state dependent utility. They focus on the volume of trading in

the option market.
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Also related is a growing literature that investigates the effect of changes in investors’ sentiment

(e.g., Han (2005)), market structure, and net buying pressure (e.g., Bollen and Whaley (2004),

Dennis and Mayhew (2002), and Gârleanu et al. (2005)) on the shape of the implied volatility

smile.6 These papers, however, do not address why end users buy these options at high prices

relative to the B/S value or why the 1987 crash changed the shape of the volatility smile so

dramatically and permanently. Our paper offers one possible explanation.

3 A General Equilibrium Model of Equity and Option Prices

We specify the consumption and dividend dynamics as

dC

C
= (µC + x) dt+

√
Ω dzC (1)

dD

D
= (µD + ϕx) dt+ σD

√
Ω
(
ρC,DdzC +

√
1− ρ2

C,D
dzD

)
(2)

dx = −κxx dt+ σx

√
Ω dzx + ν̃ dN . (3)

Here, {dzC , dzD , dzx} are uncorrelated Brownian motions, the Poisson jump process dN has a

jump intensity equal to λ and the jump size ν̃ is normally distributed:

E [dN ] = λ dt (4)

ν̃ ; N(µν , σν ). (5)

It is convenient to define c ≡ logC and δ ≡ logD. Itô’s formula then yields

dc =

(
µC + x− 1

2
Ω

)
dt+

√
Ω dzC (6)

dδ =

(
µD + ϕx− 1

2
σ2

D
Ω

)
dt+ σD

√
Ω
(
ρC,DdzC +

√
1− ρ2

C,D
dzD

)
. (7)

We note that our specification is similar to the so-called one-channel BY model, in which the

expected growth rates in dividend and consumption are stochastic. There is however one important

difference—in our setting, the state variable driving the expected growth rate in consumption and

dividend (i.e., the x process) is subject to jumps. Consistent with BY, we calibrate the mean

reversion parameter κx to be relatively low, implying that the effect of a downward jump may be

very long-lived. As we demonstrate below, this persistence causes the agent in our model to be

6This literature argues that due to the existence of limits to arbitrage, market makers cannot always fully hedge

their positions (see, e.g., Green and Figlewski (1999), Figlewski (1989), Hugonnier et al. (2005), Liu and Longstaff

(2004), Longstaff (1995), and Shleifer and Vishny (1997)). As such, they are likely to charge higher prices when

asked to absorb large positions in certain option contracts. Consistent with this view, Han (2005) finds that the

S&P 500 option volatility smile tends to be steeper when survey evidence suggests that investors are more bearish,

when large speculators hold more negative net positions in the S&P 500 index futures, and when the index level

drops relative to its fundamentals. Related, Bollen and Whaley (2004) and Gârleanu et al. (2005) identify an excess

of buyer-motivated trades in out-of-the-money SPX puts and find a positive link between demand pressure and the

steepness of the volatility smirk.
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willing to pay a high premium to buy out-of-the-money S&P 500 put options in order to hedge

downside risk.

Here, we intentionally focus on a rather minimal version of the model. In particular, we present

results only for the so-called ‘one-channel’ BY case, in which the dividend and consumption dy-

namics have constant volatility. In unreported results, we have also considered different extensions

to our analysis. It is straightforward to solve a model in which the growth rate in dividends and

consumption exhibit stochastic volatility (the ‘two-channel’ BY case), extended for the possible

presence of jumps in volatility. The results, available upon request, are qualitatively similar to

those discussed below. As in BY, stochastic volatility adds additional flexibility to match the

moments of the underlying returns—in combination with jumps (in the predictable component

of dividends and possibly in volatility), the model generates a steep volatility smirk. Further, as

shown by BY the presence of stochastic volatility yields higher time-variation in risk premia, i.e.,

the two-channel model generates higher return predictability.7

Two aspects of the volatility smirk are evident from Figure 1. First, as mentioned previously,

there has been a permanent shift in the shape of the implied volatility function due to the crash.

Second, there are daily fluctuations in the shape of the smirk. This second feature has been studied

extensively in the literature. Prior contributions have shown that these fluctuations can be un-

derstood in both a general equilibrium framework (e.g., David and Veronesi (2002)) and a partial

equilibrium setting (e.g., Bakshi et al. (1997 and 2000), Bates (2003), Pan (2002), and Eraker

(2004)). Such daily fluctuations can be captured within the context of our model by introducing

additional state variables that drive high-frequency changes in expected dividend growth and/or

volatility. However, since these daily fluctuations have already been explained, we do not investi-

gate such variables in order to maintain parsimony. Instead, the focus of the paper is explaining

the permanent shift in the implied volatility curve, and how stock crashes can occur with mini-

mal changes in observable macroeconomic variables. To our knowledge, this paper is the first to

investigate this issue.

3.1 Recursive Utility

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over a con-

sumption process {Ct} are represented by a utility index U(t) that satisfies the following recursive

equation:

U(t) =

{
(1− e−βdt)C1−ρ

t + e−βdtEt

(
U(t+ dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (8)

With dt = 1, this is the discrete time formulation of Kreps-Porteus/Epstein-Zin (KPEZ), in which

Ψ ≡ 1/ρ is the EIS and γ is the risk-aversion coefficient.

7We note that the one-channel BY model generates constant risk-premia when considering the first order Campbell-

Shiller approximation to the model. Higher order approximation (or ‘exact’ numerical solutions) of the model generate

some, albeit small, time-variation in expected returns.
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The properties of the stochastic differential utility in (8) and the related implications for asset

pricing have been previously studied by, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas

(1994), Schroder and Skiadas (1999, 2003), and Skiadas (2003). In Appendix B, we extend their

results to the case in which the aggregate output has jump-diffusion dynamics.8 The solution to

our model is a special case of such general results and follows immediately from Propositions 1 and

2 in Appendix B. Specifically, when ρ, γ ̸= 1 Proposition 1 shows that the agent’s value function,

which is defined via J ≡ U1−γ

1−γ , takes the form:

J =
ec(1−γ)

1− γ
βθ I(x)θ , (9)

where I denotes the price-consumption ratio and satisfies the following equation

0 = I
[
(1− γ)µC + (1− γ)x− γ

2
(1− γ)Ω− βθ

]
− κxxθIx

+
1

2
σ2

x
Ωθ

[
(θ − 1)

(
Ix
I

)2

I + Ixx

]
+ λI J Iθ + θ , (10)

and where we have defined the operator

J h(x) = E

[
h(x+ ν)

h(x)

]
− 1. (11)

To obtain an approximate solution for I(x), we use the method of Collin-Dufresne and Goldstein

(2005), which itself is in the spirit of the Campbell-Shiller approximation. In particular, we note

that I(x) would possess an exponential affine solution if the last term on the right-hand-side (RHS)

of equation (10) (the θ term) were absent. As such, we move θ to the left-hand-side (LHS) and

then add to both sides of the equation the term h(x) ≡ (n0 + n1x) e
A+Bx. Hence, we re-write

equation (10) as

(n0 + n1x) e
A+Bx − θ = (n0 + n1x) e

A+Bx

+I
[
(1− γ)µC + (1− γ)x− γ

2
(1− γ)Ω− βθ

]
− κxxθIx

+
1

2
σ2

x
Ωθ

[
(θ − 1)

(
Ix
I

)2

I + Ixx

]
+ λIJ Iθ . (12)

We then approximate the RHS to be identically zero and look for a solution of the form

I(x) = eA+Bx . (13)

We find this form to be self-consistent in that the only terms that show up are either linear in or

independent of x. This approach provides us with two equations, which we interpret as identifying

8A related literature studies the general equilibrium properties of a jump-diffusion economy in which the agent

has non-recursive utility; see, e.g., Ahn and Thompson (1988) and Naik and Lee (1990). Also related, Cvitanić et al.

(2005) and Liu, Longstaff, and Pan (2003) examine the optimal portfolio choice problem when asset returns (or their

volatility) are subject to jumps.

9



the {n0 , n1} coefficients in terms of B

−n0 = (1− γ)µC − γ

2
(1− γ)Ω− βθ +

1

2
σ2

x
Ω(θB)2 + λ(χP

θB
− 1 ) (14)

−n1 = (1− γ)− κxθB , (15)

where we have defined

χP
a
≡ E

[
eaν̃
]
= eaµν+

1
2
a2σ2

ν . (16)

The model solution is specified by the four parameters {A, B, n0 , n1}. To this end, the system (14)-

(15) provides two identifying conditions. The last two equations necessary to identify the remaining

parameters are obtained from minimizing the following unconditional expectation:

min
{A,B}

E−∞

{
(LHS)2

}
= min

{A,B}
E−∞


(
(n0 + n1x) e

A+Bx − θ

)2
 . (17)

The logic of this condition is as follows. Recall that we have set the RHS to zero above. Here,

we are choosing the parameters so that the LHS is as close to zero as possible (in a least-squares

error metric). Collin-Dufresne and Goldstein (2005) show that this approach provides an accurate

approximation to the problem solution.

We note that the Campbell-Shiller approximation is similar in that their first two equations are

as in (14)-(15) above. However, their last two equations satisfy9

0 =

[
LHS(x)

]∣∣∣∣∣
x=E−∞ [x]

0 =
∂

∂x

[
LHS(x)

]∣∣∣∣∣
x=E−∞ [x]

.

3.2 Risk-Free Rate and Risk-Neutral Dynamics

When ρ, γ ̸= 1, Proposition 1 in Appendix B gives the pricing kernel as

Π(t) = e
∫ t
0 ds((θ−1)I(xs )

−1−βθ) βθe−γct I(xt)
θ−1 , (18)

which has dynamics

dΠ

Π
= −rdt− γ

√
ΩdzC + (θ − 1)Bσx

√
Ω dzx +

[
Iθ−1(x+ ν̃)

Iθ−1(x)
− 1

]
dN − λJ I(x)θ−1dt , (19)

where the risk-free rate r is given by Proposition 2 in Appendix B (ρ, γ ̸= 1):

r = r0 + ρx (20)

r0 ≡ β + ρµC − γ

2
Ω(1 + ρ)− σ2

x
Ω(1− θ)

B2

2
− λ(χP

(θ−1)B
− 1 ) +

θ − 1

θ
λ(χP

θB
− 1 ) . (21)

9Note that E−∞ [x] ̸= 0 since we have written the state vector dynamics without compensator terms on the jumps.
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Given the pricing kernel dynamics, it is straightforward to determine the risk-neutral dynamics.

We find

dc =

(
µC + x− Ω

(
1

2
+ γ

))
dt+

√
Ω dzQ

C
(22)

dδ =

(
µD + ϕx− σDΩ

(
1

2
σD + ρC,Dγ

))
dt+ σD

√
Ω
(
ρC,Ddz

Q
C
+
√

1− ρ2
C,D

dzQ
D

)
(23)

dx =
(
−κxx− (1− θ)Bσ2

x
Ω
)
dt+ σx

√
Ω dzQ

x
+ ν̃ dN , (24)

where the three Brownian motions {dzQ
C
, dzQ

x
, dzQ

Ω
} are uncorrelated, and the Q-intensity of the

Poisson jump process N is

λQ = λχP
(θ−1)B

. (25)

Furthermore, the Q-probability density of the jump amplitudes is

πQ(ν̃ = ν) = π(ν̃ = ν)
Iθ−1(x+ ν)

E [Iθ−1(x+ ν̃)]

=
1√
2πσ2

ν

exp

{(
− 1

2σ2
ν

)[
ν − µν − (θ − 1)Bσ2

ν

]2}
. (26)

That is,

ν̃Q ; N(µQ
ν
, σν )

µQ
ν

= µν + (θ − 1)Bσ2
ν
. (27)

3.3 Dividend Claim

Define V (D, x) as the claim to dividend. By construction, the expected return under the risk

neutral measure is the risk-free rate:

EQ
t

[
dV +Ddt

V

]
= r dt. (28)

It is convenient to define the price-divided ratio ID ≡ V
D . Equation (28) can thus be written as

r − 1

ID
=

1

dt
EQ

[
dV

V

]
=

1

dt
EQ

[
dID

ID
+
dD

D
+
dD

D

dID

ID

]
. (29)

We look for a solution of the form

ID(x) = eF+Gx . (30)

We use the risk-neutral dividend and x-dynamics (23)-(24) to re-write equation (29) as

r − 1

ID
= µD + ϕx− γρC,DσDΩ− κxxG− (1− θ)BGσ2

x
Ω+

1

2
G2σ2

x
Ω+ λQ(χQ

G
− 1) , (31)

where we have defined

χQ
a
≡ EQ

[
eaν̃
]
= eaµ

Q
ν
+ 1

2
a2σ2

ν . (32)

11



As above, we find an approximate solution for ID by moving r to the RHS, multiplying both sides

by ID, and adding (m0 +m1x) I
D to both sides. These calculations give

LHS = (m0 +m1x) e
F+Gx − 1 (33)(

1

ID

)
RHS = (m0 +m1x)− r + µD + ϕx− γρC,DσDΩ− κxxG

−(1− θ)BGσ2
x
Ω+

1

2
G2σ2

x
Ω+ λQ(χQ

G
− 1) . (34)

From equation (20), r = r0 + ρx. Hence, if we approximate the RHS to be identically zero, and

then collect terms linear in and independent of x, respectively, we obtain the system:

−m0 = −r0 + µD − γρC,DσDΩ− (1− θ)BGσ2
x
Ω+

1

2
G2σ2

x
Ω+ λQ(χQ

G
− 1) (35)

−m1 = −ρ− κxG+ ϕ . (36)

Equations (35)-(36) specify {m0 ,m1} in terms of G. In turn, we identify {F,G} by minimizing the

unconditional squared error:

min
{F,G}

E−∞

[
(LHS)2

]
= min

{F,G}
E−∞

((m0 +m1x) e
F+Gx − 1

)2
 . (37)

Finally, note that V = IDD. Thus, Itô’s Lemma yields an expression for the V -dynamics under

the Q measure,

dV

V
=

(
r − 1

ID

)
dt+ Gσx

√
Ω dzQ

x

+σD

√
Ω
(
ρC,Ddz

Q
C
+
√

1− ρ2
C,D

dzQ
D

)
+ dN(eG ν̃ − 1)− λQ(χQ

G
− 1) dt , (38)

where the drift term (r− 1
ID

) is given in equation (31), and under the physical probability measure,

dV

V
=

(
µD + ϕx− κxxG+

1

2
G2σ2

x
Ω

)
dt

+Gσx

√
Ω dzx + σD

√
Ω
(
ρC,DdzC +

√
1− ρ2

C,D
dzD

)
+ dN(eG ν̃ − 1) . (39)

3.4 The Equity Premium

The general form of the risk premium on the risky asset is given in equation (105) of Proposition

2 in Appendix B. Here, such expression simplifies to

Equity Premium = γ σDρC,D Ω+ (1− θ)BGσ2
x
Ω− λ [ χP

G+(θ−1)B
− χP

G
− χP

(θ−1)B
+ 1 ] , (40)

where the transform χP
• was previously defined in equation (16).

In equation (40), the second and third terms represent the risk premia on the diffusive and jump

components of expected growth risk. We note that in the constant relative risk aversion (CRRA)

case, γ equals 1/Ψ, and therefore θ = 1. As such, the last two terms in equation (40) vanish and the

12



CRRA equity premium reduces to (γ σDρC,D Ω). Thus, as in BY, with CRRA utility a persistent

endowment process cannot generate a realistic equity premium, let alone explain out-of-the-money

put prices.

On the other hand, in the KPEZ case with Ψ > 1, the risk premium on expected growth

risk is positive. As in BY, the mechanism for this results is as follows. When Ψ > 1, the inter-

temporal substitution effect dominates the wealth effect. Thus, in response to higher expected

growth, the demand function for assets of the representative agent increases, and consequently the

wealth-to-consumption ratio increases. That is, in this scenario the coefficient B in the wealth-to-

consumption-ratio function (13) is positive. In addition, due to the effect of leverage the coefficient

G in the price-to-dividend ratio function (30) is larger than B. Hence, the last two terms in equation

(40) are positive. Intuitively, with KPEZ utility and Ψ > 1, the stock exhibits positive returns

when the state is good, while it performs poorly in the bad state. As such, investors demand a

higher risk premium.

3.5 Valuing Options on the S&P 500 Index

The date-t value of an European call option on the dividend claim Vt = Dte
F+Gxt , with maturity

T and strike price K, is given by

C(Vt , xt ,K, T ) = EQ
t

[
e
−

∫ T

t
r(xs ) ds (VT −K)+

]
. (41)

We note that our model is affine. As such, the option pricing problem can be solved using standard

inverse Fourier transform techniques (see, e.g., Bates (1996), Duffie et al. (2000), and Heston

(1993)). In Appendix C, we report a semi-closed form formula for the price of an option given in

equation (41).

3.6 Valuing Options on Individual Stocks

As in Bakshi, Kapadia, and Madan (2003), we specify return dynamics on an individual stock, dVi
Vi

,

as a sum of a systematic component and an idiosyncratic component. In particular, we assume

individual firm dynamics follow

dVi
Vi

=
dV

V
+ σi dzi +

[(
eν̃i − 1

)
dNi − E

[
eν̃i − 1

]
λi dt

]
, (42)

where the market return dynamics dV
V are in equation (39). Here, σi captures the volatility of

the idiosyncratic diffusive shock, while the diversifiable jump component has Poisson arrival rate

Ni with constant intensity λi and normally-distributed jump size ν̃i ; N(µνi
, σνi

). The free

parameters (σi , λi , µνi
, σνi

) are chosen to match historical moments of the return distribution on

individual firms. By definition, the diversifiable shocks do not command a risk premium, while the

risk adjustments on the systematic component are identical to those that we have applied to price
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the options on the S&P 500 index. As such, the price of an option on an individual stock is given

by a formula similar to equation (41).

We acknowledge that there is a potential concern that the dynamics (42) for the individual firms

and the dynamics (39) for the aggregate index are not self-consistent. Indeed, it is not obvious

a priori that the terminal value of a strategy that invests an amount V (0) =
∑N

i=1 Vi(0) in the

index will have the same terminal value of a strategy that invests an amount Vi(0) in each of the

individual stocks, i = 1, . . . , N . However, as we demonstrate in Appendix D, the discrepancy is

negligible, i.e., V (T ) ≈
∑N

i=1 Vi(T ). Intuitively, the idiosyncratic shocks that we specify are in fact

diversifiable when the portfolio is composed of a sufficiently large number of firms.

3.7 Model Calibration

To illustrate the implications of the model, we consider a realistic calibration of its coefficients.

In the next section, we will show that our main result is robust to a wide range of parameter

calibrations.

1. Consumption and Dividend Dynamics:

To calibrate the consumption process in equations (6), we rely on the model coefficients

reported in BY. BY use the convention to express their parameters in decimal form with

monthly scaling. Here, instead, we express them in decimal form with yearly scaling. After

adjusting for differences in scaling, we fix µC = 0.018 and Ω = 0.00073.

We note that corporate leverage justifies a higher expected growth rate in dividends than in

consumption (see, e.g., Abel (1999)). This can be modeled by setting µD > µC and ϕ > 1 in

equation (7). As such, we fix µD = 0.025 and ϕ = 1.5. We note the difference with BY, who

assume µD = µC and model leverage entirely through the ϕ coefficient, which they choose to

be in the 3-3.5 range. We use σD = 4.5, the same value of BY. Finally, we allow for a 60%

correlation between consumption and dividend, i.e., ρC,D = 0.6.

In the x-dynamics (3), we use κx = 0.3. This is in line with the value used by BY (if we

adjust for differences in scaling and we map the BY AR(1) ρ coefficient into the κx of our

continuous-time specification, we find κx = 0.2547). We fix σx = 0.4472, a value similar to,

but slightly lower than that of BY (i.e., 0.5280, after adjusting for differences in scaling). A

slightly lower value of σx is justified by the fact that part of the variance of the x process is

driven by the jump component, which is absent in the BY model.

Finally, we calibrate the Poisson jump intensity process to yield, on average, one jump every

fifty years, i.e., λ = 0.02. This is consistent with the intuition that our jump process captures

extreme and very rare price fluctuations such as the 1987 market crash. Further, we fix

µν = −0.094. This approach implies that one jump of average size produces a fall in market

prices of approximately 23%, which is in line with the 24.5% drop in the S&P 500 index
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observed in between the close of Thursday, October 15, and Monday, October 19, 1987.

Finally, we fix the standard deviation of the jump size to σν = 0.015.

2. Individual Stock Returns:

For each of the 20 stocks in the Bollen and Whaley (2004) study, we compute standard

deviation, skewness, and kurtosis by using daily return series for the sample period from

January 1995 to December 2000 (the same period considered by Bollen and Whaley).10 For

each of these statistics, we evaluate cross sectional averages. We find an average standard

deviation of 37.6% per year, and average skewness and kurtosis of 0.12 and 7.12, respectively.

Four coefficients characterize the distribution of the idiosyncratic shocks in equation (42):

the standard deviation of the diffusive firm-specific shock, σi, the intensity of the diversifiable

jump component, λi, and the mean and standard deviation of the jump size, µνi
and σνi

.

After some experimentation, we fix the jump intensity to λi = 5, which corresponds to an

expected arrival rate of 5 jumps per year. We choose the remaining coefficients to match

the average standard deviation, skewness, and kurtosis reported above. This approach yields

σi = 0.3205, µνi
= 0.0038, and σνi

= 0.0658. We have confirmed that the results reported

below are robust to the choice of the λi coefficient. To this end, we have solved for σi, µνi
,

and σνi
when λi takes different values in the 1-10 range. The results were similar to those

discussed below.

3. Preferences:

We use a time discount factor coefficient β = 0.023.

Mehra and Prescott (1985) argue that reasonable values of the relative risk aversion coefficient

γ are smaller than 10. BY consider γ = 7.5 and 10. Bansal et al. (2007) report γ = 7.1421.

As such, we fix γ = 7.5 in our baseline case.

The magnitude of the coefficient ρ is more controversial. Hall (1988) argues that the EIS is

below 1. However, Attanasio and Weber (1989), Bansal et al. (2007), Guvenen (2001), Hansen

and Singleton (1982), among others, estimate the EIS to be in excess of 1. In particular,

Attanasio and Weber (1989) find estimates that are close to 2. Bansal et al. (2006) construct

a proxy for total wealth that comprises corporate equity and debt, durable goods (houses),

and human capital. They use such measure of wealth to estimate the EIS, and they find it to

be well in excess of 1. Bansal et al. (2007) estimate the EIS to be in the 1.5-2.5 region, and

fix it at 2 in their application. Here we follow Bansal et al. (2007) and use Ψ = 1/ρ = 2 for

our baseline case.

In the next section, we document the sensitivity of our results to different values of γ and Ψ.

10CRSP data, Center for Research in Security Prices, Graduate School of Business, University of Chicago, used

with permission.
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4. Initial Conditions:

In the plots below, we fix the state variable x at its steady-state mean value x0 = µνλ/κx .

We note that x0 is nearly zero in our calibration, i.e., it is very close to the steady-state mean

value of x in the BY model. Further, we emphasize that our results are robust to the value

assigned to the state x. Specifically, when option prices are computed at values of x that are

within ± 3 standard deviations from the steady-state mean x0 , we obtain implied volatility

plots that are very similar to those reported below.

3.8 Simulation Results

Our calibration yields realistic values of the risk-free rate, the equity premium, and the price-

dividend ratio. Specifically, in the baseline case we find that the steady-state real risk-free rate

is 0.93%, and its standard deviation is 1.2%. The equity premium predicted by the model is

5.76%, while the standard deviation of the stock market return is 13.1%. Further, we find that the

steady-state price-dividend ratio is 20.

Most importantly, the model produces a volatility smirk that is consistent with post-1987 market

crash observation. Figure 2 reports implied volatilities for options on the S&P 500 index with one

month to maturity for the baseline case. The main result is that put options that are 10% out-of-

the-money have a 23.8% implied volatility. At-the-money options have a 13.8% implied volatility.

As such, consistent with the evidence in Figure 1 the model predicts a realistic 10% volatility smirk,

as measured by the difference in 10%-out-of-the-money and at-the-money implied volatilities.

3.9 Sensitivity Analysis

Here we investigate the sensitivity of our findings to changes in the underlying parameters:

Jump Coefficients

Figure 3 illustrates the sensitivity of our results to the jump coefficients λ and µν . In the left panel

we lower the jump intensity coefficient λ to 0.01, which corresponds to an expected arrival rate of

one jump every 100 years. Interestingly, we find that most of the volatility smirk remains intact.

As intuition would suggest, increasing the jump intensity to 0.03, i.e., one jump every 33 years,

makes our results much stronger.

In the right panel, we illustrate the effect of a one-standard-deviation perturbation of the average

jump size coefficient. We note that in the model a value of µν = (−0.094 + σν ) = −0.079 implies

that a jump of average size determines a 20.6% fall in stock prices, which is smaller than the 24.5%

drop in the S&P 500 index observed in between the close of Thursday, October 15, and Monday,

October 19, 1987.11 Still, the model predicts a steep volatility smirk.

11Note, however, that the drop in prices between the close of Friday October 16 and Monday October 19 was

20.46%. Furthermore, the S&P 500 closing prices over that week are as follows. 1987-10-13: $314.52; 1987-10-14:
$305.23; 1987-10-15: $298.08; 1987-10-16: $282.94; 1987-10-19: $225.06; 1987-10-20: $236.84.
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Figure 2: The plot depicts the implied volatility smirk for S&P 500 options with one month to

maturity. The model coefficients are set equal to the baseline values.

Preferences Coefficients

Figure 4 illustrates the sensitivity of our results to the preferences coefficients γ and Ψ ≡ 1/ρ. The

left panel shows that when the coefficient of risk aversion is lowered to 5, most of the volatility

smirk remains intact. Further, we note that when γ = 10 (the upper bound of the range that

Mehra and Prescott (1985) consider reasonable) the volatility smirk becomes considerably steeper.

The right panel illustrates the sensitivity of the volatility smirk to the EIS coefficient. As noted

previously, researchers have obtained a wide array of estimates for this parameter. Our base case

estimate of ρ = 2 is consistent with that of Bansal et al. (2007). Here we demonstrate that even

lower estimates for ρ, such as 1.25 and 1.5, still produce steep volatility smirks.

3.10 The Pricing of Options on Individual Stocks

In this section we illustrate the model implications for the pricing of individual stock options. We

simulate option prices for a typical stock and extract B/S implied volatilities. Figure 5 contrasts

such implied volatility function to the volatility smirk for S&P 500 options. Consistent with the

evidence in Bollen and Whaley (2004), Bakshi, Kapadia, and Madan (2003), Dennis and Mayhew

(2002), our model predicts that the volatility smile for individual stock options is considerably

flatter than that for S&P 500 options.

Bakshi, Kapadia, and Madan (2003) conclude that the differential pricing of individual stock
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Figure 3: The plot illustrates the sensitivity of the implied volatility smirk to the agent’s preferences

coefficients, i.e., the jump intensity coefficient λ and the average jump size coefficient µν . Implied

volatilities are from S&P 500 options with one month to maturity.

options is driven by the degree of skewness/kurtosis in the underlying return distribution in com-

bination with the agent’s high level of risk aversion. Here, we propose a plausible endowment

economy that in combination with recursive utility yields predictions consistent with their empir-

ical findings. Combined with our results discussed above, this evidence suggests that the market

of S&P 500 and individual stock options, as well as the market for the underlying stocks, are well

integrated.

4 Bayesian Updating of Jump Beliefs

In this section, we examine whether our model can also explain the stark change in the implied

volatility pattern that has maintained since the 1987 market crash. In the previous section, we

assumed that the specified parameters of the model are known to the agent. In what follows, we

will assume that, because stock market crashes are so rare, the agent does not know the exact

distribution of the jump size. As such, she will update her prior beliefs about the distribution of

jump size after observing a crash. Note that this Bayesian updating only occurs at crash dates. As

such, the effect on the implied volatility pattern can be extremely long-lived.

We specify the model so that, prior to the first crash, given the agent’s information set, the

distribution of the jump size ν̃1 is a normal random variable whose mean value µ̄ν is itself an
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Figure 4: The plot illustrates the sensitivity of the implied volatility smirk to the agent’s preferences

coefficients, i.e., the coefficient of relative risk aversion γ and the EIS Ψ = 1
ρ . Implied volatilities

are from S&P 500 options with one month to maturity.

unknown quantity, and is selected from a normal distribution:

ν̃1 |µ̄ν ; N(µ̄ν , σ̄
2
ν
) (43)

µ̄ν ; N(¯̄µ
ν
, ¯̄σ 2

ν
) . (44)

That is, before the first crash occurs, the agent’s prior is

ν̃1 ; N(¯̄µ
ν
, σ̄ 2

ν
+ ¯̄σ 2

ν
) . (45)

After the first crash occurs and the agent observes the realization of ν̃1 , she updates her beliefs

about the distribution of µ̄ν via the projection theorem:

E[µ̄ν |ν̃1 ] = E[µ̄ν ] +
Cov(µ̄ν , ν̃1)

Var(ν̃1)
( ν̃1 − E[ν̃1 ] )

= ¯̄µ
ν

(
σ̄ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

)
(46)

Var[µ̄ν |ν̃1 ] = Var(µ̄ν )−
Cov(µ̄ν , ν̃1)

2

Var(ν̃1)

=
σ̄ 2

ν
¯̄σ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

. (47)
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Figure 5: The plot contrasts the implied volatility function for individual stock options to the

volatility smirk for S&P 500 options with one month to maturity. The model coefficients are set

equal to the baseline values.

Hence, the agent sees the second crash size as distributed normally:

ν̃2 ; N
(
E[µ̄ν |ν̃1 ], σ̄ 2

ν
+Var[µ̄ν |ν̃1 ]

)
. (48)

We see from equation (46) that if the realization of ν̃1 is substantially worse than the pre-

crash estimate µ̄ν , then, after the first crash, the expected size of the next crash is considerably

worse. Further, we emphasize that the random variable µ̄ν is chosen only once at date-0, and hence

uncertainty about its value is reduced at the crash date, as noted in equation (47). Indeed, prior to

the crash the uncertainty about the value of µ̄ν is ¯̄σ 2
ν
, as can be seen from equation (44). However,

after the crash, this uncertainty reduces to
σ̄ 2
ν
¯̄σ 2
ν

σ̄ 2
ν
+¯̄σ 2

ν

=
σ̄ 2
ν

1+
σ̄ 2
ν

¯̄σ 2
ν

. Below, we will parameterize the model

so that ¯̄σ 2
ν
≪ σ̄ 2

ν
. As such, most of the uncertainty regarding the value of µ̄ν is determined from the

first crash. While the agent would typically continue to update her beliefs about the distribution of

µ̄ν when subsequent crashes occur, given the parametrization of the model we choose below, there

would be little change in the subsequent posterior beliefs. Therefore, and because it considerably

simplifies the analysis, we make the assumption that the updating of jump beliefs occurs only once,

when the agent observes a jump for the first time. Effectively this approach implies that the pre-

and post-crash jump distributions are given by, respectively:

ν̃1 ; N(¯̄µ
ν
, σ̄ 2

ν
+ ¯̄σ 2

ν
) (49)

20



ν̃j ; N

{[
¯̄µ

ν

(
σ̄ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

)]
, σ̄ 2

ν
+

σ̄ 2
ν
¯̄σ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

}
j = 2, 3, , ....∞ . (50)

4.1 Model Solution with Bayesian Updating

We have assumed that the agent updates her beliefs only once, when she observes the first jump.

As such, we only need to consider two cases when solving our problem. First, the case in which the

agent is aware that stock market prices can jump, but she has not yet seen a jump occur. Second,

the case in which the agent has witnessed a jump in market prices and therefore has updated her

beliefs on the jump distribution. Intuitively, we can think of the first case as a description of the

pre-1987 crash economy, while the second one depicts the post-1987 regime.

Once the agent has updated her beliefs in reaction to the occurrence of the first jump, the post-

crash problem reduces to the setting without Bayesian updating that we have already considered in

Sections 3.1-3.3. As such, the solution to the problem is unchanged, except that the mean µν and

variance σ2
ν
in the jump distribution (5) are replaced by those of the post-crash jump distribution

(50).

When solving the pre-crash problem, instead, we need to account for the fact that the agent

rationally anticipates that the occurrence of a crash will determine an updating of the prior on

the jump coefficients. To this end, we proceed as follows: As before, we exogenously specify

the aggregate consumption and dividends dynamics as in equations (3)-(7). However, we now

assume that the pre-crash jump size distribution is given by equation (49). Further, we consider a

representative agent’s whose preferences over the consumption process {Ct} are represented by a

utility index U(t) that satisfies the recursive equation (8).

Proposition 1 in Appendix B still applies. As such, when ρ, γ ̸= 1 the pre-crash value function

Jpre has the form:

Jpre =
ec(1−γ)

1− γ
βθ Ipre(x)

θ , (51)

where the price-consumption ratio Ipre satisfies the following equation

0 = Ipre

(
(1− γ)µC + (1− γ)x− γ

2
(1− γ)Ω− βθ

)
− κxxθIpre,x

+
1

2
σ2

x
Ωθ

[
(θ − 1)

(
Ipre,x
Ipre

)2

Ipre + Ipre,xx

]
+ λIpre Eν̃1

[
Iθ
post

(x+ ν̃1)

Iθ
pre

(x)
− 1

]
+ θ . (52)

We note the effect of Bayesian updating on the pre-crash price-consumption ratio Ipre . The agent

anticipates that if a crash occurs, the price-consumption ratio will take the post-crash form

Ipost = eÃ+B̃x , (53)

where, for each different possible realization of ν̃1 , the coefficients Ã ≡ A(ν̃1) and B̃ ≡ B(ν̃1)

minimize the squared error in equation (17).
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An approach similar to that followed in Section 3.1 delivers an approximate solution of the form

Ipre(x) = eApre+Bprex . (54)

Specifically, we re-write equation (52) as

(p0 + p1x) e
Apre+Bprex − θ − λe(1−θ)(Apre+Bprex) E

ν̃1

[
eθ(Ã+B̃(x+ν̃1))

]
= (p0 + p1x) e

Apre+Bprex

+eApre+Bprex

[
(1− γ)µC + (1− γ)x− γ

2
(1− γ)Ω− βθ − κxxθBpre +

1

2
σ2

x
Ω(θBpre)

2 − λ

]
. (55)

We set the RHS of (55) to zero and obtain a system of two equations, which identify the {p0 , p1}
coefficients in terms of Bpre :

−p0 = (1− γ)µC − γ

2
(1− γ)Ω− βθ +

1

2
σ2

x
Ω(θBpre)

2 − λ (56)

−p1 = (1− γ)− κxBpreθ . (57)

We then choose {Apre , Bpre} by minimizing the unconditional squared error:

min
{Apre ,Bpre}

E−∞

{(
(p0 + p1x) e

Apre+Bprex − θ − λe(1−θ)(Apre+Bprex)) E
ν̃1

[
eθ(Ã+B̃(x+ν̃1 ))

] )2}
. (58)

Next, we derive the dynamics of the pre-crash pricing kernel:

dΠ1

Π1

= −rpredt− γ
√
ΩdzC + (θ − 1)Bpreσx

√
Ω dzx

+

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

e(θ−1)(Apre+Bprex)
− 1

]
dN − λE

ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

e(θ−1)(Apre+Bprex)
− 1

]
dt , (59)

where the pre-crash risk-free rate rpre is no longer an affine function of x:

rpre = rpre,0 + ρx− λ
(1− θ)

θ
e−θ(Apre+Bprex) E

ν̃1

[
eθ(Ã+B̃(x+ν̃1 ))

]
−λ e(1−θ)(Apre+Bprex) E

ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

]
rpre,0 = β + ρµC − γ

2
Ω(1 + ρ)− 1

2
σ2

x
Ω(1− θ)B2

pre
+
λ

θ
. (60)

Further, we obtain pre-crash risk-neutral dynamics:

dc =

(
µC + x− Ω

(
1

2
+ γ

))
dt+

√
Ω dzQ

C
(61)

dδ =

(
µD + ϕx− σDΩ

(
1

2
σD + ρC,Dγ

))
dt+ σD

√
Ω
(
ρC,Ddz

Q
C
+
√

1− ρ2
C,D

dzQ
D

)
(62)

dx =
(
−κxx− (1− θ)Bpreσ

2
x
Ω
)
dt+ σx

√
Ω dzQ

x
+ ν̃1 dN , (63)

where the three Brownian motions {dzQ
C
, dzQ

x
, dzQ

Ω
} are uncorrelated, and the Q-intensity of the

Poisson jump process N is

λQ = λ e(1−θ)(Apre+Bprex) E
ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

]
. (64)

Furthermore, the Q-probability density of the jump amplitudes is

πQ(ν̃1 = ν1) = π(ν̃1 = ν1)
e(θ−1)(A(ν1 )+B(ν1 )(x+ν1 )

E
ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

] . (65)
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4.2 Pre-Crash Dividend Claim

We denote the pre-crash claim to dividend by Vpre(D, x). By construction, its expected return

under the risk neutral measure is the risk-free rate:

EQ
t

[
dVpre +Ddt

Vpre

]
= rpre dt. (66)

We proceed as in Section 3.3. That is, we define the pre-crash price-dividend ratio ID
pre

≡ Vpre

D and

then look for a solution of the form

ID
pre

(x) = eFpre+Gprex . (67)

We combine equations (66)-(67) with the risk-neutral dynamics (62)-(63) to obtain:

rpre −
1

ID
pre

= µD + ϕx− γρC,DσDΩ− κxxGpre − (1− θ)BpreGpreσ
2
x
Ω+

1

2
G2

pre
σ2

x
Ω

+λQe−(Fpre+Gprex) EQ
ν̃1

[
eF̃+G̃(x+ν̃1 )

]
− λQ , (68)

As above, we find an approximate solution for ID
pre

by moving rpre to the RHS, arranging the non-

affine terms to the LHS, multiplying both sides by ID
pre

, and adding (q0 + q1x) I
D
pre

to both sides.

These calculations give

LHS = (q0 + q1x) e
Fpre+Gprex − 1− λ

(1− θ)

θ
e(Fpre+Gprex)−θ(Apre+Bprex) E

ν̃1

[
eθ(Ã+B̃(x+ν̃1 ))

]
−λ e(Fpre+Gprex)+(1−θ)(Apre+Bprex) E

ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

]
− λQ EQ

ν̃1

[
eF̃+G̃(x+ν̃1 )

]
(69)(

1

ID
pre

)
RHS = (q0 + q1x)− rpre,0 + µD − σDρC,Dγ Ω− (1− θ)BpreGpreσ

2
x
Ω+

1

2
G2

pre
σ2

x
Ω− λQ

+ϕx− κxxGpre − ρx , (70)

where the constant rpre,0 is defined in equation (60). We note the effect of Bayesian updating on the

pre-crash price-dividend ratio ID
pre

. The agent anticipates that if a crash occurs the price-dividend

ratio will take the post-crash form

ID
post

= eF̃+G̃x , (71)

where, for each possible realization of ν̃1 , the coefficients F̃ ≡ F (ν̃1) and G̃ ≡ G(ν̃1) minimize the

squared error in equation (37).

We approximate the RHS to be identically zero, and then collect terms linear in and independent

of x, respectively. We obtain a system of two equations that identify {q0 , q1} in terms of Gpre :

−q0 = −rpre,0 + µD − σDρC,Dγ Ω− (1− θ)BpreGpreσ
2
x
Ω+

1

2
G2

pre
σ2

x
Ω− λQ (72)

−q1 = ϕ− κxGpre − ρ . (73)

In turn, we identify {Fpre , Gpre} by minimizing the unconditional squared error:

min
{Fpre , Gpre}

E−∞

[
(LHS)2

]
. (74)
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4.3 The Pre-Crash Equity Premium

In the pre-crash economy, the expression for the risk premium on the risky asset simplifies to:

Equity Premium pre = γ σDρC,D Ω+ (1− θ)BpreGpreσ
2
x
Ω

− λ I(1−θ)
pre

(ID
pre

)−1 E
ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))+F̃+G̃ (x+ν̃1 )

]
+ λ I(1−θ)

pre
E

ν̃1

[
e(θ−1)(Ã+B̃(x+ν̃1 ))

]
+ λ (ID

pre
)−1 E

ν̃1

[
eF̃+G̃(x+ν̃1 )

]
− λ .

(75)

where Ipre and ID
pre

were previously defined in equations (54) and (67), respectively.

The intuition for this formula is similar to that discussed previously in Section 3.4. That is, the

first term in equation (75) is identical to the risk premium in a model with CRRA. The following

terms are the risk premia on diffusive and jump components of expected growth risk. Again, in

the KPEZ with Ψ > 1 case, the agent demands a positive premium on expected growth risk, which

increases the risk premium on the risky asset.

4.4 Valuing Options on the Dividend Claim

The option pricing problem for the pre-crash economy is outside of the affine class. Thus, we

lack an analytical formula for the option price. However, the problem is easily handled via Monte

Carlo simulation. Specifically, we simulate two antithetic samples of 50,000 paths of the dividend

δ and the process x from the Q-dynamics (23) and (24). For each simulated case, we use the

x-path from time t to maturity T to approximate the discount factor e
−

∫ T

t
r(xs )ds. Further, we

use the simulated value of xT to obtain the price-dividend ratio ID
pre

(T ) = eFpre+GprexT . Next,

we compute the simulated value of the contingent claim Vpre(T ) = DT I
D
pre

(T ), where D = exp δ.

Finally, we average across the simulated discounted realizations of |Vpre(T )−K|+ to approximate

the expectation in (41).

4.5 Model Calibration

We note that the requirements imposed on this model is considerably higher than in the previous

section in that here we want to explain not only the post-1987 volatility smirk, but also the regime

shift in option prices that was observed immediately after the 1987 crash. As such, we consider a

slightly different baseline calibration. We argue that the coefficient values that we use below are

still consistent with observation and similar to those used in, e.g., BY and Bansal et al. (2007).

1. Consumption and Dividend Dynamics:

In the consumption dynamics (6), we fix µC = 0.018 and Ω = 0.00078.

For the dividend process (7), we use µD = 0.018, ϕ = 2.1, and σD = 3.5. We fix the correlation

between shocks to dividend and consumption at 25%, i.e., ρC,D = 0.25.
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In the x-dynamics (3), we use κx = 0.34 and σx = 0.6325. We fix the Poisson jump intensity

process at λ = 0.007, which on average corresponds to less than one jump every hundred

years.

In equations (49)-(50), we fix ¯̄µ
ν
= −0.011 and we assume that at the time of the crash ν̃1

takes value −0.094. Further, we set σ̄ν = 0.0023 and ¯̄σν = 0.022.

The intuition for this calibration is as follows. Before a crash occurs, the agent does not fully

appreciate the extent to which prices can fall. As such, her prior is that the jump size ν̃1 has

nearly zero mean, ¯̄µ
ν
= −0.011. The agent realizes however that there is considerable uncer-

tainty about the magnitude of a possible jump, as reflected by the large standard deviation

of ν̃1 , which equals
√
σ̄ 2

ν
+ ¯̄σ 2

ν
= 0.0221.

Suddenly, she unexpectedly observes a crash of the proportion of the 1987 event. When that

happens, she updates her beliefs about the post-crash jump distribution according to (50). As

such, the mean and standard deviation of the post-crash jump size ν̃2 become, respectively,

¯̄µ
ν

(
σ̄ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

)
+ ν̃1

(
¯̄σ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

)
= −0.0931 (76)√

σ̄ 2
ν
+

σ̄ 2
ν
¯̄σ 2

ν

σ̄ 2
ν
+ ¯̄σ 2

ν

= 0.0032 . (77)

That is, immediately after the crash the agent updates her prior on the average jump size in

a way that reflects the possibility of a large, although very rare, stock price fall.

Further, we note that the occurrence of a crash determines a stark increase in the precision

of the agent’s belief about the jump size. Specifically, the standard deviation of the post-

crash jump size is over seven times smaller than its pre-crash value. As discussed above, this

observation is consistent with the intuition that a single event of the proportion of the 1987

market crash can generate most of the updating of the agent’s beliefs.

2. Preferences:

We use a time discount factor coefficient β = 0.017. We fix the coefficient of relative risk

aversion at γ = 10. Finally, we follow Bansal et al. (2007) and we use Ψ = 1/ρ = 2 for our

baseline case.

3. Initial Conditions:

In the plots below, we fix the state variable x at the its steady-state mean value. In the

pre-crash economy, such value is xpre,0 = ¯̄µ
ν
λ/κx , while in the post-crash economy it is

xpost,0 =
[
¯̄µ

ν

(
σ̄ 2
ν

σ̄ 2
ν
+¯̄σ 2

ν

)
+ ν̃1

(
¯̄σ 2
ν

σ̄ 2
ν
+¯̄σ 2

ν

)]
λ/κx . We also confirmed, however, that our results are

robust to the choice of a wide range of values for the state x.

25



4.6 Simulation Results

We note that our calibration yields realistic values of the risk-free rate and the equity premium,

both pre- and post-crash. Specifically, we find that the pre-crash steady-state real risk-free rate is

1.33%, while the equity premium predicted by the model is 4.48%. Post-crash, the steady-state

value of the risk-free rate drops to 0.7%, while the equity premium becomes 6.4%. Further, the

calibration matches other aspects of the economy. For instance, we find that the steady-state value

of the price-dividend ratio is around 27, a value that drops to approximately 19 in the post-crash

economy.

Before the crash, our calibration produces a mild smirk that is qualitatively consistent with

the evidence in Figure 1. Figure 6 shows that the difference between the implied volatilities from

10%-out-of-the-money and at-the-money puts is approximately 2.8%. Immediately after the crash,

however, the agent updates her beliefs about the expected value of the jump size. As such, the

volatility smirk steepens dramatically. In Figure 6, we show that post-1987 the difference between

the implied volatilities from 10%-out-of-the-money and at-the-money puts becomes nearly 10%.
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Figure 6: The plot depicts the implied volatility smirk pre- and post-1987 market crash. Implied

volatilities are from S&P 500 options with one month to maturity. The model coefficients are set

equal to the baseline values.

Finally, we note a drawback of our calibration. During the two weeks after the ‘Black Monday’

in October 1987, the 3-month Treasury bill rate was on average 1.5% lower than the same rate
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during the two weeks preceeding the crash.12 Consistent with observation, our model predicts a

fall in the risk-free rate at the time of a market crash. However, the magnitude of the drop is larger

than what was observed in October 1987. To study this model implication, we use data from the

COMPUSTAT database and compute the price-dividend ratio for the S&P 500 index as of the end

of September 1987. We find it to be 36.24. Next, we infer the pre-crash value xt of the latent

process x (where t is the end of September 1987) by matching the pre-crash price-dividend ratio

predicted by the model with the value observed in the data:

ID
pre

(xt) = eFpre+Gprext ≡ 36.24 . (78)

Then, we use equation (60) to compute the change in the risk-free rate determined by a jump in x

from the pre-crash value xt to the post-crash level xt + ν̃1 . We find the jump in the risk-free rate

to be -5.2%.

Related, we can use our model to predict the drop in stock prices at the time of the 1987 crash.

We do so by following an approach similar to that we used above to determine the jump in the

interest rate. That is, assuming that the level of the dividend is unaffected by the crash, the jump

in price around the crash event is given by

ID(xt + ν̃1)

ID
pre

(xt)
− 1 =

eF+G(xt+ν̃1 )

eFpre+Gprext
− 1 , (79)

where xt is determined by equation (78) and ν̃1 is the jump in x at the time of the crash. The model

predicts a nearly fifty percent fall in the stock price, a drop twice as large as that observed in 1987.

We note however that there are institutional features that may have attenuated the fluctuation in

interest rates and market prices during the crash day.13

5 Conclusions

We examine a representative-agent general equilibrium model that can explain the salient features

of the U.S. equity options markets both before and after the 1987 crash, and investigate their

linkage with the underlying stock market. The agent is endowed with Epstein-Zin preferences and

12The bank discount rates on the 3M T-bill were as follows. 1987-10-05: 6.68; 1987-10-06: 6.55; 1987-10-07: 6.56;

1987-10-08: 6.69; 1987-10-09: 6.75; 1987-10-12: N.A.; 1987-10-13: 6.74; 1987-10-14: 7.19; 1987-10-15: 7.07; 1987-10-

16: 6.93; 1987-10-19: 6.39; 1987-10-20: 5.86; 1987-10-21: 5.60; 1987-10-22: 5.36; 1987-10-23: 5.29; 1987-10-26: 5.22;

1987-10-27: 5.23; 1987-10-28: 5.10; 1987-10-29: 5.03; 1987-10-30: 5.27.
13On October 19 and 20, 1987, the S&P 500 Futures price was considerably lower than the index price, which

suggests that the drop in the index level does not fully represent the magnitude of the market adjustment in prices.

This evidence can be explained by the existence of significant delays in the submission and execution of limit orders

during the crash events, magnified by the standard problem of ‘stale’ prices (see, e.g., Kleidon (1992)). Moreover,

interventions of the exchange might have further contained the fluctuations in stock prices during the crash. Finally,

the Fed assured that it would provide adequate liquidity to the U.S. financial system necessary to calm the equity

and other markets (see, e.g., p. 3 of the November 3, 1987, ‘Notes for FOMC Meeting’ document available from the

Federal Reserve web site http://www.federalreserve.gov/fomc/transcripts/1987/871103StaffState.pdf).
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the aggregate dividend and consumption processes are driven by a persistent stochastic growth

variable that can jump. In reaction to a market crash, the agent updates her beliefs about the

distribution of the jump component.

We identify a realistic calibration of the model that matches four stylized properties of the equity

option market and the underlying stocks. First, the model implies a deep volatility smirk for S&P

500 options. In the baseline case, the implied volatility of 10% out-of-the-money put options with

one month to maturity is close to 24%. At-the-money options, instead, have an implied volatility

of approximately 14%. That is, consistent with empirical evidence we find a 10% volatility smirk.

Second, the model implies a mild volatility smile for individual stock options, as illustrated in

Bollen and Whaley (2004).

Third, the model explains the stark regime shift in S&P 500 option prices observed around the

time of the 1987 market crash. Before the crash, the difference between implied volatilities from

10%-out-of-the-money and at-the-money puts is approximately 2.8%. However, the occurrence of

a jump triggers the updating of the agent’s beliefs about the distribution of future jumps. As such,

after the crash out-of-the-money put options are perceived to be more valuable, and the volatility

smirk becomes as steep as 10%, consistent with the post-1987 evidence. Fourth, such paradigm

change occurs in spite of a minimal change in observed macroeconomic variables (in particular,

the level of consumption or dividends). Finally, the model’s implications are consistent with the

empirical properties of dividends, equity returns, and the riskfree rate. In the baseline calibration,

the equity premium is approximately 6%, the price-dividend ratio is 20, the riskfree rate is 1% and

its standard deviation is 1%.

Overall, our findings show that it is possible to reconcile the stylized properties of the equity

and option markets in the framework of rational expectations, consistent with the notion that these

two markets are integrated.

In the current version of the paper we intentionally focus on a rather minimal version of the

model. In particular, we present results only for the so-called ‘one-channel’ BY case, in which the

dividend and consumption dynamics have constant volatility. We find that a single channel (a rare

jump in consumption growth) suffices to reconcile option and index prices. In unreported results,

we have also considered different extensions to our analysis. It is straightforward to solve a model

in which the growth rate in dividends and consumption exhibit stochastic volatility (the ‘two-

channel’ BY case), extended for the possible presence of jumps in volatility. The results, available

upon request, are qualitatively similar to those discussed here. As in BY, stochastic volatility adds

additional flexibility to match the moments of the underlying returns—in combination with jumps

(in the predictable component of dividends and possibly in volatility), the model generates a steep

volatility smirk. Further, as shown by BY the presence of stochastic volatility yields a time-varying

risk premium, i.e., the two-channel model generates return predictability.

More interestingly, stochastic volatility has the potential to improve the model predictions

around the time of the crash. In the baseline calibration, we find that on the day of the crash
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the interest rate and the stock market return jump more than what they had in reality. In the

two-channel model, stochastic volatility contributes to generate a deeper smirk. As such, a smaller

jump in the predictable component in dividends, x, suffices to explain the volatility smirk. The

loadings on volatility for underlying stock returns and changes in interest rates are smaller than

those on the variable x. Thus, we conjecture that such a model would produce a smaller jump in

prices and interest rates while still capturing the volatility smirk. Another extension is to examine

the case in which after a crash the agent updates her assessment of the likelihood of future crashes

rather than the expected magnitude of a future crash. As in Collin Dufresne et al. (2003), we can

allow for Bayesian updating on the intensity of a jump, i.e., on the probability that a jump will

occur.
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A Appendix A: Pre- and Post-Crash Implied Volatility Patterns

Figure 1 shows the permanent regime shift in pre- and post-1987 market crash implied volatilities

for S&P 500 options. The plot in Panel A depicts the spread between implied volatilities for S&P

500 options that have a strike-to-price ratio X = K/S − 1 = −10% and at-the-money implied

volatilities. The plot in panel B depicts the spread between implied volatilities for options that

have a strike-to-price ratio X = K/S − 1 = 2.5% and at-the-money implied volatilities.

A.1 American Options on the S&P 500 Futures

We construct implied volatility functions from 1985 to 1995 by using transaction data on American

options on S&P 500 futures. As in Bakshi et al. (1997), prior to analysis we eliminate observations

that have price lower than $(3/8) to mitigate the impact of price discreteness on option valuation.

Since near-maturity options are typically illiquid we also discard observations with time-to-maturity

lower than 10 calendar days. For the same reason we do not use call and put contracts that are

more than 3% in-the-money. Finally, we disregard observations on options that allow for arbitrage

opportunities, e.g., calls with a premium lower than the early exercise value.

We consider call and put transaction prices with the three closest available maturities. For each

contract we select the transaction price nearest to the time of the market close and we pair it with

the nearest transaction price on the underlying S&P 500 futures. This approach typically results

in finding a futures price that is time stamped within 6 seconds from the time of the option trade.

We approximate the risk-free rate with the three-month Treasury yield and we compute implied

volatilities using the Barone-Adesi and Whaley (1987) approximate option pricing formula.

At each date and for each of the three closest maturities we interpolate the cross section of

implied volatilities with a parabola. This approach is similar to the one used in Shimko (1993). In

doing so we require that we have at least three implied volatility observations, one of which with

a strike-to-price ratio X = K/S − 1 no higher than -9%, one with X no lower than 1.5%, and one

in between these two extremes. We record the interpolated implied volatility at X = 0 and the

implied volatility computed at the available X-values closest to -10% and 2.5%.

Then at each date and for each of the three X choices we interpolate the implied volatility values

across the three closest maturities using a parabola. We use the fitted parabola to obtain the value

of implied volatility at 30 days to maturity. If only two maturities are available, we replace the

parabola with a linear interpolation. If only one maturity is available we retain the value of implied

volatility observed at that maturity provided that such maturity is within 20 to 40 days.

Trading in American options on the S&P 500 futures contract began on January 28, 1983. Prior

to 1987, only quarterly options maturing in March, June, September, and October were available.

Additional serial options written on the next quarterly futures contracts and maturing in the nearest

two months were introduced in 1987 (e.g., Bates (2000)). This data limitation, combined with the

relatively scarce size and liquidity of the option market in early years, renders it difficult to obtain
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smirk observations at the 30-day maturity with -10% moneyness. As such, we start the plot in

December 1985. After this date we find implied volatility values with the desired parameters for

most trading days. Relaxing the time-to-maturity and moneyness requirements results in longer

implied volatility series going back to January 1983. Qualitatively, the plot during the period from

January 1983 to December 1985 remains similar to that for the period from December 1983 to

October 1987 (see, e.g., Bates (2000)).

A.2 European Options on the S&P 500 Index

After April 1996, we use data on S&P 500 index European options. We obtain daily SPX im-

plied volatilities from April 1996 to April 2006 from the Optionmetrics database. Similar to what

discussed in Section A.1, we exclude options with price lower than $(3/8), time-to-maturity lower

than 10 calendar days, and contracts that are more than 3% in-the-money.

At each date and for each of the three closest maturities we interpolate the cross-section of

implied volatilities using a parabola. We have also considered a spline interpolation, which has

produced similar results. We use the fitted parabola to compute the value of implied volatilities for

strike-to-index-price ratios X = K/S − 1 = −10%, zero, and 2.5%. Finally, we interpolate implied

volatilities at each of these three levels of moneyness across the three closest maturities. We use

the fitted parabola to compute the value of implied volatility at the 30-day maturity.

B Appendix B: Equilibrium Prices in a Jump-Diffusion Exchange

Economy with Recursive Utility

There are several formal treatments of stochastic differential utility and its implications for asset

pricing (see, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas (1994), Schroder and Skiadas

(1999, 2003), and Skiadas (2003)). For completeness, in this Appendix we offer a very simple infor-

mal derivation of the pricing kernel that obtains in an exchange economy where the representative

agent has a KPEZ recursive utility. Our contribution is to characterize equilibrium prices in an

exchange economy where aggregate output has particular jump-diffusion dynamics (Propositions 1

and 2).

B.1 Representation of Preferences and Pricing Kernel

We assume the existence of a standard filtered probability space (Ω,F , {Ft}, P ) on which there

exists a vector z(t) of d independent Brownian motions and one counting process N(t) =
∑

i 1{τi≤t}
for a sequence of inaccessible stopping times τi, i = 1, 2, . . ..14

14We note that N(t) is a pure jump process by construction and hence is independent of z(t) by construction (in

the sense that their quadratic co-variation is zero).
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Aggregate consumption in the economy is assumed to follow a continuous process, with stochas-

tic growth rate and volatility, which both may experience jumps:

d logCt = µC (Xt)dt+ σC (Xt)dz(t) (80)

dXt = µx(Xt)dt+ σx(Xt)dz(t) + ν̃dN(t) . (81)

We note thatXt is a n-dimensional Markov process (we assume sufficient regularity on the coefficient

of the stochastic differential equation (SDE) for it to be well-defined, e.g., Duffie (2001) Appendix

B). In particular µx is an (n, 1) vector, σx is an (n, d) matrix and ν̃ is a (n, 1) vector of i.i.d. random

variable with joint density (conditional on a jump dN(t) = 1) of g(ν). We further assume that the

counting process has a (positive integrable) intensity λ(Xt) in the sense that N(t)−
∫ t
0 λ(Xs)ds is

a (P,Ft) martingale.

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over

a consumption process {Ct} are represented by a utility index U(t) that satisfies the following

recursive equation:

U(t) =

{
(1− e−βdt)C1−ρ

t + e−βdtEt

(
U(t+ dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (82)

With dt = 1, this is the discrete time formulation of KPEZ, in which Ψ ≡ 1/ρ is the EIS and γ is

the risk-aversion coefficient.

To simplify the derivation let us define the function

uα(x) =

{
x1−α

(1−α) 0 < α ̸= 1

log(x) α = 1 .

Further, let us define

g(x) = uρ(u
−1
γ (x)) ≡


((1−γ)x)1/θ

(1−ρ) γ, ρ ̸= 1

uρ(e
x) γ = 1, ρ ̸= 1

log((1−γ)x)
(1−γ) ρ = 1, γ ̸= 1 ,

where

θ =
1− γ

1− ρ
.

Then defining the ‘normalized’ utility index J as the increasing transformation of the initial utility

index J(t) = uγ(U(t)) equation (82) becomes simply:

g(J(t)) = (1− e−βdt)uρ(Ct) + e−βdt g (Et [J(t+ dt)]) . (83)

Using the identity J(t+ dt) = J(t) + dJ(t) and performing a simple Taylor expansion we obtain:

0 = βuρ(Ct)dt− βg(J(t)) + g′(J(t)) Et [dJ(t)] . (84)
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Slightly rearranging the above equation, we obtain a backward recursive stochastic differential

equation which could be the basis for a formal definition of stochastic differential utility (see Duffie

Epstein (1992), Skiadas (2003)):

Et[dJ(t)] = −βuρ(Ct)− βg(J(t))

g′(J(t))
dt . (85)

Indeed, let us define the so-called ‘normalized’ aggregator function:

f(C, J) =
βuρ(C)− βg(J)

g′(J)
≡


βuρ(C)

((1−γ)J)1/θ−1 − βθJ γ, ρ ̸= 1

(1− γ)βJ log(C)− βJ log((1− γ)J) γ ̸= 1, ρ = 1
βuρ(C)

e(1−ρ)J − β
1−ρ γ = 1, ρ ̸= 1 .

(86)

We obtain the following representation for the normalized utility index:

J(t) = Et

(∫ T

t

f(Cs, J(s)) + J(T )

)
. (87)

Further, if the transversality condition limT→∞ Et(J(T )) = 0 holds, letting T tend to infinity,

we obtain the simple representation:

J(t) = Et

(∫ ∞

t

f(Cs, J(s))ds

)
. (88)

Fisher and Gilles (1999) discuss many alternative representations and choices of the utility index

and associated aggregator as well as their interpretations. Here we note only the well-known fact

that when ρ = γ (i.e., θ = 1) then f(C, J) = βuρ(C)− βJ and a simple application of Itô’s lemma

shows that

J(t) = Et

(∫ ∞

t

e−β(s−t)βuρ(Cs)ds

)
.

To obtain an expression for the pricing kernel note that under the assumption (which we main-

tain throughout) that an ‘interior’ solution to the optimal consumption-portfolio choice of the agent

exists, a necessary condition for optimality is that the gradient of the Utility index is zero for any

small deviation of the optimal consumption process in a direction that is budget feasible. More

precisely, let us define the utility index corresponding to such a small deviation by:

Jδ(t) = Et

(∫ ∞

t

f
(
C∗
s + δC̃(s), Jδ(s)

)
ds

)
.

Then we may define the gradient of the utility index evaluated at the optimal consumption process

C∗(t) in the direction C̃(t):

∇J(C∗
t ; C̃t) = lim

δ→0

Jδ(t)− J(t)

δ

= lim
δ→0

Et

[∫ ∞

t

f(C∗
s + δC̃(s), Jδ(s))− f(Cs, J

δ(s))

δ
ds

]

= Et

[∫ ∞

t

fC(C
∗
s , J(s))C̃s + fJ(Cs, J(s))∇J(C∗

s ; C̃s)ds

]
. (89)
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Assuming sufficient regularity (essentially the gradient has to be a semi-martingale and the transver-

sality condition has to hold: limT→∞ Et[e
∫ T

t
fJ (Cs,Js)ds∇J(C∗

T ; C̃T ) = 0), a simple application of the

generalized Itô-Doeblin formula gives the following representation:

∇δJ(C∗
t ; C̃t) = Et

(∫ ∞

t

e
∫ s

t
fJ (Cu,Ju)dufC(Cs, Js)C̃sds

)
. (90)

This shows that

Π(t) = e
∫ t
0 fJ (Cs,Js)dsfC(Ct, Jt) (91)

is the Riesz representation of the gradient of the normalized utility index at the optimal consump-

tion. Since a necessary condition for optimality is that ∇J(C∗
t ; C̃t) = 0 for any feasible deviation

C̃t from the optimal consumption stream C∗
t , we conclude that Π(t) is a pricing kernel for this

economy.15

B.2 Equilibrium Prices

Assuming equilibrium consumption process given in (80)-(81) above we obtain an explicit charac-

terization of the felicity index J and corresponding pricing kernel Π.

For this we define the operator for any h(·) : Rn − R:

J h(x) =
∫
. . .

∫
h(x+ ν)

h(x)
g(ν)dν1 . . . dνn − 1

and the standard Dynkin operator:

Dh(x) = hx(x)µx(x) +
1

2
trace(hxxσx(x)σx(x)

⊤) ,

where hx is the (n, 1) Jacobian vector of first derivatives and hxx denotes the (n, n) Hessian matrix

of second derivatives. with these notations, we find:

Proposition 1 Suppose I(x) : Rn → R solves the following equation:

0 = I(x)
(
(1− γ)µC (x) + (1− γ)2

||σ
C
(x)||2
2 − βθ

)
+

DI(x)θ

I(x)(θ−1) + (1− γ)θσC (x)σx(x)
⊤Ix(x) + θ + I(x)λ(x)J I(x)θ for ρ, γ ̸= 1

0 = I(x) ((1− ρ)µC (x)− β) + I(x)D log I(x) + 1 + I(x)λ(x) log (1 + J I(x)) for γ = 1, ρ ̸= 1

0 = I(x)
(
(1− γ)µC (x) + (1− γ)2

||σ
C
(x)||2
2

)
+DI(x)+

(1− γ)σC (x)σx(x)
⊤Ix(x)− βI(x) log I(x) + I(x)λ(x)J I(x) for ρ = 1, γ ̸= 1

(92)

and satisfies the transversality condition (limT→∞ E[J(T )] = 0 for J(t) defined below) then the

value function is given by:
J(t) = uγ(Ct)(βI(xt))

θ for ρ, γ ̸= 1

J(t) = log(Ct) +
log(βI(xt))

1−ρ for γ = 1, ρ ̸= 1

J(t) = uγ(Ct)I(xt) for ρ = 1, γ ̸= 1 .

(93)

15Further discussion is provided in Chapter 10 of Duffie (2001).
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The corresponding pricing kernel is:
Π(t) = e

−
∫ t
0 (βθ+

(1−θ)
I(xs)

)ds
(Ct)

−γ(I(xt))
(θ−1) for ρ, γ ̸= 1

Π(t) = e
−

∫ t
0

β
I(xs)

)ds 1
(CtI(xt))

for γ = 1, ρ ̸= 1

Π(t) = e−
∫ t
0 β(1+log I(xs))ds(Ct)

−γI(xt) for ρ = 1, γ ̸= 1 .

(94)

Proof 1 We provide the proof for the case γ, ρ ̸= 1. The special cases are treated similarly.

From its definition

J(t) = Et

(∫ ∞

t
f(cs, J(s))

)
. (95)

Thus, J(xt, ct) +
∫ t
0 f(cs, J(xs, cs))ds is a martingale. This observation implies that:

E[dJ(xt, cs) + f(ct, J(xt, ct))dt] = 0 . (96)

Using our guess (J(t) = uγ(ct)β
θI(x)θ) and applying the Itô-Doeblin formula we obtain:

(1− γ)µc(xt) + (1− γ)2
||σc(xt)||2

2
+

DIθ(xt)
I(xt)θ

+ λ(x)J I(x)θ + θ

I(xt)
− βθ = 0 , (97)

where we have used the fact that

f(c, J)

J
=

uρ(ct)

((1− γ)J)1/θ−1J
− βθ =

θ

I(x)
− βθ

and the definition of the Dynkin operator DI(x) = Ix(x)
⊤µx(x) +

1
2Trace(Ixx(x)σx(x)σx(x)

⊤).

Rearranging we obtain the equation of the proposition.

Now suppose that I(·) solves this equation. Then, applying the Itô Doeblin formula to our

candidate J(t) we obtain

J(T ) = J(t) +

∫ T

t
DJ(s)ds+

∫ T

t
Jcσcdzc(s) +

∫ T

t
Jxσxdzx(s) +

∫ T

t
J(s−)(

I(X
s−

+ ν)θ

I(X
s−
)θ

− 1)dN(s)

= J(t)−
∫ T

t
f(cs, Js)ds+

∫ T

t
J(s)(1− γ)σc(xs)dzc(s)+

∫ T

t
θJ(s)σI(xs)dzx(s) +

∫ T

t
dM(s), (98)

where we have defined σI(x) =
I′(x)
I(x) σx(x) and the pure jump martingale

M(t) =

∫ t

0
J(s−)(

I(X
s−

+ ν)θ

I(X
s−
)θ

− 1)dN(s)−
∫ t

0
λ(X

s−
)J(s−)J I(Xs)

θds .

If the stochastic integral is a martingale,16 and if the transversality condition is satisfied, then we

obtain the desired result by taking expectations and letting T tend to infinity:

J(t) = E

[∫ ∞

t
f(cs, Js) ds

]
, (99)

which shows that our candidate J(t) solves the recursive stochastic differential equation. Uniqueness

follows (under some additional technical conditions) from the appendix in Duffie, Epstein, Skiadas

(1992).

16Sufficient conditions are:

E

[∫ T

0

J(s)2
(
σc(xs)

2 + σI(xs)
2) ds] < ∞ ∀T > 0 .
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The next result investigates the property of equilibrium prices.

Proposition 2 The risk-free interest rate is given by:
r(xt) = β + ρ(µC (xt) +

||σ
C
(xt)||2
2 )− γ(1 + ρ)

||σ
C
(x)||2
2 −

(1− θ)σI (x)
⊤(σC (xt) +

1
2σI (xt)) + λ(xt)

(
θ−1
θ J Iθ − J I(θ−1)

)
for ρ ̸= 1

r(xt) = β + µC (xt) +
||σ

C
(xt)||2
2 − γ||σC (xt)||2 for ρ = 1 .

(100)

Further, the value of the claim to aggregate consumption is given by:{
S(t) = C(t)I(xt) for ρ ̸= 1

S(t) = C(t)
β for ρ = 1 .

(101)

Thus
dSt
St

= µS(xt)dt+ (σC (xt) + σI (xt)) dz(t) + νI(xt)dN(t) , (102)

where we have defined:

σI (x) =
1

I(x)
Ix(x)

⊤σx(x)1{ρ ̸=1} (103)

νI(x) =

(
I(x+ ν̃)

I(x)
− 1

)
. (104)

The risk premium on the stock is given by

µS(x)+
1

I(xt)
− r(xt) = (γσC (xt) + (1− θ)σI (x))

⊤ (σC (x)+σI (x))+λ(xt)
(
J I(x)θ−1 − J I(x)θ

)
.

(105)

Proof 2 To prove the result for the interest rate, apply Itô-Doeblin to the pricing kernel and it

follows from r(t) = −E[dΠ(t)
Π(t) ]/dt that we obtain:

r(xt) = βθ +
(1− θ)

I(xt)
+ γµc(xt)−

1

2
γ2||σc(xt)||2 −

DI(xt)(θ−1)

I(xt)(θ−1)
− λ(Xt)J I(x)θ−1 . (106)

Now substitute the expression for 1
I(x) from the equation in (92) to obtain the result.

To prove the result for the consumption claim, define S(t) = ctI(xt). Then using the definition

of

Π(t) = e
−βθt−

∫ t
0

(1−θ)
I(xs)

ds
c−γ
t I(xt)

θ−1

we obtain:

d (Π(t)S(t)) = e
−βθt−

∫ t
0

(θ−1)
I(xs)

ds
(
dJ(t)− J(t)

(
βθ +

(1− θ)

I(xt)

)
dt

)
. (107)

Now, note that by definition we have:

dJ(t) = −f(ct, J)dt+ dMt

= −J(t)
(

θ

I(xt)
− θβ

)
dt+ dMt (108)
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for some P -martingale M . Combining this observation with (107), we get:

d (Π(t)S(t)) = e
−βθt−

∫ t
0

(1−θ)
I(xs)

ds (−J(t))
I(xt)

dt+ e
−βθt−

∫ t
0

(1−θ)
I(xs)

ds
dMt

= −Π(t) c(t) dt+ e
−βθt−

∫ t
0

(1−θ)
I(xs)

ds
dMt . (109)

Thus integrating we obtain

Π(T )S(T ) +

∫ T

t
Π(s)csds = Π(t)S(t) +

∫ T

t
e
−βθ(u−t)−

∫ u
t

(1−θ)
I(xs)

ds
dMu . (110)

Taking expectations and letting T → ∞ and assuming the transversality condition holds

(i.e., limT→∞ E[Π(T )S(T )] = 0), we obtain the desired result:

Π(t)S(t) = Et

[∫ ∞

t
Π(s) cs ds

]
. (111)

C Appendix C: The Price of an Option in the Post-Crash Affine

Model

We note that the model in Section 3 is affine. In particular, the value of the dividend claim

Vt = Dte
F+Gxt has the following risk-neutral dynamics:

dVt
Vt

=
(
µQ0 + µQ1 xt

)
dt+σD

√
Ω
(
ρC,Ddz

Q
c (t) +

√
1− ρ2

C,D
dzQD(t)

)
+Gσx

√
ΩdzQx (t)+(eGν̃−1)dN(t),

where

µQ0 = µD − γρC,DσDΩ− (1− θ)Bσ2
x
ΩG+

1

2
σ2

x
ΩG2 (112)

µQ1 = ϕ− κxG. (113)

As such, the option pricing problem can be solved using standard inverse Fourier transform tech-

niques. In particular, the date-t value of a European call option on the dividend claim Vt, with

maturity T and strike price K, is given by

C(Vt , xt ,K, T ) = EQ
t

[
e
−

∫ T

t
ds rs (VT −K) 1{V

T
>K}

]
= Ψt,1(logK)−K Ψt,0(logK) , (114)

where we have defined:

Ψt,a(k) ≡ EQ
t

[
e
−

∫ T

t
rs ds

ea log V
T 1{log V

T
>k}

]
. (115)

Following Bates (1996), Heston (1993), Duffie et al. (2000), and others, we use the Fourier

inversion theorem for the random variable (log Vt) to obtain:

Ψt,a(k) =
ψt(a)

2
+

1

π

∫ ∞

0

IM
[
ψt(a+ Iv) e−Ivk]

v
dv . (116)
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In equation (116), the transform ψt(α) ≡ EQ
t

[
e−

∫ T
t rsds eα log V

T

]
admits the following closed form

solution:

ψt(α) = exp (M(T − t) +N(T − t)xt + α log Vt) , (117)

where the functions M(τ), N(τ) satisfy

N(τ) =
(
αµQ1 − ρ

) (1− e−κxτ

κx

)
(118)

M(τ) =

∫ τ

0
dτ

{
N2σ2

x
Ω

2
−N(1− θ)Bσ2

x
Ω+ αµQ0 − r0 + α(α− 1)

Ω(σ2
D
+G2σ2

x
)

2
+ λQ

(
χQ

N+αG
− 1
)}

.

(119)

Proof 3 The proof simply consists in showing that
[
e−

∫ t
0 rsds exp (M(T − t) +N(T − t)xt + α log V (t))

]
is a Q-martingale. Indeed, in that case

e−
∫ t
0 rsds exp (M(T − t) +N(T − t)xt + α log V (t)) = EQ

[
e−

∫ T
0 rsds exp (M(0) +N(0)xt + α log V (T ))

]
= EQ

[
e−

∫ T
0 rsds exp (α logS(T ))

]
= e−

∫ t
0 rsdsψt(α) , (120)

which is the desired result. To verify the martingale condition we apply Itô-Doeblin formula to

Yt ≡ e−
∫ t
0 rsds exp (M(T − t) +N(T − t)xt + α log V (t))

and obtain that

Et[dYt] = 0

holds when N and M satisfy equations (118)-(119) above. A standard argument then shows that

Yt is a Q-martingale.

D Appendix D: Pricing the Market Portfolio and Individual Stocks

in General Equilibrium

In general equilibrium the valuation of the market portfolio must equal the valuation of the portfolio

that invests in the individual stocks. Here we show that this condition approximately holds when

the individual stock returns have dynamics (42).

We simulate 2,000 stock prices from an exponential distribution with mean coefficient λ =

$(100/2, 000) and compute the price of the market portfolio by summing the values of the individual

stocks. We generate one-year return paths from the market return dynamics dV
V and we compute

the terminal value of a strategy that holds the market portfolio. Then we simulate 2,000 return

paths from the individual stock dynamics dVi
Vi

and compute the terminal value for the 2,000 positions

in each of the individual stocks. We sum the terminal values of these 2,000 positions to obtain the

total value of the strategy that invests in the individual stocks.
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We repeat this analysis 10,000 times. In each case we record the value of the market portfolio

computed using simulated aggregate returns and the value obtained by summing the terminal price

of the 2,000 stocks computed using simulated individual-stock returns. We find the correlation

coefficient between the two series to be 99.59%. Further, Table 1 shows that the sample moments

of the two distributions are nearly identical. This evidence suggests that to a good approximation

the dynamics of individual stock returns are consistent with the aggregate index return dynamics

in general equilibrium.

Table 1: Summary Statistics for the Market Value Variable. We report mean, standard deviation,

skewness, and kurtosis for two measures of the market value variable with a one-year holding

period. The first measure is constructed using market returns simulated from aggregate market

return dynamics. The second measure is formed by summing the terminal value of 2,000 individual

stock positions computed using individual-stock returns.

Mean Standard deviation Skewness Kurtosis

Market value computed from
106.46 13.96 0.31 3.38

aggregate return dynamics

Market value computed from
106.43 14.03 0.31 3.36

individual stock return dynamics
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