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Modeling Credit Contagion via the Updating of Fragile Beliefs

Abstract

We propose a tractable equilibrium model for pricing defaultable bonds that are subject to

contagion risk. Contagion arises because agents with ‘fragile beliefs’ are uncertain about both

the underlying state of the economy and the posterior probabilities associated with these states.

As such, agents adopt a robust decision rule for updating that leads them to over-weight the

posterior probabilities of ‘bad’ states. We estimate the model using panel data on sovereign

Euro-zone CDS spreads during the recent crisis, and find that it captures levels and dynamics

of spreads better than traditional affine models with the same number of observable and latent

state variables.



1 Introduction

During the recent (and ongoing) Euro-zone crisis, the risk of contagion has often been cited as one

of the major drivers of sovereign credit spreads. Indeed, typing the words “contagion and Euro”

into a Google search returns over 750,000 results, many of which refer to articles from the financial

press that relate changes in sovereign spreads of European nations to the risk or ‘fear’ of contagion.

This dialogue raises many important questions, including:

• What is contagion risk, and what are its economic sources?

• Is there a risk-premium associated with contagion risk, and if so, what is its impact on

sovereign spreads?

• To what extent is the co-movement in sovereign spreads driven by contagion risk and its

risk-premium?

In this paper we propose a tractable equilibrium model in which contagion risk significantly im-

pacts the level and the dynamics of sovereign credit spreads. Contagion arises because agents are

uncertain about both the underlying state of the economy and their posterior probabilities associ-

ated with these states (they have ‘fragile beliefs’). Following Hansen and Sargent (2007, 2010), we

investigate agents that adopt a robust decision rule for updating that leads them to over-weight

the posterior probabilities of ‘bad’ states and under-weight those of ‘good’ states. Together, these

two ingredients (hidden states and fragile beliefs) can explain large sovereign spreads even if ex-

pected losses due to default are relatively small. Furthermore, the model can generate significant

correlation in spreads even if common movements in macroeconomic fundamentals are relatively

modest.

To be more specific, we assume there is a hidden state of nature which, if known, would impact

the expected aggregate consumption growth as well as each country’s default probability. Agents

update the likelihood of each state based on all available information, but they are uncertain

about the true data-generating process, and therefore are uncertain about the updated posterior

probabilities assigned to each state. Following Hansen and Sargent (2007, 2010), we assume agents

adopt robust decision rules to mitigate this ‘model risk.’ In particular, we assume agents use

different risk-sensitivity operators to account for i) uncertainty in the model specification conditional

on the state, and ii) uncertainty regarding the correct posterior distribution of the state itself.

The first component, preference for robustness regarding model parameters, has been more ex-

tensively studied in the literature. For example, it is well understood that, in a representative agent

framework, the decision rule of a log-utility investor who uses an entropy penalty is observationally

equivalent to that of an agent with recursive utility of the Epstein-Zin-Kreps-Porteus type (see, e.g.,

Barillas, Hansen and Sargent (2010)). However, the second component, which can be interpreted
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as a preference for robustness towards mis-specification in their beliefs, is less understood.1 As we

show, one benefit of the ‘fragile beliefs’ specification we adopt is that it is very tractable, even for

fairly complex models. Indeed, when an agent has fragile beliefs, she values long-lived securities by

first estimating their value as if she knew the ‘true’ state, and then she takes a weighted average

of these values. This is very similar to the approach followed in the traditional time-separable

Bayesian setup (e.g., Detemple (1995), Genotte (1985), Veronesi (1998)), except that the weights

used by the fragile beliefs agent are not equal to the posterior probabilities associated with each

state. Instead, she distorts the probabilities to reflect her uncertainty about the estimated posterior

probabilities in an endogenous way, placing more weight on the models/states with lower utility.

This minor departure from the classical time-separable Bayesian setup2 result when has significant

impact on equilibrium prices. Indeed, this updating of beliefs will generate correlations in credit

spreads that are significantly higher than if spreads were functions of the macroeconomic conditions

only. Furthermore, since agents put higher weights on the states with lower utility, the model also

generates significantly higher spreads (and credit risk-premia) than a traditional model based on

time-separable preferences, for example.

One of our theoretical contributions is to derive sufficient conditions for which the prices of

long-lived securities are equal to a weighted average of their conditional prices. We find that if

these conditions do not hold, then the ‘model averaging pricing rule’ is not in general arbitrage-

free, implying that these prices are not consistent with a no-trade equilibrium. These conditions are

clearly related to the time-consistency of the preferences of agents with fragile beliefs (see Section

6.5 of Hansen and Sargent (2007)).

Another contribution of this paper is that we obtain closed-form solutions for bond prices

even though, to capture contagion, the default intensity process falls outside the popular “doubly

stochastic” (or Cox process) framework. Indeed, in a doubly stochastic setting, individual default

events are inherently precluded from impacting the intensities of the surviving entities. In contrast,

in our framework, agents update their beliefs by observing sovereign credit events (as well as other

news signals). If there is a default, agents increase the probability they assign to the ‘bad’ hidden

state. This updating raises the perceived default intensity (and in turn, credit spreads) of the other

countries.

We then estimate our model using panel data on sovereign CDS spreads from February 2004

to September 2010 for 11 Euro-zone countries. We use a two-stage procedure. First, we follow the

literature on sovereign risk3 to identify a list of variables that have been shown to predict a country’s

ability or propensity to repay its debt. For each Euro-zone country, we use a dynamic principal

1One exception is the contemporaneous paper by Boyarchenko (2011) which investigates the impact of ambiguity

aversion on the US financial crisis of 2007-08.
2Indeed, we recover the time-separable Bayesian result when the tolerance parameter to model mis-specification

becomes infinitely large.
3See, for example, Duffie et al. (2003), Edwards (1984), Hilscher and Nosbusch (2010), Longstaff et al. (2010),

Min (1998), Pan and Singleton (2008).
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component framework (e.g., Stock and Watson (1989, 1991)) to summarize the information in

these variables into a single country-specific Macroeconomic Conditions Index (MCI). Since the

data are observed at mixed frequencies, we rely on the filtering method of Aruoba, Diebold, and

Scotti (2009). Assuming a multivariate AR(1) process, this approach provides us with both an

estimate of the time series of these underlying variables and a parameter vector that captures their

dynamics. We augment the set of explanatory variables to include the Chicago Board Option

Exchange (CBOE) VIX index as a measure of global economic uncertainty (e.g., Longstaff, Pan,

Pedersen, and Singleton (2010), Pan and Singleton (2008)). Conditional default intensities are then

specified to be linear functions of the state vector that includes country-specific MCIs and the VIX

index.

In the second estimation step, we use sovereign CDS spreads panel data and time series of

default events to identify the rest of the model parameters and the time series of the filtered

posterior probability of the hidden state. We cast the model in a state-space framework and

estimate it by quasi maximum likelihood in combination with the Kalman filter. Since both state

and measurement equations in the system contain non-linearities, we rely on a square-root unscented

filter (e.g., Wan and van der Merwe (2001), Christoffersen, Jacobs, Karoui, and Mimouni (2009)).

In the early part of the sample period, 2004-2007, we estimate the probability of the good

state to be nearly one. This changes at the end of 2007, when the posterior probability of the bad

economic state increases significantly and its fluctuations become more pronounced as the sovereign

crisis unfolds. Consistent with Hansen and Sargent (2007, 2010), we find that the agent displays

a preference for robust beliefs, in that she slants the risk-adjusted probability of the hidden state

towards the model associated with the lowest continuation utility. That is, she attaches a higher

probability of being in the bad state under the risk-neutral measure than the physical measure.

Consequently, the level of risk-adjusted default intensities is higher than those computed under the

physical probability measure, i.e., our model generates positive jump-to-default (JTD) risk-premia.

Overall, the model fits CDS spreads data well across Euro zone countries, both before and

during the crisis. To better gauge its performance, we compare the pricing errors of our model to

those of a (linear) affine specification with a state vector that includes country-specific MCIs and

the VIX (as in our model), and a single latent factor, which we estimate with principal component

analysis. In any arbitrage-free affine framework, sovereign credit spreads are a linear function of

the state vector, with coefficients determined by no-arbitrage restrictions. Therefore, in sample,

unrestricted ordinary least squares (OLS) regressions give an upper bound on the goodness of fit

such an affine model could achieve. We find that our model significantly outperforms the affine

benchmark estimated via OLS regressions, with a 23-85% reduction in mean absolute pricing errors,

and a typical drop in maximum errors by a factor of two. This strongly suggests that there are

important nonlinearities in the behavior of credit spreads that elude affine specifications and are

better captured by our model, which has nonlinearities in both the mapping of spreads onto the

state variables and state variable dynamics.
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Related Literature. Our paper builds on and combines two important strands of literature:

event risk and Bayesian updating of beliefs. Conditions for which jump-to-default is not priced have

been investigated by Jarrow, Lando and Yu (2005). However, recent empirical findings question

this doubly-stochastic assumption. For example, Das et al. (2006, 2007) report that the observed

clustering of defaults in actual data is inconsistent with this assumption. Duffie et al. (2009) use a

fragility-based model similar to ours to identify a hidden state variable consistent with a contagion-

like response. Note that the focus of these papers is on estimating the empirical default probability,

whereas our focus is on pricing. Jorion and Zhang (2007) find contagious effects at the industry

level (see also related work by Jorion and Zhang (2009), and Lando and Nielsen (2010)).

Other papers investigating event risk include Jarrow and Yu (2001), who also provide a model

where the default of one firm affects the intensity of another. However, their model remains

tractable only for a “small” number N of firms exposed to contagion-risk (e.g., Jarrow and Yu

(2001) investigate only N = 2). In contrast, our model remains tractable regardless of the number

of entities that share in the contagious response.4 Models of credit risk embedded within a macroe-

conomic setting include David (2008), Chen, Collin-Dufresne and Goldstein (2009), Chen (2010),

and Bhamra, Kuehn and Strebulaev (2011).

Our approach shares many common features with those in the learning and contagion literature

(e.g., David (1997), Detemple (1986), Feldman (1989), Veronesi (1999, 2000)).5 As in these papers,

the representative agent in our economy learns about a hidden state from observing aggregate

consumption and other “diffusive” signals. However, in our model the agent also learns from

observing the default history of an entities (firms or countries), i.e., information is revealed through

both diffusion processes and jump processes. Further, we identify a time-consistent model of a

representative agent that has fragile beliefs (Hansen and Sargent (2010), Hansen (2007)).6 Time

consistency allows us to price securities with long-dated cash flows in a tractable manner. This

framework naturally generates a ‘flight-to-quality’ like effect (i.e., a drop in risk free rates) caused

by an unexpected default, consistent with observation.

Our information-based mechanism for contagion is similar to that proposed by King and Wad-

hwani (1990) and Kodres and Pritsker (2002), who investigate contagion across international fi-

nancial markets. There is also a large empirical literature that studies contagion in equity markets

(e.g., Lang and Stulz (1992)) and in international finance (e.g., Bae, Karolyi and Stulz (2003)).

Theocharides (2007) investigates contagion in the corporate bond market and finds empirical sup-

port for information-based transmission of crises.

The rest of the paper is as follows. In Section 2, we propose an intensity-based model of sovereign

risk with a hidden state and show how beliefs are updated from observing default events and other

4Collin-Dufresne, Goldstein and Hugonnier (2004) simplify the bond pricing formula of Duffie, Schroeder and

Skiadas (1996). Note, however, that the formula itself does not identify a tractable framework for pricing contagion

risk. Other models of contagion include Davis and Lo (2001), Schönbucher and Schubert (2001), and Giesecke (2004).
5See also related work by Aı̈t-Sahalia, Cacho-Diaz, Laeven (2010), Benzoni, Collin-Dufresne and Goldstein (2011).
6See also related work on belief-dependent utilities by, e.g., Veronesi (2004).
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signals. In Section 3 we investigate the pricing implications of this model by incorporating it in a

general equilibrium framework where the representative agent has fragile beliefs. We then estimate

the model in Section 4 using six years of sovereign CDS prices. We conclude in Section 5. In the

Appendix, we identify necessary conditions for fragile beliefs preferences to generate time consistent

price processes.

2 Updating Beliefs by Observing Default Processes

Consider an economy in which the true state of nature S̃ is unknown and can be in any one of

s ∈ (1,M) states. At date-t, investors do not know what state the economy is in, but form a prior

πs(t) ≡ Prob(S̃ = s|Ft), where Ft is the investors’ information set at date-t. In this economy

there are n defaultable entities (firms, countries) indexed by i ∈ (1, n) with random default times

τi driven by point processes characterized by default intensities. In particular, conditional upon

being in state-s, the probability of default over the next interval dt is expressed via

Pr
[
d1{τi<t} = 1

∣∣∣ S̃ = s, Ft

]
≡ E

[
d1{τi<t}

∣∣∣ S̃ = s, Ft

]
= λis(t

−)1{τi>t} dt. (1)

That is, we can interpret λis(t
−) as the date-t default intensity for country-i conditional upon being

in state-s. Below, we will assume that, conditioning both on the state-s and the paths λis(t
−)|Tt=0

for some distant future date-T , the default events across countries (or firms) are independent. In

technical terms, we are assuming a doubly-stochastic, or Cox-process conditional upon being in a

particular state-s (e.g., Lando (1998)). We emphasize, however, because agents do not know the

correct state-s, our model falls outside of the Cox-process framework, as will be made clear below.

Since investors do not know the actual state of nature, their estimate of the actual default

intensity λ
P

i
(t−) is defined implicitly through

λ
P

i
(t−)1{τi>t} dt ≡ E

[
d1{τi<t}

∣∣∣Ft

]
=

M∑
s=1

πs(t) E
[
d1{τi<t}

∣∣∣ S̃ = s, Ft

]
=

M∑
s=1

πs(t)λis(t
−)1{τi>t} dt. (2)

Thus, conditional on investors’ information, the default intensity of country-i is equal to a weighted

average of the conditional default intensities:

λ
P

i
(t−) =

M∑
s=1

πs(t)λis(t
−). (3)

We assume that investors continuously update their estimates of the {πs(t)} process conditional

upon whether or not they observe a default event during the interval dt. A direct application of
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Theorem 19.6 page 332 in Liptser and Shiryaev (2001) (see also their example 1, p. 333) gives the

updating equation for πs(t):

dπs(t)

πs(t
−)

=

N∑
i=1

(
λis(t

−)

λ
P

i
(t−)

− 1

)
dMi(t), (4)

where we have defined the martingale process dMi(t) via:

dMi(t) ≡
(
d1{τi≤t} − λ

P
i (t)1{τi>t}dt

)
. (5)

This process has many intuitive properties. First, if the prior πs(t) = 1 for some state-s (and thus

π
s′ (t) = 0 for all other s′), then there is no updating. That is, in an economy where the agents

know for sure the intensity of the countries, then there is no learning to be done. Second, when no

default is observed over an interval dt, then investors revise downward the ‘high-default’ states of

nature (i.e., those s with λis(t
−) > λ

P

i
(t−)), and in turn revise upward the ‘low-default’ states of

nature (i.e., those s with λis(t
−) < λ

P

i
(t−)). Conversely, when a default is observed over an interval

dt, investors revise upward those high-default states of nature, and in turn revise downward those

low-default states of nature. Third, note that πs(t) ≡ E
[
S̃ = s

∣∣∣Ft

]
is a P-martingale in that

E [dπs(t)|Ft ] = 0, as can be seen from equations (2), (4) and (5).

2.1 Updating also from Continuous Information

In addition to observing country default processes, investors also observe continuous signals that

provide information about the state. Specifically, we assume that investors observe K + 1 signals

with dynamics:

dΩ
k
(t) = µ

k,s
dt+ σ

k
dZ

k
(t) k ∈ (0,K), (6)

where where the µ
k,s

are constants,7 and {dZ
k
(t)} are independent Brownian Motions adapted to

the full information filtration Gt, which contains in particular the information on the ‘true’ state. In

particular, we have E [dZ
k
(t)|Gt] = 0. Using the ‘innovation’ approach to filtering, we can rewrite

the signal dynamics as:

dΩ
k
(t) = µ̄

k
(t) dt+ σ

k
dZ

k
(t), (7)

with

dZ
k
(t) = dZ

k
(t) +

(
µ

k,s
− µ̄

k
(t)

σ
k

)
dt (8)

and where we define the drift of the signal process based on the investors’ information filtration to

be:

µ̄
k
(t) ≡ 1

dt
E [dΩ

k
(t)|Ft] =

∑
s

πs(t)µk,s
. (9)

7These could be stochastic processes as long as they are Ft predictable.
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Note, in particular, that Zk(t) is a Brownian motion in the information filtration of the investor

since it has quadratic variation t from (8) and satisfies E [dZ
k
(t)|Ft] = 0.

It is well-known (see, e.g., Liptser and Shiryaev (2001), David (1997), and Veronesi (1999)) that

the updating equation for the posterior probability of the state from this continuous information is

given by

dπs(t)

πs(t)
=

K∑
k=0

(
µ

k,s
− µ̄

k
(t)

σ
k

)
dZ

k
(t). (10)

Given that the agent observes both continuous signals dΩ
k
(t) and defaults d1τi>t , and that by

definition the two are orthogonal signals (since one is a pure diffusion and the other a pure jump

process, e.g., Protter (2001)), it follows from equations (4) and (10) that the updating equation is:

dπs(t)

πs(t
−)

=
N∑
i=1

(
λis(t

−)

λ
P

i
(t−)

− 1

)
dMi(t) +

K∑
k=0

(
µ

k,s
− µ̄

k
(t)

σ
k

)
dZ

k
(t). (11)

2.2 Model for Intensity Conditional on the State

We specify the default intensity of entity i ∈ (1, N) conditional on being in state s as:

λis(t) = αis + β′isX(t), (12)

where X(t) is a state vector which contains both country-specific variables as well as a common

variables. We specify X(t) to follow a multi-dimensional Gaussian affine process:

dX(t) = [ψ − κX(t)] dt+Σ dW (t), (13)

where without loss of generality we specify the volatility matrix Σ to be lower diagonal and we

assume that W (t) is a vector Brownian motion process (independent of Z(t)) both in the general

Gt as well as the investor specific filtration Ft.

Up to this point, the state variable dynamics have been specified under the historical measure.

In the following section we address the issue of pricing defaultable securities in the presence of

contagion risk when the representative agent has fragile beliefs.

3 General Equilibrium with Fragile Beliefs

3.1 Information Structure

It is useful to define more formally the information structure of the model we have setup. All

the uncertainty in our model is summarized by a filtered reference probability space (Ω,G, {Gt}, P )
where Gt is the natural filtration generated by (S,N,Z,W ) the ‘fundamental’ shocks in the economy.

Specifically, S is a multinomial G0 measurable random variable whose realization ‘selects’ the ‘true’

state s, N is the vector of default counting processes for each country Ni(t) , i = 1, . . . , n, which
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each have Gt measurable default intensity λis(t), Z and W are both (respectively K + 1 and d-

dimensional) vectors of independent Brownian motions. Investors in our economy however do not

observe these ‘fundamental’ shocks. Instead, their filtration Ft is generated by observing the history

of defaults (N), the vector of continuous signals (Ωk for k = 0, . . . , J), and the state vector X. They

formulate a prior over the probabilities associated with the realization of the multinomial random

variable. As we have shown above, in the information filtration Ft, the default counting vector N

has intensity (λ
P

i
(t−) for i = 1, . . . , n ). Also, W is a Ft-adapted Brownian motion. However, Z(t)

is not. Instead, the process Z(t) defined in (8) above is a standard Ft-adapted Brownian motion.

Further, it is clear that Xt is both a Gt and Ft adapted Markov process and that (πs(t), N(t),Ω(t)))

have jointly Ft adapted Markov dynamics. Lastly, it is clear that once investors know the realization

of the state S then all the uncertainty unravels, so that Gt has same information as Ft
∪
{S}.

3.2 Endowment Process

We assume that the aggregate endowment (which in equilibrium will be consumed by the repre-

sentative agent) has the following dynamics:8

d log y = µ0,s dt+ σ0 dZ0 (14)

Of course, the ‘innovations’ representation of log-endowment in the information filtration of the

representative agent is:

d log y = µP
0
(t) dt+ σ0 dZ0 , (15)

where the Ft-Brownian motion Z0 and µP
0
(t) =

∑
s πs(t)µ0,s are defined above.

3.3 Preferences

We assume that the representative agent displays fragile beliefs as described in Hansen and Sargent

(2007). More specifically, we assume that the agent will value consumption streams using a two-

step approach. First, he values each stream conditional on knowing the true model/state. Second,

he takes an average of the model specific continuation values. Hansen and Sargent (2007) assume

that at both stages the agent worries about the possible mis-specification of his model and therefore

uses a robust decision rule. Their novel insight is that agents may use a different ‘risk-sensitive

operator’ to deal with mis-specification of posterior beliefs associated with the model/state than to

deal with model specification conditional on the state. Since we are interested in uncertainty about

the updating process and what consequences this may have for asset prices, we assume that in this

two-step procedure agents use standard time-separable log-utility function in the first step, and use

a robust decision rule to ‘model-average’ the continuation values. More specifically, we assume:

8We assume that the logarithmic aggregate endowment equals Ω0 for notational convenience, so it is already in

the agent’s information set.
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• Conditional upon being in state s ∈ (1,M), the agent has logarithmic-preferences. That is,

the agent ranks consumption lotteries in state-s according to the (state contingent) index

V ({C(·)}|F0 , s), which satisfies:

V ({C(·)}|F0 , s) = E

[∫ ∞

0
β dt e−βt logC(t)

∣∣∣∣F0 , s

]
(16)

• To rank consumption streams unconditionally, the agent displays fragile beliefs. In particular,

the agent weights the conditional utility indices V ({C(·)}|F0 , s) by using an entropy penalty

characterized by a preference for robustness parameter ζ via:

V ({C(·)}|F0) = min
{ξs (0)}>0

{
M∑
s=1

πs(0)

(
ξs(0)V ({C(·)}|F0 , s) + ζ ξs(0) log ξs(0)

)}
, (17)

subject to the constraint

1 =
∑
s

πs(0)ξs(0). (18)

Solving the constrained minimization, Hansen-Sargent (2010) show:

ξs(0) =
e
−( 1

ζ
)V ({C(·)}|F0 ,s)∑

s′ πs′ (0) e
−( 1

ζ
)V ({C(·)}|F0 ,s)

. (19)

Plugging this back into equation (17), preferences simplify to

V ({C(·)}|F0) = −ζ log

[
M∑
s=1

πs(0) e
−( 1

ζ
)V ({C(·)}|F0 ,s)

]
. (20)

It is worth noting that if the agent chooses to consume the endowment stream (which will

ultimately be the equilibrium in this exchange economy), we find

V ({y(·)}|F0 , s) = E

[∫ ∞

0
β dt e−βt log y(t)

∣∣∣∣F0 , s

]
=

∫ ∞

0
β dt e−βt

[
log y(0) + µ0,st

]
= log y(0) +

µ0,s

β
. (21)

Under this scenario, the fragility parameters

ξs(t) =
e
−(

µ0,s
βζ

)∑
s′ πs′ (t) e

−(
µ
0,s′
βζ

)
(22)

are independent of the state variables X(t), and hence change over time only through their depen-

dence on the probabilities {π
s′ (t)}. This feature is important for the model to be time-consistent

(as we show below).
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Given these preferences, and assuming complete markets, the representative agent chooses her

consumption stream to maximize her utility given by equations (20) and (16) subject to the budget

constraint

0 =

∫ ∞

0
dt

∫
dωt A(ωt |ω0) [y(ωt)− C(ωt)] , (23)

where the A(ωt |ω0) are the Arrow-Debreu prices (which the representative agent takes as exoge-

nously specified). The agent’s first order conditions with respect to consumption across all states

of nature C(ωt) imply:

θA(ωt |ω0) =
∑
s

πs(0) ξs(0)βe
−βtπ(ωt |ω0 , s)

1

C(ωt)
, (24)

where the Lagrange multiplier θ can be determined by taking the limit ωt ⇒ ω0 :

θ =
β

C(ω0)
. (25)

Combining these last two equations, we find that the optimal consumption bundle satisfies

A(ωt |ω0) =
∑
s

πs(0) ξs(0)e
−βtπ(ωt |ω0 , s)

C(ω0)

C(ωt)
. (26)

Of course, in a representative agent endowment economy, when markets clear, the right-hand

side consumption is exogenously given and therefore this first order condition defines equilibrium

state prices. As we show next, these state prices lead to a natural ‘algorithm’ to value long dated

claim. First, value the claims as if the true state s were known and the representative agent

had standard log-utility. Second, average these different model-values by weighting them with

endogenously distorted posterior probabilities of the state. Finally, we show that this pricing rule

is arbitrage-free in that there exists a set of strictly positive state prices, for which the two stage

pricing rule described above holds at all times and states. Therefore these state prices support a

no-trade equilibrium in which a representative agent with fragile beliefs consumes the aggregate

endowment given in (14). This result is related to the time consistency of fragile beliefs preferences,

which is not guaranteed (see Hansen-Sargent (2007)). In fact, in Appendix A we give an example of

more general fragile beliefs preferences, where the state prices derived from the two-stage approach

would not be arbitrage-free. Instead these give rise to dynamic arbitrage opportunities. In that

exemple, the representative agent is not time-consistent. At time zero all claims, short and long-

dated, are valued such that he does not want to trade given his current and anticipated future

consumption. However, at future dates, if markets reopen for trading at the prices consistent with

time-zero state prices, the representative agent would like to trade, implying that the initial state

prices do not support a no-trade equilibrium.

3.4 Arrow-Debreu Equilibrium

For markets to clear in this endowment economy, Arrow-Debreu prices adjust until the optimal

consumption is equal to the exogenous endowment in each state. Thus, we find equilibrium state
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prices:

A(ωt |ω0) =
∑
s

πs(0) ξs(0) e
−βt π(ωt |ω0 , s) e

−[log y(ωt )−log y(ω0 )]. (27)

Combining equations (14) and (27), we can express the Arrow-Debreu prices as

A(ωt |ω0) =
∑
s

πQ
s
(t) E

[(
Λs(t)

Λs(0)

)
1{ω̃t=ωt}

|F0 , s

]
. (28)

Here we have defined Λs(t) to be the ‘pricing kernel’ conditional on the state being s:

dΛs(t)

Λs(t)
= −rs dt− σ0 dZ0(t), (29)

where the state-contingent spot rates {rs} are constants,

rs = β + µ0,s −
σ2

0

2
, (30)

and the ‘distorted’ model-risk-adjusted probabilities are given by:

πQ
s
(t) ≡ πs(t) ξs(t). (31)

More generally, this suggests that the date-t price V
D(ω

T
)

t of a security with contingent cash

flows D(ωT ) at date-T if state-ωT occurs is:

V
D(ω

T
)

t =
∑
s

πQ
s
(t) E

[(
Λs(T )

Λs(t)

)
D(T )|Ft , s

]
=

∑
s

πQ
s
(t) e−rs (T−t) EQs [D(T )|Gt , s] , (32)

where we have used the fact that when we condition on the realization of S then Ft and Gt

contain the same information, and we have defined the measure Qs equivalent to P by the Radon-

Nykodim derivative dQs

dP = ersTΛs(T )
Λs(0) . By Girsanov’s theorem then we know that ZQs

0
(t) defined by

dZQs
0

(t) = dZ0(t)+σ0 dt is a Qs−Gt Brownian motion, and all other Brownian motions orthogonal

to dZ0 are unaffected by the change of measure.

We now show how this pricing rule is indeed consistent with absence of arbitrage, in that there

exists a well-defined pricing kernel that supports this pricing function for all states and times.

3.5 The Pricing Kernel and Market Prices of Risk

In Appendix A, we show that the Ft adapted process Λt with the following dynamics:

dΛ(t)

Λ(t)
= −r(t) dt−

K∑
k=0

ϕk(t) dZk
(t)−

∑
i

Γi(t) dMi(t), (33)
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where

r(t) =
∑
s

πQs (t)r
s

ϕk = σk1{k=0} −
µQk − µPk

σk

Γi(t) =
λ
Q
i − λ

P
i

λ
P
i

λ
Q
i =

∑
s

πQs λis(t)

µQk =
∑
s

πQs µk,s

µPk =
∑
s

πsµk,s
, (34)

is a valid state price deflator for our economy, in the sense that for any arbitrary FT -measurable

payoff D(T ) the following holds:

E

[
Λ(T )

Λ(t)
D(T )|Ft

]
= V

D(T )
t , (35)

where V D
t is defined in equation (32) above.

In other words, this (strictly positive) state price density supports our conjectured pricing rule.

A direct implication of this is that in an economy where all prices are determined by the pricing

kernel Λ(t), an individual with the fragile beliefs described above who consumes the aggregate

consumption will not want to trade in any securities. We have thus identified a pricing system

consistent with a no-trade equilibrium for this fragile beliefs agent. We show in Appendix A that

this is directly related to the time consistency of the representative agent.

The fact that Γi(t) differs from zero implies that sovereign jumps-to-default are priced in this

economy even though default of any country does not affect aggregate consumption. This highlights

a difference with time-separable frameworks such as David (1997) and Veronesi (2000). In those

settings, jumps in πs would imply jumps in the expected growth rate of consumption. Such jumps,

however, would not carry a risk-premium, since with time-separable preferences changes in the

pricing kernel U ′(c) ∼ C(t)γ are generated only by contemporaneous changes in consumption, and

not changes in the expected growth rate. However, in the fragile beliefs framework, these jumps

are priced.9

We now turn to the evaluation of long-dated risk-free and risky zero coupon bonds and the

solution for sovereign CDS spreads.

9An alternative to having expected consumption growth carry a risk premium is to rely on long run risk; see, e.g.,

Benzoni, Collin-Dufresne and Goldstein (2011), Drechsler and Yaron (2011), and Eraker and Shaliastovich (2008).

However, this setting no longer admits a closed-form solution.
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3.6 The Risk-Free Zero-Coupon Bond

Using equation (32) and (35) the price of the zero-coupon bond that paysD = 1 unit of consumption

in all states of nature at date-T is:

P (π(t), T − t) = E

[
Λ(T )

Λ(t)

]
=

∑
s

πQ
s
(t) e−rs (T−t) EQs [1|Gt , s]

=
∑
s

πQ
s
(t) e−rs (T−t). (36)

3.7 Defaultable Zero-Coupon Bond

The price of the zero-coupon bond that pays D = 1
(τi>T )

one unit of consumption at date-T if

country-i does not default by that date, and zero otherwise, is:

Bi(π(t), X(t), T − t) =
∑
s

πQ
s
(t) e−rs (T−t) EQs

[
1{τi>T} |Gt , s

]
= 1{τi>t}

M∑
s=1

πQ
s
(t) e−rs (T−t)Bi

s
(X(t), T − t), (37)

where we have defined

Bi
s
(X(t), T − t) ≡ EQs

[
e−

∫ T
t duλi,s (Xu)|Gt , s

]
. (38)

Note that risky bond price simplifies to a weighted sum of ‘reduced-form’ risky bond prices

because, conditional on being in state-s, we are in a doubly stochastic framework.

Equation (38) implies that e−
∫ t
0 duλi,s (X(u))Bi

s
(X(t), t, T ) is a Qs-martingale, and, thus, that

the solution for Bi
s
(X(t), t, T ) satisfies the PDE (in this equation, we drop the (i,s) subscripts on

Bi
s
(X(t), t, T ) and λi,s to improve readability)

0 = −λ(X(t))B +Bt +
∑
j

Bj

[
ψj −

∑
m

κjmXm

]
+

1

2

∑
j,j′

B
j,j′

∑
m

ΣjmΣj′m . (39)

Here, we use the notation Bt ≡ ∂
∂tB, Bj ≡ ∂

∂Xj
B, etc.

Given that λi,s(X(u)) is linear in the state vector X(t) via equation (12) and that the risk-

neutral dynamics are affine, it is well known that the solution to this expectation takes the form:

Bi
s
(X(t), T − t) = e

Mi,s (T−t)−N ′
i,s

(T−t)X(t)
, (40)

with “initial conditions”

(
Mi,s(τ = 0) = 0, N ′

i,s
(τ = 0) = 0

)
. Collecting terms linear and indepen-

dent of X(t), we find that the deterministic coefficients satisfy

Ni,s(τ) = (κ′)−1
[
In − exp(−κ′τ)

]
βi,s

Mi,s(τ) =

∫ τ

0
du

[
−αis −N ′

i,s
(u)ψ +

1

2
N ′

i,s
(u)ΣΣ′Ni,s(u)

]
. (41)

13



3.8 The Risk-Neutral Survival Probability

The risk-neutral survival probabilities are defined as:

Si(π(t), X(t), T − t) =
∑
s

πQ
s
(t) EQs

[
1{τi>T} |ωt , s

]
=

[
M∑
s=1

πQ
s
(t)Bi

s
(X(t), T − t)

]
1{τi>t} . (42)

Note that these can be obtained from equation (37) by setting the risk-free rate components to

zero.

3.9 Sovereign CDS Spreads

Here we obtain an expression for the sovereign CDS from the risky and riskless bond equations

(36)-(37). The present value of the payments in the fee leg of the CDS contract is:

PvFee(ci) =

n∑
j=1

Bi(πt, X(t), tj) c
i∆+

n∑
j=1

P (πt,
tj + tj−1

2
)

[
Si(πt, X(t), tj−1)− Si(πt, X(t), tj)

]
ci

∆

2
,

(43)

where the second component is the present value of the accrued interest upon default (assumed

to occur half-way between tj−1 and tj for simplicity). Payments are made at pre-specified dates

t = t0, t1, t2, . . . tn. ∆ = tj − tj−1 is the time between promised coupon payment (typically one

quarter).

The present value of the contingent default payment leg is:

PvDef =

n∑
j=1

P (πt,
tj + tj−1

2
)
[
Si(πt, X(t), tj−1)− Si(πt, X(t), tj)

]
L, (44)

where L is the expected loss given default experienced upon a sovereign default. For example, Pan

and Singleton (2008) discuss the fact that market convention is to set L = 0.75 for sovereign risk

(as opposed to L = 0.6 for corporate bonds). They find that their maximum likelihood estimates

are not too distinct for most countries from that market convention.

The fair credit default swap spread is the number ci that sets PvFee(ci) = PvDef.

4 Model Estimation and Empirical Results

Here we estimate the model developed in the previous section using data on European sovereign

CDS from 2004 to 2010. The approach we follow is to first estimate observable macro- and financial

fundamental indicators that determine the willingness to pay of each individual country in the ab-

sence of a hidden state. This corresponds to the state vector Xt in our model. Then conditional on

these observable indicators we estimate from the time-series and cross-section of CDS spreads the
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posterior probability of the hidden state (πs) as well as the other parameters of the model (state de-

pendent default intensity parameters and preference parameters) using quasi maximum likelihood,

and treating the posterior probability as a latent variable. We then compare the performance of our

model to a standard (linear) affine model with the same number of observable and latent variables

as our benchmark. For simplicity we focus on the case in which there are only two states (which

corresponds to one latent variable). We first describe the data. Then we explain the methodology

adopted to determine a comprehensive set of observable macro and financial indicators. Next, we

develop an affine benchmark case with observable and latent state variables. We go on to present

the likelihood function for our model and the econometric methodology used to estimate it. Finally,

we discuss results.

4.1 Data

Figure 1 shows a panel of daily five-year sovereign CDS spreads for eleven Euro zone countries:

Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal,

and Spain. The data are from Markit Financial Information Services and span the period from

February 12, 2004, to September 30, 2010. Markit’s coverage of the five-year sovereign CDS market

is fairly comprehensive over the entire sample period, with daily observations typically available

for each country. Notable exceptions are Finland, Ireland, and the Netherlands, for which data are

unavailable over the periods 09/19/2005-05/01/2006 (Finland); 02/12/2004-05/18/2004 (Ireland)

and 02/12/2004-06/23/2006 (Netherlands). In contrast, the coverage of sovereign CDS contracts

with maturities other than five years is spotty, especially in the early part of the sample period.

Thus, we do not include those maturities in our analysis.

Table 1 contains summary statistics for the CDS series. A breakdown of the sample into a

pre-crisis period (from 02/2004 to 12/2007) and a crisis period (from 01/2008 and on) confirms

the patterns already evident in Figure 1. That is, prior to 2008 sovereign CDS spreads are low

across Euro zone countries, with little time series variation (mean spreads range from 2.06 to 10.60

bps, with a 0.72-3.34 standard deviation). This all changes starting from 2008, when the spreads

of Portugal, Ireland, Italy, Greece, and Spain (the so-called PIIGS countries) soar. The rest of the

Euro zone trails behind them, also showing much higher and more volatile CDS spreads compared

to the pre-crisis period.

To explain these fluctuations in CDS prices within our model, we first specify a state vector X

that determines the default intensities for Euro zone countries, as in equation (12). The literature

has identified a large set of country-specific political and macro economic indicators that relate to

a country’s ability or propensity to repay its sovereign debt (e.g., Duffie et al. (2003), Edwards

(1984), Hilscher and Nosbusch (2010), Longstaff et al. (2010), Min (1998), Pan and Singleton

(2008)). To obtain a parsimonious specification for the state vector X, for each Euro-zone country

we summarize the information in these variables into a single country-specific MCI, as detailed in

Section 4.2 below. We then augment our state vector X to include the Chicago Board Option
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Exchange VIX index as a proxy for global economic uncertainty (e.g., Longstaff, Pan, Pedersen,

and Singleton (2010), Pan and Singleton (2008)).

4.2 Macroeconomic Conditions Indices for Euro Zone Countries

Following Stock and Watson (1989, 1991), we consider a dynamic factor framework to estimate an

indicator of the latent macroeconomic and political state of each Euro zone country, as well as the

Euro zone area. We explicitly incorporate macroeconomic variables and political risk indicators

observed at various frequencies (monthly, quarterly, and yearly). To deal with these mixed frequen-

cies, we follow the approach of Aruoba, Diebold, and Scotti (2009) (see also Harvey (1990), Section

6.3). In particular, for each country i we estimate the following model at the daily frequency using

maximum likelihood in combination with the Kalman filter:

yi,t = βiMCIi,t + ΓiWi,t + εi,t, εi ∼ N(0, Qi)

MCIi,t+1 = ρiMCIi,t + ηi,t+1, ηi ∼ N(0, Ri) . (45)

The latent macroeconomic conditions indicator MCIi is an AR(1) process with Gaussian i.i.d.

errors. For identification, we normalize Ri = 1. The vector yi contains country-specific variables.

Similar to Aruoba, Diebold, and Scotti (2009), the vector Wi includes lagged values of yi. The

sample period goes from January 3, 2001, to September 30, 2010.

We first estimate the model on aggregate data for the whole Euro zone and we follow the

existing literature on sovereign credit risk to guide the choice of variables to include in yEU . We

experiment with various specifications and exclude some of the variables that have an insignificant

factor loading βEU and do little to help identify the latent Euro zone indicator, MCIEU . Similar to

Aruoba, Diebold, and Scotti (2009), we also consider an extension that allows the error term η in

the MCI transition equation (45) to be auto-correlated. We do not find statistical support for this

specification and rule it out. We then go on to estimate the same specification using data for each

Euro zone country and thus obtain the associated MCIi indicators.

Table 2 summarizes the results. The first column lists the variables yji , j = 1, . . . , 10, that

constitute the vector yi. To construct these measures, we use the series described in Online Ap-

pendix along with the corresponding data sources (we accessed the data through Haver Analytics).

We treat all elements of yi as stock variables with the exception of GDP per capita, which is a

flow variable. To handle temporal aggregation of GDP per capita, we augment the state vector to

include a ‘cumulator’ variable as in Harvey (1990), Section 6.3.3. Moreover, prior to estimation,

we detrend GDP per capita.

The other columns of Table 2 show the sign and statistical significance of the loading βji on the

MCIi index for the economic/political risk variable yji of country i. The EU column has the results

for the Euro zone area. Real economic activity is an important determinant of the fluctuations in

the MCIEU indicator. Both real GDP growth and GDP per capita load on MCIEU with a negative

and significant coefficient. This implies that higher MCIEU values are associated with worse eco-

16



nomic conditions in Europe. This is also evident from the positive and significant loading of the

unemployment (UE) rate on the index. Consistent with this interpretation, the exports to GDP

ratio has a negative and significant β. Inflation also loads on the MCIEU indicator with a negative

and significant coefficient. The Euro zone economy performed well prior to 2008, then poorly dur-

ing the financial crisis, and then started to rebound in 2009. Inflation followed a similar pattern

in our sample – higher consumer price growth coincided with better economic conditions. The

ratios of Government surplus and debt to GDP have plausible loadings on MCIEU , suggesting that

stronger public finances go together with a better economic situation. The coefficients, however, are

insignificant. Since we observe these variables at a yearly frequency, this is not entirely surprising.

We retain them in the preferred specification due to their economic importance. Political stability

is also associated with lower MCIEU values. This is intuitive, although the coefficient is insignifi-

cant. Finally, previous studies have stressed the importance of liquidity measures (e.g, M3/GDP

and Reserves/GDP) to explain sovereign credit ratings (e.g., Jaramillo (2010)). We include these

variables in the model, but find them to be insignificant. Also, the results show that these measures

of financial intermediation are positively related to the index. This could be specific to our sample

period, e.g., central banks were pouring liquidity in the economy at the peak of the crisis.

The remaining columns of Table 2 contain results for individual countries. For the most part,

the evidence is similar to our findings for the Euro zone. A notable exception concerns variables

that reflect the state of a country’s public finances. For instance, the ratios of Government surplus

and debt to GDP have a significant loading on the MCIs of Greece and Ireland.

Figure 2 plots the MCIs for the Euro zone and its individual countries. As mentioned previously,

higher values are associated with a deterioration in economic conditions. It is evident from the plots

that the indices are persistent. We find the AR(1) coefficient ρ to range from a low of 0.9931, with

a 0.0035 standard error, for Portugal, to a high of 0.9994 with a 0.0005 standard error, for Ireland

(with daily scaling). Consequently, the unconditional standard deviation of the processes is also

high, as seen in the wide fluctuations of the MCI series.

The indices share a similar pattern through the first part of the financial crisis, when they

increase rapidly. In 2009 they start to improve across the Euro zone, largely because of higher

growth. Ireland’s recovery is much slower. Greece stands out as the only country that shows no

sign of recovery as of September 2010.

4.3 Linear Regression Benchmarks

Our model explains sovereign spreads with a combination of macroeconomic and financial variables,

summarized in the state vector X, and a latent variable π that measures the posterior probability

of the hidden state of the economy. In this setting, defaultable bond prices are the sum of nonlinear

functions of X, weighted by the probability π (equation (37)). Thus, sovereign spreads are non-

linear transformations of the state variables.

A natural competitor for our model is a linear (affine) specification that includes the same state
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vector X augmented with a single latent variable that captures a common component in credit

spreads, possibly related to the notion of contagion. In any linear model of defaultable bonds, the

spread between yields on risky and riskfree bonds is a linear function of the state vector. Here we

explore the performance of such a model via linear OLS regressions that relate the CDS spreads

for each Euro-zone country to the vector of state variables X. In the simplest case, the only

explanatory variable is the country-specific MCI. We then augment these regressions to include

aggregate political and macroeconomic information for the Euro zone region as well as measures

of global economic uncertainty. Finally, we include a proxy for a latent variable that helps explain

the covariation in CDS spreads across Euro zone countries that is not spanned by macroeconomic

and financial variables.

The most general version of these regressions is given below:

CDSi = b0,i + b1,iMCIi + b2,iMCIEU⊥
i
+ b3,i log VIX + b4,iBB-BBB spread + b5,i PC

1
CDS−i

+ εi (46)

∆CDSi = b1,i∆MCIi + b2,i∆MCIEU⊥
i
+ b3,i∆log VIX + b4,i∆BB-BBB spread + b5,i∆PC1

CDS−i
+ εi .

(47)

Equation (46) relates the levels of CDS spreads to the levels of the explanatory variables, consis-

tent with our bond pricing model. A potential concern with this specification has to do with the

persistence of the variables included in the regressions. For instance, Granger and Newbold (1974)

warn that autocorrelation in the regression residuals could produce spuriously high R2 statistics.

Further, it is well known that ignoring the autocorrelation in the error term makes significance

tests on the coefficients invalid. As a partial remedy to these concerns, we still rely on consistent

OLS estimates of the model, but compute coefficients’ t-ratios using standard errors that are ro-

bust to autocorrelation and heteroskedasticity. Moreover, in equation (47) we also estimate the

same specification in differences. This alternative approach is common in the empirical credit risk

literature, but is also subject to criticism. For instance, Maeshiro and Vali (1988) document a loss

of estimation efficiency caused by the adoption of a differenced model when the disturbances of the

original (levels) linear regression are autocorrelated. Doshi, Ericsson, Jacobs, and Turnbull (2011)

discuss these issues in more detail and conclude that a model expressed in levels might be preferred

when fitting daily CDS data, as we do in our application.

When estimating regressions (46)-(47), our measure for the dependent CDSi variable is the daily

5-year credit default swap basis-point spread for country i. MCIi is the macroeconomic conditions

index for country i, while MCIEU⊥
i
is the residual of an OLS regression of the daily Euro zone MCIEU

against the daily country-iMCIi and a constant. The log VIX variable is the logarithmic daily S&P

500 percentage implied volatility index published by the CBOE. The BB-BBB spread variable is the

difference between Bank of America Merrill Lynch corporate bond effective percentage yield indices,

sampled at the daily frequency. To compute the PC1
CDS−i

variable, for each Euro zone country j ̸= i

we first regress CDSj against the MCIj and the logarithmic VIX. PC1
CDS−i

is the first principal

component extracted from the panel of the regression residuals (we exclude Finland, Ireland, and
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the Netherlands due to data availability). This approach allows us to extract common information

in CDS spreads across Euro zone countries that is not captured by global financial uncertainty

and local macroeconomic conditions. When estimating the regressions in differences, we measure

∆CDSi with the series of daily overlapping changes in the 5-year CDS spreads for country i relative

to the prior month, ∆CDSi(t) = CDSi(t)−CDSi(t−21). The sample period goes from 02/12/2004

to 09/30/2010, with the exception of Finland, Ireland, and the Netherlands, for which data are

unavailable over the periods 09/19/2005-05/01/2006 (Finland); 02/12/2004-05/18/2004 (Ireland)

and 02/12/2004-06/23/2006 (Netherlands).

We report OLS estimates for France, Germany, Greece, and Italy in Table 3 (regressions in

levels include a constant, which we omit from the table). Here, we focus on these four countries

as they provide a diverse representation of the Euro zone; a complete set of results is in the

Online Appendix. In each panel, column (1.1) has the results for the simplest model, with the

country-specific MCI being the only independent variable. The associated coefficient is positive

and statistically significant, consistent with the interpretation that a deterioration in the country’s

economic conditions leads to higher CDS spreads (coefficient t-ratios in brackets are based on

Newey-West heteroskedasticity and autocorrelation robust standard errors). The explanatory power

of the regression is typically high, with R2 coefficients ranging from 11% for Italy to 72% for

Greece.10

We then add MCIEU⊥
i

in column (1.2). The associated regression coefficient is typically pos-

itive and significant, but the improvement in fit is generally small. This suggests that economic

conditions in the rest of the Euro zone have some impact, albeit moderate, on local CDS spreads.

An exception is France, where the coefficient is negative and insignificant.

Consistent with Longstaff et al. (2011), global economic uncertainty, measured by the loga-

rithmic VIX, helps explain the variation in the spreads (column 1.3). This is evident in the error

diagnostics in the two bottom rows of each panel, where we report mean and max of the absolute

residuals. Compared to the results in column (1.1), the regression with the log-VIX alone produces

similar mean absolute errors. For strong Euro zone economies like Germany and France, the mean

absolute error in column (1.3) is lower than the one for model (1.1), suggesting that global eco-

nomic uncertainty plays a significant role in explaining credit risk for these countries. The reverse

applies to troubled countries like Greece, for which country-specific macroeconomic conditions do

a better job at explaining CDS data. When we combine the log-VIX with the country-specific MCI

in column (1.4), both variables typically have positive and significant coefficients. Nonetheless,

collinearity in these two measures can cloud the interpretation of this conclusion. Augmenting the

regression to include another measure of global economic uncertainty, the High-yield (BB-BBB)

spread, leads to a further moderate increase in fit (see, e.g., the lower mean absolute error in column

1.5). The results for Greece in columns (1.4)-(1.5) stand out; local economic conditions drive most

10A notable exception is the coefficient for Portugal’s MCI (Panel J of Table 2 in the Online Appendix); while

positive, it is insignificant, and the regression’s R2 is nearly zero.
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of the variation in its CDS spreads; proxies for global financial uncertainty are insignificant.

The regressions in column (1.6) contain only three explanatory variables: the country-specific

MCI, the logarithmic VIX, and our proxy for a latent factor, PC1
CDS−i

. This model gives the

best overall fit. In particular, the mean and maximum absolute errors in the two bottom rows of

each panel are much lower in model (1.6) compared to other specifications. This evidence suggests

that regional information latent in Euro-zone spreads helps explain country-specific fluctuations in

sovereign credit risk.

Columns (2.1)-(2.6) report estimates for the same regressions, estimated in changes (equation

(47)). Consistent with Longstaff et al. (2011), in this case the explanatory power of changes in

local and regional macroeconomic conditions is very limited. Changes in global financial indicators

improve the fit slightly. Also in this case, regressions that include our proxy for a latent factor,

∆PC1
CDS−i

, provide the best fit.

In sum, this analysis serves two purposes. First, it illustrates the ability of a parsimonious set

of variables, country-specific MCIs in combination with a global financial indicator such as the VIX

index, to explain sovereign credit risk in the Euro zone. The explanatory power of macroeconomic

and financial indicators is more evident in regression for spread levels, consistent with recent work by

Doshi, Ericsson, Jacobs, and Turnbull (2011) that focuses on CDS contracts on corporate bonds.

Second, the results provide a benchmark for the performance of our CDS pricing model. In an

arbitrage-free (linear) affine framework, sovereign credit spreads would be a linear function of the

state vector, where the loadings of credit spreads on the state variables would be determined by

no-arbitrage restrictions. Therefore, in sample, unrestricted OLS regressions give an upper bound

on the goodness of fit such an affine model could achieve (given that it uses the same state variable).

We construct this benchmark to also include information that is common across Euro zone countries

and independent of macroeconomic conditions and financial uncertainty; by construction our proxy

PC1
CDS−i

should capture the most important latent factor. Therefore, if our model performs better

than this affine benchmark, then this strongly suggests that there are important non-linearities in

the behavior of credit spreads better captured by our model. In Section 4.5 below, we compare

the errors produced by our non-linear CDS pricing models to the OLS residuals of the preferred

regression in column (1.6).

4.4 Model Specification and Estimation

Based on the results in the previous section, we specify our state vector X to include the N=11

MCIs as well as the logarithmic VIX index, X = [MCI1, . . . ,MCI11, log V IX ]′. We assume that

M = 2 and the hidden economic state s can be either ‘good’ or ‘bad.’ That is, the agent views

the probability of a default event to be higher in the bad economic state than in the good one,

λiG < λiB. We assume that the default intensity λiB for country i, i = 1, . . . , N , only depends on

the country-specific macroeconomic index as well as global uncertainty. That is, we restrict the

elements of the βiB vector in equation (12) to be zero, except for the two coefficients that load on
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MCIi and the logarithmic VIX index. Further, we fix βiG = 0.

The latent variable π, which measures the probability that the economy is in the good state,

completes the set of model state variables. Thus, we define an augmented state vector X = [X ′, π]′,

with π dynamics given in equation (11). In particular, we assume that the agent updates her

posterior using information on default events d1{τi≤t} of the Euro zone countries, i = 1, . . . , 11, as

well as a single continuous signal dΩ, with dynamics given in equation (7).

Model estimation proceeds in two stages. In the first step, we specify and estimate the dynamics

of the X vector. We map the discrete-time AR(1) process for the MCIs, given in equation (45),

into the continuous-time dynamics in equation (13). We assume that the MCIs are independent

across countries, with mean-reversion coefficients κi,i = − log(ρi), zero long-run means, i.e., ψi = 0,

and diffusion terms normalized to unity, Σi,i = 1. The independence assumption across the MCIs

greatly simplifies estimation, as we can use the ρi coefficients computed separately for each MCI

process in Section 4.2.

Prior to estimation, we demean the logarithmic VIX series and therefore restrict ψV IX = 0.

Moreover, we allow the VIX process to depend on lagged realization of the MCIs. We explore this

linkage in linear regressions that have the daily log-VIX on the left-hand side and include lagged

log-VIX and MCI realizations among the explanatory variables. We find a strong and persistent

auto-regressive component in the VIX. Interestingly, including the MCIs of troubled Euro zone

economies (the PIIGS countries) increases the explanatory power of the regressions. This suggests

that the turmoil in Europe has had an impact on global economic uncertainty. Interpreting the

point estimates and statistical significance of these coefficients is however difficult, as there is

collinearity among the MCIs. In contrast, we do not find the MCIs of Euro zone economies outside

of the PIIGS circle to improve the explanatory power of the regressions, and therefore we exclude

them from our specification. In this framework, the lagged log-VIX remains significant but the

persistence of the autoregressive component declines.

We also explore the possibility that shocks to the VIX correlate with shocks to the MCIs. For

each MCIi, we correlate the residuals of the AR(1) process in equation (45) with the residuals of

our linear regression model for the log-VIX. We find such correlations to be insignificant and fix

them at zero in the rest of the analysis. With this additional restriction, the log-VIX equation in

the X dynamics (13) takes the form

d log V IX(t) = −(κV IX log V IX(t) +
∑

i∈PIIGS

κV IX,iMCIi(t) ) dt+ΣV IXdWV IX (t) . (48)

We fix κV IX , κV IX,i , i ∈ PIIGS, and ΣV IX at the OLS estimates of equation (48). Finally, we fix

µG = 0.018, µB = 0.005, and σ0 = 0.03 in the endowment dynamics (14). These parameters also

determine the value of the state-contingent spot rate (equation (30)), which has to be constant

to ensure that preferences are time-consistent, as discussed in the Appendix. The robustness

parameter ζ and the discount rate β enter equation (22) as a product; thus, for identification we

set β = 0.01.
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The second estimation step relies on the panel of sovereign CDS spreads and default events to

identify the remaining model parameters and the time series of the filtered posterior probability of

the hidden economic state. We cast the model in a state-space framework. The set of measurement

equations includes the sovereign CDS spreads for each Euro zone country, which we assume to be

determined by the model up to a Gaussian i.i.d. pricing error,

C̃DSi,t = CDSi(Xt) + υi,t, υi,t ∼ N(0, Vi), i = 1, . . . , 11 . (49)

Moreover, we assume that the MCIs and the log-VIX are measured without error. Equations (11)

and (13) define the state dynamics for X = [X ′, π]′ and complete the state-space representation.

There are two sources of non-linearity in the system. First, the CDS pricing formula in the

measurement equation (49); see equation (37) and the discussion in Section (3.9). Second, the

probability of the hidden state π has non-linear dynamics (11). To accommodate these features, we

discretize the model and estimate it by quasi maximum likelihood in combination with the square-

root unscented Kalman filter (UKF); see, e.g., Wan and van der Merwe (2001) and Christoffersen

et al. (2009).

We denote by Y the vector of CDS spreads, MCI indices and log-VIX. In addition to the elements

of Y , we also observe sovereign default events. Thus, the transition density of the observable

variables is given by

P (Yt, Nt |Yt−1, Nt−1; Θ) = P (Nt |Yt−1, Nt−1; Θ)× P (Yt|Nt, Yt−1, Nt−1; Θ) , (50)

where Θ is the vector of model coefficients. The first term on the right-hand side of equation

(50) is the default probability for the Euro zone countries. In our sample, we do not observe

defaults, i.e., for all dates t and countries i = 1, . . . , 11, d1{τi<t} = 0, and P (Nt|Yt−1; Θ) =∏11
i=1

∑M
s=1 πs(t) exp(−λis(t

−) dt), where λis(t
−) is given in equation (12). Conditional on time

t default information and time t − 1 values of Y , we approximate the distribution of Y (t) on the

right-hand side of equation (50) with a multivariate Gaussian density, and compute its conditional

mean and variance using the UKF. We then maximize the likelihood function,

P (Yt, Nt, t = 0, . . . , T |Θ) = P (Y0, N0 |Θ)×
T∏
t=1

P (Yt, Nt |Yt−1, Nt−1; Θ ) . (51)

4.5 Empirical Results

Time series of estimated probability of the hidden state. Figure 3 shows default intensities

estimated over the period from February 12, 2004 to September 30, 2010. During the pre-crisis

period, sovereign defaults of member countries are very unlikely, as evident from the low default

intensity estimates. Consistent with this interpretation, our filtered posterior probability of the

hidden state, πGood, is almost one during that period (Figure 4). That is, agents are nearly sure

that the Euro zone economy is in the good state.
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This situation starts to change at the end of 2007, when we estimate a significant decrease

in the posterior probability of the good economic state. Since then, πGood estimates start to

fluctuate in connection with credit spreads. This suggests that much of the co-variation in sovereign

spreads is due to the ‘contagion’ variable (in our model the posterior probability of the unobservable

hidden state), rather than to observable common and country-specific macroeconomic and financial

covariates (the state variable X in equation (12)). Movements in the posterior probability of the

states (or credit spreads, for that matter) do not appear to be random and unexplainable, however.

Indeed, on days of major turning points in πGood we find ex-post a lot of contemporaneous news

reports (discussed in the Online Appendix) which are qualitatively consistent with the directional

change in our estimated posterior probability of the good state. This is reassuring since our πGood

variable is a latent variable inverted from prices, and thus not directly estimated from such news.11

Fragile belief preference parameters. Consistent with Hansen and Sargent (2010), we find

that the agent displays model uncertainty aversion and slants the risk-adjusted probability of the

hidden state towards the model associated with the lowest continuation utility. We estimate the

robustness parameter ζ at 1.79, with a standard error of 0.08. This determines a risk adjustment

ξ in the posterior probability that the agent assigns to being in the bad economy (equations (22)

and (31)). It is evident from Figure 4 that under the risk-neutral measure the agent attaches

a higher probability of being in the bad economy. Consequently, the levels of the risk-adjusted

default intensities, λ
Q
i , are higher than those computed under the physical probability measure, λi

(see Figure 3 and magnified versions of the same plots in the Online Appendix).

Estimates of default risk premia. The right-hand side axes in Figures 3 show the ratios of

the two intensities, λ
Q
i /λi. Across countries and throughout the sample period, the ratio ranges

from one to two. Prior to the crisis, the ratios have a mild downward sloping pattern and are lower

than in the post-2007 period, especially for strong European economies like Germany and France.

Starting from the end of 2007 they increase significantly and fluctuate between 1.5 and 2. The

increase in λ
Q
i /λi coincides with the drop in our estimate of the probability that the economy is

in the good state (Figure 4). Since the end of 2007, the posterior π declines from nearly one to a

low of approximately 0.4 in June 2010. This greater uncertainty results in a higher risk premium

on sovereign bonds.

These results are in line with empirical papers (Berndt et al. (2005), Driessen (2005)) that

estimate the jump to default risk-premium, as measured by the ratio of risk-neutral to historical

default intensities, and find it to be of the order two to five (i.e., short term credit spreads should be

two to five times higher than historical default rates with constant recovery rates). In contrast to

these models, however, we provide a theoretical explanation for such a JTD risk-premium. First, the

updating mechanism described above, makes default event not conditionally diversifiable. Second,

11Of course, one would expect CDS spreads to be related to such news, and our posterior probability is clearly

linked to spreads as is evident from the figure.
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because the representative agent displays fragile beliefs, any small shift in the probability of the

bad states is magnified when it comes to pricing. The combination of Bayesian updating of hidden

states and fragile beliefs generates a sizable and time-varying JTD risk-premium.

Decomposition of credit spreads. To better gauge the importance of model uncertainty pre-

mia in the presence of fragile beliefs, we compute the component of CDS spreads associated with

uncertainty aversion. We measure it by the difference between (1) CDS prices predicted by the

model in the presence of fragile beliefs and (2) CDS prices computed under the same coefficients,

except for turning off uncertainty aversion (ζ ⇒ ∞). Figure 5 shows that this difference fluctu-

ates with a pattern similar to that of our πGood estimate in Figure 4 and exhibit a great deal of

co-movement across countries. Prior to the crisis, the cross-country average of these measures is

approximately 19% of the average level in CDS spreads across the Euro zone. This estimate in-

creases to 36% during the period from January 2008, consistent with the agent demanding higher

compensation for model uncertainty during the crisis.

Model fit of CDS spreads. Figures 6 compares model-implied CDS spreads with actual data

(magnified versions of these displays are in the Online Appendix). The plots illustrate the ability

of the model to fit the time series of CDS spreads across regimes. In particular, it captures the low

level and variability of pre-crisis data, and it does well at matching the wild fluctuations in spreads

during the financial crisis. Moreover, a comparison across countries shows that the model can fit

the cross section of Euro zone spreads.

Comparison with a (linear) affine benchmark. Table 4 lends additional support to these

conclusions. The first two rows compare the mean absolute CDS pricing errors produced by our

contagion model to those produced by a linear model that includes the country-specific MCIs, the

log-VIX, and a single latent factor, as explained in Section 4.3. The last two rows show a similar

comparison based on the maximum absolute CDS pricing errors. The improvement over the linear

specification is evident across countries. For Greece, the mean absolute error is almost one third

of the error associated with the linear regressions. For other countries the improvement is also

significant, ranging from 23-85% and with an average improvement of 67% across the Euro zone.

The maximum pricing deviation improves considerably as well, with an average 47% reduction

across countries.

5 Conclusions

We investigate a general equilibrium framework that captures contagion risk in defaultable bonds.

The model has two important ingredients: a hidden state of nature which impacts expected con-

sumption growth and default probabilities, and a representative agent with fragile beliefs (Hansen

and Sargent (2010)). Even though our reduced-form model is not ‘doubly stochastic,’ bond prices
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remain tractable, in turn facilitating empirical investigation. The model can generate large and

highly correlated credit spreads even when default probabilities and correlations in macroeconomic

fundamentals are low. Finally, we identify conditions for which the marginal utility of the agent

with fragile beliefs generate time-consistent state prices.

We apply the model to a panel of sovereign CDS spreads for Euro zone countries going from

February 12, 2004 to September 30, 2010. Default intensities depend on (1) indices that sum-

marize country-specific macroeconomic conditions; (2) the VIX, as a measure of global financial

uncertainty; and (3) a latent variable that captures contagion risk. Estimation via the unscented

Kalman filter shows that agents update their posterior probability of contagion as the Euro-zone

sovereign crisis unfolds. Prior to the crisis, our estimate of the probability that the economy is in

the good state is nearly one. Starting from December 2007 this estimate decreases significantly,

with fluctuations that match the flow of news closely. Default intensities increase dramatically

over the same period with a great deal of comovement across countries, driven by the agent’s as-

sessment that the economy is more likely to be in the bad state. We find the agent to be averse

to model uncertainty, as under the risk-neutral measure she slants the probability of the hidden

state towards the model with higher default intensities. This model uncertainty premium pushes

risk-neutral default intensities up during the crisis and accounts for a large portion of CDS spreads.

The model fits CDS spreads data well across Euro zone countries before and through the crisis,

and it significantly outperforms affine specifications that include the same number of observable

and latent factors.

Our sample period ends on September 30, 2010. Since then, the European sovereign crisis has

continued to unfold. A default by Greece on its sovereign debt has become progressively more likely,

and concerns about the solvency of other Euro zone countries have escalated as well. Nonetheless,

there seems to have been some decoupling of the fate of Greece from the rest of the Euro zone,

as measured by a decline in correlations between CDS spreads for Greece and other countries. On

October 27, 2011, Euro zone leaders agreed upon a new package of measures aimed at containing

the crisis. The deal included a ‘voluntary’ restructuring of Greek debt held by the private sector

with a 50% haircut on the bonds’ value. Yet, ISDA ruled that such ‘voluntary’ renegotiation,

no matter how much arm-twisting by European Governments was involved, did not constitute a

default event and, therefore, would not trigger CDS protection.

These recent events highlight a limitation of our empirical analysis, which assumes that at

most two hidden states describe the underlying economy. First, the presence of additional hidden

economic states could help capture scenarios in which the default of one or more member countries

is mainly idiosyncratic in nature and therefore has limited contagious effect on other sovereign

entities. Second, it has become apparent during the recent crisis that the CDS market could

reflect technical legal risks that are quite separate from the risks driving cash-bond default risk.

In principle, this could be captured within our framework by allowing for additional hidden states.

As the crisis unfolds and more data becomes available, it may be useful to extend the empirical
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analysis in this direction. We leave this for future research.
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A Appendix

A.1 Proof that Robust and Fragile Preferences are not Time-Consistent

Here we demonstrate that equilibrium state prices in an economy in which the representative agent

has preferences for both robustness and fragility are not time-consistent. Define A(ωT |ωt) as the

date-t price of an Arrow-Debreu (A/D) security that pays $1 at date-T iff state ωT occurs. We

examine the necessary conditions for the following formula to hold:

A(↑↑ |0) ?
= A(↑↑ | ↑)A(↑ |0). (A.1)

Intuitively, the left-hand side (LHS) is the date-0 cost of a buy and hold strategy that pays $1

at date-2 if (ω2 =↑↑). In contrast, the right-hand side (RHS) can be thought of as the cost of a

dynamic trading strategy which purchases, at date-0, A(↑↑ | ↑) shares of the A/D security that pays

$1 at date-1 if (ω1 =↑). Then, if ↑ occurs, the strategy pays off A(↑↑ | ↑), which is just enough at

date-1 in state-↑ to purchase one share of the A/D security that pays $1 if (ω2 =↑↑) occurs. Thus,
both sides of equation (A.1) imply two different methods of obtaining $1 at date-2 iff the (↑↑) state
occurs, and hence, by absence of arbitrage, the present value of these two portfolios should be the

same. We show that, in an economy in which state prices are derived from the marginal utility of

an agent with fragile beliefs, in general this relation does not hold. Consequently, in general the

preferences are not time-consistent. Then we prove that, for our specification, the fragile beliefs

economy is actually arbitrage-free.

A.1.1 The Economy

Consider an infinite-period, discrete-time economy in which the exogenously specified dividend,

which in equilibrium equals consumption, follows the binomial process:

logC(t+ dt) =

{
logC(t) + σ

√
dt if ↑ occurs

logC(t)− σ
√
dt if ↓ occurs .

(A.2)

We emphasize that, even though we use the notation dt, we are investigating a discrete-time

economy, and only in some instances specialize to the continuous time limit.

The agent is uncertain which of s ∈ (1, S) states the economy is in, but she has priors π(S̃ =

s|ωt) ≡ πs(t). Conditional upon being in state-s, the probability of an up state is

π(↑ |s, ωt) =
1

2
+
µ0,s

2σ

√
dt. (A.3)

Note that the probability of an up (or down) move is time invariant in that π(↑ |s, ωt) = π(↑ |s) ∀ωt .

Standard Bayesian updating implies that, conditional upon observing an ↑ event at date-(t+1),
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the probability that the economy is in state-s updates to:

πs(↑) ≡ π(s|ωt∪ ↑)

=
π(↑ |s) π(s|ωt)

π(↑ |ωt)

=
π(↑ |s) π(s|ωt)∑
s′ π(↑ |s′) π(s′|ωt)

≡ π(↑ |s) πs(t)∑
s′ π(↑ |s′) π

s′ (t)
. (A.4)

A.1.2 Preference for Robustness

We first assume that the economy is known to be in state-s. Generalizing the conditional log-

preferences of equation (16), here we specify the agent’s conditional utility as having preference for

robustness:

V (t|s) = (1− e−βdt) logC(t) + e−β dt min
ξ>0,E[ξ]=1

Et

[
ξV (t+ dt|s) + ζ1ξ log ξ |s

]
. (A.5)

The Lagrangian for this constrained minimization is:

L = π(↑ |s) [ξ(↑ |s)V (↑ |s) + ζ1ξ(↑ |s) log ξ(↑ |s)]

+π(↓ |s) [ξ(↓ |s)V (↓ |s) + ζ1ξ(↓ |s) log ξ(↓ |s)] + λ

[
1− π(↑ |s)ξ(↑ |s)− π(↓ |s)ξ(↓ |s)

]
.

The first order condition gives:

∂L
∂ξ(↑ |s)

: 0 = π(↑ |s) [V (↑ |s) + ζ1 log ξ(↑ |s) + ζ1 − λ] , (A.6)

implying that

ξ(↑ |s) = exp

[(
λ− ζ1
ζ1

)
− V (↑ |s)

ζ1

]
. (A.7)

To identify λ, we plug back into constraint that E[ξ] = 1 to find

ξ(↑ |s) =
e−V (↑|s)/ζ1

E[e−V (t+dt|s)/ζ1 ]

=
e−V (↑|s)/ζ1

π(↑ |s) e−V (↑|s)/ζ1 + π(↓ |s) e−V (↓|s)/ζ1
, (A.8)

with an analogous equation for ξ(↓ |s).
Plugging this back into the original equation yields:

V (t|s) = (1− e−βdt) logC(t)− ζ1 e
−β dt log

[
π(↑ |s) e−V (↑|s)/ζ1 + π(↓ |s) e−V (↓|s)/ζ1

]
. (A.9)

Recursively, we also find12

V (↑ |s) = (1− e−βdt) logC(↑)− ζ1 e
−β dt log

[
π(↑ |s) e−V (↑↑|s)/ζ1 + π(↓ |s) e−V (↑↓|s)/ζ1

]
.

(A.10)

12This is a slight abuse of notation: V (↑ |s) should really be written as V
(
ωt+1 = (ωt∪ ↑)|s

)
.
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In what follows, two points are important. First:

∂V (t|s)
∂V (↑ |s)

= e−β dt π(↑ |s) ξ(↑ |s). (A.11)

In particular, note that the RHS is independent of date-t. The interpretation of this result is that,

conditional upon being in a state-s, things work as they would in a Black-Scholes binomial tree,

with, e.g., π(↑↑ |s, 0) = [π(↑ |s, 0)]2 and A(↑↑ |s, 0) = [A(↑ |s, 0)]2.
Second, the solution to equation (A.9) is

V (t|s) = logC(t) +Bs . (A.12)

Indeed, plugging this proposed solution into equation (A.9), and then using equation (A.2), we find

the functional form of equation (A.12) to be self-consistent (that is, the logCt term cancels), and

further identify the functional form of the constants Bs :

Bs = −ζ1
(

e−β dt

1− e−β dt

)
log
(
π(↑ |s) e−σ

√
dt + π(↓ |s) eσ

√
dt
)
. (A.13)

Using equation (A.3) and taking the continuous-time limit, we get

B(dt→0)
s

=
µ0,s

β
− σ2

2βζ1
. (A.14)

This can be seen as generalizing the results of the log-utility framework inherent in equation (21)

to the case in which the robustness parameter ζ1 is finite.

A.1.3 Fragile Beliefs

The agent must still decide how to weight the different states. We assume she does this by maxi-

mizing the following objective:

V (t) =
m∑
s=1

πs(t)

[
ξs(t)V (t|s) + ζ2ξs(t) log ξs(t)

]
, (A.15)

subject to the constraint

0 = λ

(
1−

m∑
s=1

πs(t)ξs(t)

)
. (A.16)

Setting up the Lagrangian, the first order condition gives

∂

∂ξs
: 0 = πs(t) [V (t|s) + ζ2 log ξs(t) + ζ2 − λ] . (A.17)

Applying the expectation constraint to identify λ, we obtain

ξs(t) =
e−V (t|s)/ζ2∑

s′ πs′ (t) e
−V (t|s′)/ζ2

. (A.18)

Using equation (A.12), we can rewrite this as

ξs(t) =
e−Bs/ζ2∑

s′ πs′ (t) e
−B

s′ /ζ2
. (A.19)
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It is worth noting that ξs(t) depends on date-t only through {π
s′ (t)}. Therefore, with slight abuse

of notation, we have

ξs(↑) =
e−Bs/ζ2∑

s′ πs′ (↑) e
−B

s′ /ζ2
. (A.20)

Also, we emphasize that equation (A.4) yields

πs(↑) ξs(↑) =

(
π(↑|s) πs (t)

π(↑|ωt )

)
e−Bs/ζ2∑

s′

(
π(↑|s′) π

s′ (t)

π(↑|ωt )

)
e−B

s′ /ζ2

=
π(↑ |s) πs(t) e

−Bs/ζ2∑
s′ π(↑ |s′) π

s′ (t) e
−B

s′ /ζ2

=
π(↑ |s) πs(t) ξs(t)∑
s′ π(↑ |s′) π

s′ (t) ξs′ (t)
. (A.21)

The fact that both the numerator and denominator are linear in πQ
s
(t) ≡ πs(t)ξs(t) is important in

what follows and implies that fragility is well-specified.

Getting back to the issue at hand and plugging equation (A.18) into equation (A.15), we find

V (t) = −ζ2 log

[∑
s

πs(t) e
−V (t|s)/ζ2

]
, (A.22)

where, as explained above,

V (t|S) =
(
1− e−βdt

)
logC(t)− ζ1e

−β dt log
[
π(↑ |s)e−V (↑|s)/ζ1 + π(↓ |s)e−V (↓|s)/ζ1

]
,

(A.23)

and

∂V (t)

∂V (t|s)
= πs(t) ξs(t). (A.24)

A.2 Arrow-Debreu Prices

To identify the Arrow-Debreu prices, we consider the agent starting at the optimal controls, and

then modifying those controls by purchasing ϵ shares of the Arrow-Debreu security that pays

$1(ω1 =↑). As such, her current consumption drops by ϵA(↑ |0), and her date-1 consumption in

the ↑ state increases by ϵ, with all other consumption in time and event space held constant:

[C(t), C(↑)] ⇒ [C(t)− ϵA(↑ |0), C(↑) + ϵ] . (A.25)

Such an infinitesimal change has no effect on optimal utility:

0 = δV (t)

=
∑
s

πs(t) ξs(t) δV (t|s) (A.26)

=
∑
s

πs(t) ξs(t)

[(
1− e−βdt

) ( 1

Ct

)
[−ϵA(↑ |0)] + e−βdtπ(↑ |s)ξ(↑ |s)

(
1− e−βdt

) ( 1

C↑

)
(ϵ)

]
,
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where equation (A.26) comes from equation (A.24). The solution to this is

A(↑ |0) =

(
Ct

C↑

)
e−β dt

∑
s

πs(t) ξs(t)π(↑ |s) ξ(↑ |s)

= e−σ
√
dte−β dt

∑
s

πs(t) ξs(t)π(↑ |s) ξ(↑ |s). (A.27)

It is important to note that the only t-dependence on the right-hand side is through the πs(t) ξs(t).

In particular, if at date-1 an ↑-state occurs, the price the A/D security that pays $1(ω2 =↑↑) (with
some abuse of notation) is:

A(↑↑ | ↑) = e−σ
√
dte−β dt

∑
s

πs(ωt∪ ↑) ξs(ωt∪ ↑)π(↑ |s)ξ(↑ |s)

≡ e−σ
√
dte−β dt

∑
s

πs(↑) ξs(↑)π(↑ |s) ξ(↑ |s)

= e−σ
√
dte−β dt

∑
s

(
π(↑ |s) πs(t) ξs(t)∑
s′ π(↑ |s′) π

s′ (t) ξs′ (t)

)
π(↑ |s) ξ(↑ |s)

= e−σ
√
dte−β dt

∑
s πs(t) ξs(t)π

2(↑ |s) ξ(↑ |s)∑
s′ πs′ (t) ξs′ (t)π(↑ |s′)

, (A.28)

where we have used equation (A.21) in the second-to-last line.

Finally, consider the two-period infinitesimal variation:

[C(t), C(↑↑)] ⇒ [C(t)− ϵA(↑↑ |0), C(↑↑) + ϵ] . (A.29)

We find

A(↑↑ |0) = e−2σ
√
dte−2β dt

∑
s

πs(t) ξs(t)π
2(↑ |s)ξ2(↑ |s). (A.30)

A.3 Time Consistency

The LHS of equation (A.1) is equation (A.30). Combining equations (A.27) and (A.28), we find

the RHS of equation (A.1) is

A(↑↑ | ↑)A(↑ |0) =

[
e−σ

√
dte−β dt

∑
s πs(t) ξs(t)π

2(↑ |s) ξ(↑ |s)∑
s′ πs′ (t) ξs′ (t)π(↑ |s′)

][
e−σ

√
dte−β dt

∑
s

πs(t) ξs(t)π(↑ |s) ξ(↑ |s)

]
.

Dividing both sides by e−2σ
√
dte−2β dt and multiplying both sides by

∑
s′ πs′ (t) ξs′ (t)π(↑ |s′), we

obtain

“LHS” =

[∑
s

πs(t) ξs(t)π
2(↑ |s) ξ2(↑ |s)

][∑
s

πs(t) ξs(t)π(↑ |s)

]

“RHS” =

[∑
s

πs(t) ξs(t)π
2(↑ |s) ξ(↑ |s)

][∑
s

πs(t) ξs(t)π(↑ |s) ξ(↑ |s)

]
. (A.31)

Now, since the priors {πs(t)} are completely arbitrary (except that they sum to unity), it follows

that fragility combined with robustness typically generates an economy with time-inconsistent state

prices. However, there are at least two cases where the LHS equals the RHS:
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• There is no hidden state. That is, πs(t) = 1 for one value of s and zero for all others.

• ξ(↑ |s) = ξ(↓ |s) = 1, which implies that preference for robustness has been ‘turned off’ (i.e.,

ζ1 = ∞).

The first case rediscovers the well-known result that recursive preferences are time-consistent. The

second case implies that a combination of fragility and conditional time-separable preferences may

possibly be time-consistent. Note that all we have identified here are necessary conditions. In the

next section, we show that the model we investigate in the text is in fact time-consistent.

A.4 Derivation of the Pricing Kernel in our Economy (Necessary Conditions)

Here we identify the stochastic discount factor Λ(ωT ) that determines the price of a generic asset

V D(ω
T
)(ωt) with state-contingent cash flows D(ωT ). The pricing kernel is defined via:

Λ(ωt)V
D(ω

T
)(ωt) =

∫
dωT π(ωT |ωt) Λ(ωT )D(ωT ). (A.32)

It is convenient to notionally specify pricing kernel dynamics as:

dΛ(t)

Λ(t)
= −r(t) dt−

K∑
k=0

ϕ
k
(t) dZ

k
(t) +

n∑
i=1

Γi(t)
[
d1

(τi<t)
− λ

P

i
(t) dt

]
. (A.33)

We want to identify the risk-free rate r(t), the market prices of Brownian motion risk {ϕ
k
(t)}, and

jump risk Γi(t). To this end, note that Λ(t+dt)
Λ(t) = 1+ dΛ

Λ ; this implies that we can express the price

of the asset with cash flows D(ω
t+dt

) paid out at time-(t+ dt) as:

V D(ω
t+dt

)(ωt) =

∫
dω

t+dt
π(ω

t+dt
|ωt) (A.34)

×

[
1− r(t) dt− ϕ0(t) dZ0(t) +

n∑
i=1

Γi(t)
[
d1

(τi<t)
− λ

P

i
(t) dt

]]
D(ω

t+dt
).

From equations (29) and (32), the security price has the expression

V D(ω
t+dt

)(ωt) =
∑
s

πQ
s
(t)

∫
dω

t+dt
π(ω

t+dt
|ωt , s) [1− rs dt− σ0 dZ0(t)] D(ω

t+dt
). (A.35)

We now use these two different expressions to identify r(t), {ϕ
k
(t)}, and {Γi(t)}. In particular, we

consider four securities:

1. Consider a risk-free security that pays D(ω
t+dt

) = 1 in all states of nature. Comparing

equations (A.34) and (A.35), we obtain:

1− r(t) dt =
∑
s

πQ
s
(t) [1− rs dt] , (A.36)

which implies that the risk-free rate r(t) satisfies

r(t) =
∑
s

πQ
s
(t) rs . (A.37)
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2. Consider a security that pays D(ω
t+dt

) ≡ dZ0 = dZ0 +

(
µ0,s−µP

0
(t)

σ0

)
dt, where we have used

equation (8). Comparing equations (A.34) and (A.35), we see that the price of risk on dZ0 is

− ϕ0 dt = −σ0 dt+
∑
s

πQ
s
(t)

(
µ0,s − µP

0
(t)

σ0

)
dt

≡ −σ0 dt+

(
µQ(t)− µP

0
(t)

σ0

)
dt, (A.38)

where we have defined µQ(t) =
∑

s π
Q
s
(t)µ0,s . This expression yields:

ϕ0 = σ0 −

(
µQ(t)− µP

0
(t)

σ0

)
. (A.39)

3. Consider a security that pays, for some k ∈ (1,K), D(ω
t+dt

) ≡ dZ
k
= dZ

k
+

(
µ
k,s

−µP
k
(t)

σ
k

)
dt,

where we have used equation (8). Comparing equations (A.34) and (A.35), we observe that

the price of risk on dZ
k
is

− ϕ
k
dt =

∑
s

πQ
s
(t)

(
µ

k,s
− µP

k
(t)

σ
k

)
dt

≡

(
µQ

k
(t)− µP

0
(t)

σ
k

)
dt, (A.40)

where we have defined µQ
k
(t) =

∑
s π

Q
s
(t)µ

k,s
. Simplifying, we find

ϕ
k

= −

(
µQ

k
(t)− µP

k
(t)

σ
k

)
. (A.41)

4. Finally, consider a security that pays D(ω
t+dt

) = d1{τi<t} . Comparing equations (A.34)

and (A.35), we obtain:

λ
P

i
(t) (1 + Γi(Xt)) dt =

∑
s

πQ
s
(t)λi,s(Xt) dt. (A.42)

Defining the risk-neutral intensity via

λ
Q

i
(Xt) =

∑
s

πQ
s
(t)λi,s(Xt), (A.43)

we get

Γi(Xt) =
λ
Q

i
(Xt)− λ

P

i
(Xt)

λ
P

i
(Xt)

. (A.44)
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A.5 Proof that our Fragile Beliefs Economy is Arbitrage-Free

Our candidate pricing kernel has following dynamics:

dΛ(t)

Λ(t)
= −r(t) dt−

K∑
k=0

ϕk(t) dZk
(t)−

∑
i

λ
Q
i − λ

P
i

λ
P
i

dMi(t), (A.45)

where dMi(t) ≡
(
dNi(t)− λi(t)

)
. Note that the pricing kernel is defined with respect to the

filtration of the agent. That is, the {Z
k
(t)} are Ft-Brownian motions and Ni(t) has Ft-intensity

λi(t)). Further, the candidate market price of Brownian risk is given by:

ϕk = σk1{k=0} −
µQk − µPk

σk
(A.46)

µQk =
∑
s

πQs µk,s
(A.47)

µPk =
∑
s

πsµk,s
. (A.48)

Now, according to our calculations,

r(t) =
∑
s

πQs (t)r
s (A.49)

λ
P
i =

∑
s

πs(t)λis(t) (A.50)

λ
Q
i =

∑
s

πQs (t)λis(t) (A.51)

πQs (t) =
χsπs(t)∑
s χsπs(t)

(A.52)

for constants χs = e
−

µ0,s
βζ and a πs(t) process with dynamics

dπs(t) = πs(t)

K∑
k=0

µk,s − µPk (t)

σk
dZk(t) +

N∑
i=1

αis(t
−) dMi(t). (A.53)

A.5.1 Pricing the Risk-Free Bond

We first consider the pricing of the risk-free bond. We want to show that the calculated value

of a zero-coupon bond using the marginal utility of an agent with fragile beliefs is equal to the

calculated value when the pricing kernel of equation (A.45) is used. In other words, we want to

show that:

E

[
Λ(T )

Λ(t)
| Ft

]
=

∑
s

πQs (t) E

[
Λs(T )

Λs(t)

∣∣∣∣ s,Ft

]
. (A.54)

Alternatively, since:

E

[
Λ(T )

Λ(t)
| Ft

]
= EQ

t

[
e−

∫ T
t r(u) du

]
= EQ

t

[
e−

∫ T
t (

∑
s π

Q
s (u)rs) du

]
, (A.55)
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and since

E

[
Λs(T )

Λs(t)

∣∣∣∣ s,Ft

]
= EQs

[
e−rs (T−t)

∣∣∣Ft, s
]

= e−rs (T−t), (A.56)

we need to show that:

EQ
t [e

−
∫ T
t

∑
s π

Q
s (u)rs du|Ft] =

∑
s

πQs (t) e
−rs (T−t). (A.57)

To prove this, it is sufficient to show that M(t) defined as:

M(t) = e−
∫ t
0

∑
s π

Q
s (u)rs du

∑
s

πQs (t) e
−rs (T−t) (A.58)

is a {Q,F}-martingale.

Applying Itô’s lemma to M(t) we find:

dM(t) = e−
∫ t
0

∑
s π

Q
s (u) rs du

∑
s

πQs (t) e
−rs (T−t)

{
−
∑
s′

πQs′ r
s′ dt+ rs dt+

dπQs (t)

πQs (t)

}
. (A.59)

Therefore, a sufficient condition for EQ[dM(t) | Ft] = 0 is that

EQ

[
dπQs (t)

πQs (t)

∣∣∣∣∣Ft

]
=

(∑
s′

πQs′r
s′ − rs

)
dt. (A.60)

Since in our equilibrium we have

rs = constant+ µ0,s, (A.61)

we see that necessary and sufficient condition for EQ[dM(t) | Ft] = 0 is

EQ

[
dπQs (t)

πQs (t)

∣∣∣∣∣ Ft

]
=

(∑
s′

πQs′µ0,s′ − µ0,s

)
dt. (A.62)

This result also shows that we cannot freely parameterize rs independent of the updating equation.

That is, even with ‘robustness’ turned off and the conditional preferences modeled as time-separable,

in order for the fragile beliefs utility to be time-consistent, additional restrictions on the model are

required.

To determine the appropriate market price of risk for our economy, here we derive the dynamics

of πQ and see what the restriction (A.62) implies for ϕ.

A.5.2 Dynamics of πQ

Recall πQs (t) =
χsπs(t)∑
s χsπs(t)

, where the χs = e
−

µ0,s
βζ are constants, as can be seen from equation (22).

Also recall that

dπs(t) = πs(t)
K∑
k=0

µ
k,s

− µPk (t)

σk
dZk(t) +

N∑
i=1

αis(t
−) dMi(t). (A.63)
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For simplicity, here we set N = 1 and drop the i-subscripts in the following. We then give the

general result below, which follows trivially. We find

dπQs (t)

πQs (t)
=

dπcs(t)

πs(t)
−
∑

s χsdπ
c
s(t)∑

s χsπs(t)
+

(
∑

s χsdπ
c
s(t))

2

(
∑

s χsπs(t))2
− dπcs(t)

πs(t)

∑
s χsdπs(t)∑
s χsπs(t)

+
1

πQs

 χsπs
λs

λ
P∑

s χsπs
λs

λ
P

− 1

 dNt,

(A.64)

where the superscript ‘c’ denotes the continuous part. Note that the jump component simplifies to(
λs

λ
Q − 1

)
dNt.

Now we determine the dynamics of
∑

s χsπs(t):∑
s χsdπs(t)∑
s χsπs(t)

=
K∑
k=0

(µQk − µPk )

σ
dZk(t)

P +

(
λ
Q

λ
P
− 1

)
(dNt − λ

P
dt). (A.65)

Combining equations (A.64) and (A.65) and simplifying terms yields:

dπQs (t)

πQs (t)
=

K∑
k=0

µ
k,s

− µQk
σk

(
dZk(t)

P −
µQk − µPk

σk
dt

)
+
λs − λ

Q

λ
Q

(dNt − λ
Q
dt). (A.66)

Note that, interestingly, the jump component of πQ is a Q-martingale. However, under Q the drift

of πQ is in general not equal to zero. In fact, since the market price of Brownian risk is ϕk we have

the following:

EQ

[
dπQs (t)

πQs (t)

∣∣∣∣∣ Ft

]
= −

K∑
k=0

µ
k,s

− µQk
σk

(
ϕk +

µQk − µPk
σk

)
dt. (A.67)

Recall that we want to find the market price of risk ϕ such that equation (A.62) holds, i.e.,

EQ

[
dπQs (t)

πQs (t)

∣∣∣∣∣ Ft

]
=

(
µQ0 − µ0,s

)
dt. (A.68)

Combining this expression with equation (A.67), we obtain the restriction:

σk1{k=0} = ϕk +
µQk − µPk

σk
, ∀k = 0, 1, . . . ,K . (A.69)

In turn, the Q-dynamics of πQ are given by

dπQs (t)

πQs (t)
= (µQ0 − µ0,s) dt+

K∑
k=0

µ
k,s

− µQk
σk

dZQ
k (t) +

λs − λ
Q

λ
Q

(dNt − λ
Q
dt). (A.70)

A.5.3 Pricing an Arbitrary Contingent Claim

The last section proved that the price of the risk-free bond is consistent with the market price

dynamics implied by our pricing kernel given in equation (A.45) above. More generally, here

we show that the price of any arbitrary contingent claim priced off of the fragile beliefs agent’s

marginal utility is consistent with the prices given by the economy with this pricing kernel. In
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other words, the fragile beliefs economy is arbitrage-free, and there exists a no-trade equilibrium

with a representative agent, endowed with the fragile beliefs preferences we have specified, who

consumes the aggregate consumption.

Consider a claim to an arbitrary FT measurable payoff XT . We want to show that the value

of the payoff in the economy where prices are determined by the pricing kernel of equation (A.45)

agrees with the price of the claim evaluated off of the gradient of the fragile beliefs agent. In other

words, we want to show that:

E

[
Λ(T )

Λ(t)
XT

∣∣∣∣ Ft

]
=
∑
s

πQs (t)E

[
Λs(T )

Λs(t)
XT

∣∣∣∣ Ft, s

]
. (A.71)

Alternatively, since

E

[
Λ(T )

Λ(t)
XT

∣∣∣∣ Ft

]
= EQ[e−

∫ T
t r(u)duXT | Ft]

= EQ[e−
∫ T
t

∑
s π

Q
s (u)rs duXT | Ft], (A.72)

and

E

[
Λs(T )

Λs(t)
XT

∣∣∣∣ Ft, s

]
= EQs [e−rs (T−t)XT |Ft, s], (A.73)

we need to show that

EQ[e−
∫ T
t

∑
s π

Q
s (u)rs duXT | Ft] =

∑
s

πQs (t)E
Qs [e−rs (T−t)XT |Ft, s]. (A.74)

It suffices to verify that M(t) defined as

M(t) = e−
∫ t
0

∑
s π

Q
s (u)rs du

∑
s

πQs (t)E
Qs [e−rs (T−t)XT |Ft, s] (A.75)

is a {Q,F}-martingale. Note that from the definition of the Qs measure, using the martingale

representation theorem, there exist {Ft} adapted processes ψ·,·(t) so that

Ht := EQs [XT |Ft, s]

= EQs [XT |F0, s] +

∫ t

0

{
K∑
k=0

ψk,s(u) dZQs

k (u) + ψW,s(u) dW (u) + ψN,s(dN(u)− λsdt)

}
,

(A.76)

where for simplicity we assume the jump process (N) is one-dimensional (the extension to multi-

dimensional i = 1, . . . , n is straightforward). Applying Itô’s lemma to M(t) we find:

dM(t) = e−
∫ t
0

∑
s π

Q
s (u)rs du

∑
s

πQs (t) e
−rs (T−t) ×{

−Ht

(∑
s′

πQs′r
s′ dt+ rs dt+

dπQs (t)

πQs (t)

)
+
∑
k

ψk,s(t) dZQs

k (t) + ψW,s(t) dW (t)

+
∑
k

ψk,s(t)
µk,s − µQk

σk
dt+

ψN,s(u)λs

λ
Q
(t)

(dN(t)− λ
Q
(t))

}
.

(A.77)

37



Now, since by definition of the risk-neutral measure we have

dZQ
k (t) = dZk(t) +

(
σk1{k=0} −

µQk − µPk
σk

)
dt. (A.78)

Further, by definition of the Qs measure we have:

dZQs

k (t) = dZk + σk1{k=0} dt. (A.79)

Finally, we have defined

dZk(t) = dZk(t) +
µk,s − µPk

σk
dt. (A.80)

Combining, we obtain:

dZQs

k (t) +
µk,s − µQk

σk
dt = dZQ

k (t). (A.81)

Thus

EQ
t

[
ψk,s(t)dZQs

k (t) + ψk,s(t)
µk,s − µQk

σk
dt | Ft

]
= 0. (A.82)

Previously, we have proved that

EQ
t

[
dπQs (t)

πQs (t)

∣∣∣∣∣Ft

]
= (

∑
s′

πQs′r
s′ − rs) dt. (A.83)

Therefore, since W (t) is a Ft-Brownian motion and N(t) is has Ft jump intensity λ(t), we have

indeed proved that

EQ
t [dM(t)|Ft] = 0. (A.84)

This implies that we have determined a valid pricing kernel for our economy.
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Figure 1: Sovereign CDS Spreads. The plots show 5-year sovereign CDS spreads for Euro zone

countries. The sample period is 02/12/2004-09/30/2010. Source: Markit Financial Information Ser-

vices.

43



02 05 07 10

−50

0

50

Eurozone   

M
C

I

02 05 07 10

−50

0

50

Austria    

02 05 07 10

−50

0

50

Belgium    

02 05 07 10

−50

0

50

Finland    

M
C

I

02 05 07 10

−50

0

50

France     

02 05 07 10

−50

0

50

Germany    

02 05 07 10

−50

0

50

Greece     

M
C

I

02 05 07 10

−50

0

50

Ireland    

02 05 07 10

−50

0

50

Italy      

02 05 07 10

−50

0

50

Netherlands

M
C

I

02 05 07 10

−50

0

50

Portugal   

Dates
02 05 07 10

−50

0

50

Spain      

Figure 2: Macroeconomic Conditions Indices. The plots show the macroeconomic conditions

indices for Euro zone countries. The sample period is 01/03/2001-09/30/2010.
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Figure 3: Default Intensities. The plots show the P - and Q-measure estimates for the default

intensities, λi and λ
Q
i , for Euro zone countries. The left-hand side axis shows default intensities

measured in basis points. The right-hand side axis shows the λ
Q
i / λi ratio. We estimate the model

via quasi maximum likelihood in combination with the unscented Kalman filter. The sample period

is 02/12/2004-09/30/2010.
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measure that the economy is in the ‘good’ state, πQGood. The sample period is 02/12/2004-09/30/2010.
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Figure 5: Fragility Risk Premium. The plots show the component of CDS spreads that the model

attributes to the agents’ aversion to model uncertainty, measured by the difference between (1) CDS

prices predicted by the model in the presence of fragile beliefs and (2) CDS prices computed under

the same coefficients, except that the parameter of uncertainty aversion ζ ⇒ ∞. The sample period

is 02/12/2004-09/30/2010.
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Table 1: Sovereign CDS Spreads: Summary Statistics. The table shows summary statistics

for the daily 5-year sovereign CDS spreads across Euro-zone countries. The data are from Markit

Financial Information Services and span the period from 02/12/2004 to 09/30/2010, with the exception

of Finland, Ireland, and the Netherlands, for which data are unavailable over the periods 09/19/2005-

05/01/2006 (Finland); 02/12/2004-05/18/2004 (Ireland) and 02/12/2004-06/23/2006 (Netherlands).

Mean Max Std. Dev. Skewness Kurtosis

Full sample period: 02/12/2004-09/30/2010

Austria 31.47 268.88 47.94 1.88 6.85

Belgium 27.24 155.53 37.71 1.62 4.66

Finland 14.32 92.23 17.50 1.74 6.08

France 18.09 99.25 24.38 1.53 4.16

Germany 13.92 91.38 17.56 1.63 5.32

Greece 114.68 1015.24 210.20 2.63 9.32

Ireland 68.64 486.69 100.10 1.47 4.40

Italy 48.47 249.73 58.60 1.38 3.70

Netherlands 26.10 127.83 28.85 1.42 4.79

Portugal 50.79 461.22 81.43 2.46 8.84

Spain 44.07 273.62 63.03 1.71 5.25

Pre-crisis sample period: 02/12/2004-12/31/2007

Austria 2.54 6.08 0.72 1.81 8.91

Belgium 3.19 13.20 1.49 4.33 25.17

Finland 2.57 5.75 1.00 0.17 2.35

France 2.81 7.54 1.02 1.25 6.49

Germany 2.91 6.50 1.08 0.58 2.98

Greece 10.60 21.70 3.34 0.50 2.97

Ireland 3.22 14.69 1.92 3.92 20.07

Italy 9.57 21.21 2.47 1.60 7.13

Netherlands 2.06 6.34 1.03 2.45 9.17

Portugal 6.54 19.35 2.14 2.43 12.51

Spain 3.85 19.70 2.50 4.17 22.29

Euro crisis sample period: 01/01/2008-09/30/2010

Austria 71.69 268.88 52.08 0.96 4.72

Belgium 60.69 155.53 38.41 0.74 2.44

Finland 28.01 92.23 17.71 1.21 4.64

France 39.34 99.25 25.36 0.46 2.07

Germany 29.24 91.38 18.23 0.68 3.71

Greece 259.50 1015.24 263.89 1.46 3.85

Ireland 152.11 486.69 101.84 0.50 3.01

Italy 102.61 249.73 56.27 0.41 2.09

Netherlands 39.26 127.83 28.24 1.18 4.22

Portugal 112.36 461.22 96.65 1.49 4.22

Spain 100.04 273.62 64.09 0.95 3.06
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