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Abstract

We develop a dynamic general equilibrium model in which the policy rate signals the central
bank’s view about macroeconomic developments to price setters. The model is estimated with likeli-
hood methods on a U.S. data set that includes the Survey of Professional Forecasters as a measure
of price setters’inflation expectations. This model improves upon existing perfect information models
in explaining why, in the data, inflation expectations respond with delays to monetary impulses and
remain disanchored for years. In the 1970s, U.S. monetary policy is found to signal persistent inflation-
ary shocks, explaining why inflation and inflation expectations were so persistently heightened. The
signaling effects of monetary policy also explain why inflation expectations adjusted more sluggishly
than inflation after the robust monetary tightening of the 1980s.
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1 Introduction

A salient feature of economic systems is that information is dispersed across market participants

and policymakers. Dispersed information implies that the publicly observed decisions imple-

mented by these policymakers convey information to market participants. A canonical example

is the interest rate set by a central bank. Such an information transfer may strongly influence

the transmission of monetary impulses and the central bank’s ability to stabilize the economy.

Consider the case in which a central bank expects that an exogenous disturbance will raise

inflation in the next few quarters. On the one hand, as predicted by standard macroeconomic

models, tightening monetary policy has the effect of mitigating the inflationary effects of the

shock. On the other hand, raising the policy rate might also cause higher inflation if this action

signals to unaware market participants that an inflationary shock is about to hit the economy.

While the first type of monetary transmission has been intensively investigated in the economic

literature, the signaling effects of monetary policy have received far less attention.

This paper develops a dynamic general equilibrium model to study the empirical relevance

of the signaling effects of monetary policy and their implications for the propagation of pol-

icy and non-policy disturbances. In the model, price-setting firms face nominal rigidities and

dispersed information. Firms observe their own specific technology conveying noisy private

information about aggregate technology shocks that influence the future dynamics of firms’

nominal marginal costs. Furthermore, price setters observe a noisy private signal about distur-

bances affecting households’discount factor (henceforth, demand shocks) as well as the policy

rate set by the central bank according to a Taylor-type reaction function. The policy signal

provides public information about the central bank’s view on current inflation and the output

gap to firms. The central bank is assumed to have imperfect information and thereby can make

errors in forecasting the targeted macroeconomic aggregates. We call this model the dispersed

information model (DIM).

The DIM features two channels of monetary transmission. The first channel is based on

the central bank’s ability to affect the real interest rate because of both nominal rigidities and

dispersed information. Changes in the real interest rate induce households to intertemporally

adjust their consumption. The second channel arises because the policy rate signals non-

redundant information to firms and hence directly influences their beliefs about macroeconomic

developments. We label this second channel the signaling channel of monetary transmission.

The signaling effects of monetary policy on the propagation of shocks critically depend on how

price setters interpret changes in the policy rate. For instance, raising the policy rate can be

interpreted by price-setting firms in two ways. First, a monetary tightening might be read as

the central bank responding to an exogenous deviation from its monetary policy rule; that is, a

contractionary monetary shock or an overestimation of the rate of inflation or the output gap.
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Second, a higher interest rate may also be interpreted as the response of the central bank to

inflationary non-policy shocks, which, in the model, are an adverse aggregate technology shock

or a positive demand shock. If the first interpretation prevails among price setters, tightening

(easing) monetary policy curbs (raises) firms’inflation expectations and hence inflation. If the

second interpretation prevails, raising (cutting) the policy rate induces firms to expect higher

(lower) inflation, and hence inflation rises (falls).

The model is estimated through likelihood methods on a U.S. data set that includes the

Survey of Professional Forecasters (SPF) as a measure of price setters’inflation expectations.

The data range includes the 1970s, which were characterized by one of the most notorious

episodes of heightened inflation and inflation expectations in recent U.S. economic history. In

the estimated model, firms mostly rely on private signals to learn about aggregate technology

shocks. Conversely, firms receive fairly inaccurate private signals about demand shocks, forcing

them to look at the policy signal to learn about these shocks. Nevertheless, the policy signal

turns out to be equally informative about demand shocks and exogenous deviations from the

monetary policy rule, making it hard for firms to tell these two shocks apart.

This information structure has important implications for the propagation of aggregate

disturbances in the DIM. The signaling effects of monetary policy bring about deflationary

pressures in the aftermath of a positive demand shock. When the Federal Reserve raises the

interest rate in response to a positive demand shock, firms attach some probability that both a

contractionary monetary shock and a persistent overestimation of the output gap by the central

bank might have occurred. These beliefs lower price setters’inflation expectations and hence

inflation. Thus, the signaling channel makes demand shocks look like supply shocks that move

prices and quantities in opposite directions. Unlike the technology shocks, these artificial supply

shocks imply a negative comovement between the federal funds rate and the rate of inflation

as well as between the federal funds rate and inflation expectations. This property of these

artificial supply shocks helps the model fit the 1970s, when the nominal federal funds rate was

kept relatively low and inflation expectations attained fairly high levels.

We estimate a benchmark vector autoregressive (VAR) model to show that in the data

inflation expectations respond to monetary impulses with delays and remain disanchored for

more than five years.1 State-of-the-art perfect information models are shown to have too weak

a propagation mechanism to explain this pattern. In contrast, the estimated DIM accounts for

these empirical facts remarkably well. The monetary tightening that immediately follows a con-

tractionary monetary shock signals positive demand shocks that give rise to upward pressures

on inflation expectations. These signaling effects substantially dampen the short-run response

1The VAR model is agnostic about economic theories and broadly parameterized. Therefore, this model is
often used to obtain an accurate representation of the data. See Christiano, Eichenbaum and Evans (2005) and
Del Negro et al. (2007), among many others.
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of inflation expectations. In the longer run, the monetary tightening ends up signaling per-

sistent underestimation of potential output by the central bank, leading to a disanchoring of

inflation expectations that is remarkably similar to what is observed in the data. Furthermore,

while the DIM can explain the large and persistent conditional forecast errors that are observed

in the data, perfect information models cannot. In fact, a general property of perfect informa-

tion models is that conditional forecast errors are always equal to zero. This property arises

because the nature and the magnitude of the initial shock are perfectly known by all agents.

This property is not shared by the dispersed information model in which rational agents are

confused about the nature and the magnitude of realized shocks.

Furthermore, we show that the signaling effects of monetary policy significantly contribute to

explaining why inflation and, especially, inflation expectations were so persistently heightened in

the 1970s. The Federal Reserve’s response to two large negative demand shocks that occurred in

1974 ended up signaling both expansionary monetary shocks and an overestimation of potential

output by the central bank. These signaling effects significantly raised inflation expectations

and hence inflation throughout the second half of that decade. This econometric evaluation

of the signaling effects controls for the inflationary pressures owing to the persistently large

overestimation of potential output by the Federal Reserve in the 1970s, which is documented in

the Federal Reserve’s Greenbook.2 We also show that the realization of the two large negative

demand shocks in 1974 is supported by the VAR evidence once the identification of those shocks

is corrected for the signaling effects of monetary policy.

This is the first paper that provides an econometric analysis of the signaling effects of

monetary policy based on a microfounded dynamic general equilibrium model. Using a reduced-

form model, Romer and Romer (2000) find evidence of signaling effects of monetary policy in

the U.S. Moreover, Nakamura and Steinsson (2015) and Campbell et al. (forthcoming) assess

the macroeconomic effects of the Federal Open Market Committee’s (FOMC) announcements

about the likely future evolution of the federal funds rate (FOMC forward guidance). They find

that FOMC forward guidance conveys the FOMC’s private information to market participants

and this information transfer has large macroeconomic effects.3

The idea that the monetary authority sends public signals to an economy in which agents

have dispersed information was pioneered by Morris and Shin (2002, 2003). The model studied

in this paper is built on Nimark (2008). A particularly useful feature of Nimark’s model is

that the supply side of the model economy can be analytically worked out and characterized by

an equation that nests the standard New Keynesian Phillips curve. The model studied in this

paper shares this feature. Nonetheless, in Nimark (2008) the signaling channel does not arise

2Orphanides (2001, 2002, 2003) argues that the Federal Reserve’s persistent overestimation of potential
output in the 1970s led to overexpansionary policies, which ultimately resulted in high inflation.

3Campbell et al. (2012) dubbed these effects Delphic forward guidance.
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because assumptions about the Taylor-rule specification imply that the policy rate conveys only

redundant information to price setters. We introduce a method to solve the DIM that belongs

to the more general class of solution methods introduced by Nimark (2011). Our solution

method improves upon the one used by Nimark (2008) in that it does not require numerically

solving any nonlinear equations.

This paper is also related to a quickly growing empirical literature that uses the SPF to

study the response of public expectations to monetary policy decisions. Del Negro and Eusepi

(2011) evaluate the ability of the imperfect information model developed by Erceg and Levin

(2003) to fit the SPF inflation expectations. There are two main differences between that pa-

per and this one. First, in that paper monetary policy does not have signaling effects besides

transferring information about the central bank’s inflation target. Second, in our settings,

price setters have heterogeneous beliefs. Furthermore, Coibion and Gorodnichenko (2012b)

find that the Federal Reserve raises the policy rate more gradually if the private sector’s in-

flation expectations are lower than the Federal Reserve’s forecasts of inflation. This empirical

evidence can be rationalized in a model in which monetary policy has signaling effects and

the central bank acts strategically to stabilize private sector’s inflation expectations. Coibion

and Gorodnichenko (2012a) use the SPF to document robust evidence in favor of models with

informational rigidities.

This paper also belongs to a quite thin literature that carries out likelihood-based analy-

ses on models with dispersed information. Nimark (2014b) estimates an island model built

on Lorenzoni (2009) and augmented with man-bites-dog signals, which are signals that are

more likely to be observed when unusual events occur. Máckowiak, Moench, and Wiederholt

(2009) use a dynamic factor model to estimate impulse responses of sectoral price indexes to

aggregate shocks and to sector-specific shocks for a number of models, including a rational inat-

tention model. Melosi (2014) conducts an econometric analysis of a stylized dynamic general

equilibrium model with dispersed information à la Woodford (2002).

Bianchi andMelosi (2014a) develop a dynamic general equilibriummodel that features waves

of agents’pessimism about how aggressively the central bank will react to future changes in

inflation to study the welfare implications of monetary policy communication. Gorodnichenko

(2008) introduces a model in which firms make state-dependent decisions on both pricing and

acquisition of information and shows that this model delivers a delayed response of inflation

to monetary shocks. Trabandt (2007) analyzes the empirical properties of a state-of-the-art

sticky-information model à la Mankiw and Reis (2002) and compares them with those of a

state-of-the-art model with sticky prices à la Calvo.

The paper is organized as follows. In Section 2, we describe the dispersed information

model, in which monetary policy has signaling effects, as well as a model in which firms have

perfect information. In Section 3, we present the empirical analysis of the paper, including the
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econometric evaluation of the signaling effects of monetary policy. In Section 4, we assess the

robustness of our findings. We present our conclusions in Section 5.

2 Models

Section 2.1 introduces the model with dispersed information and signaling effects of monetary

policy. In Section 2.2, we present the time protocol of the model. Section 2.3 presents the

problem of households. Section 2.4 presents firms’price-setting problem. In Section 2.5, the

central bank’s behavior and government’s behavior are modeled. In Section 2.6, we introduce

the information set available to firms. Section 2.7 deals with the log-linearization and the solu-

tion of the dispersed information model. Finally, Section 2.8 presents the perfect information

model, which will be used to evaluate the empirical significance of the dispersed information

model.

2.1 The Dispersed Information Model (DIM)

The economy is populated by a continuum (0, 1) of households, a continuum (0, 1) of monopo-

listically competitive firms, a central bank (or monetary authority), and a government (or fiscal

authority). A Calvo lottery establishes which firms are allowed to reoptimize their prices in any

given period t (Calvo 1983). Households consume the goods produced by firms, demand gov-

ernment bonds, pay taxes to or receive transfers from the fiscal authority, and supply labor to

the firms in a perfectly competitive labor market. Firms sell differentiated goods to households.

The fiscal authority has to finance maturing government bonds. The fiscal authority can issue

new government bonds and can either collect lump-sum taxes from households or pay transfers

to households. The central bank sets the nominal interest rate at which the government’s bonds

pay out their return.

2.2 The Time Protocol

Any period t is divided into three stages. All actions that are taken in any given stage are

simultaneous. At stage 0, the central bank sets the interest rate for the current period t using

a Taylor-type reaction function and after observing an imperfect measure of current inflation

and the output gap. At stage 1, firms update their information set by observing (i) their

idiosyncratic technology, (ii) a private signal about the demand shocks, and (iii) the interest

rate set by the central bank. Given these observations, firms set their prices. At stage 2,

households learn about the realization of all the shocks in the economy and therefore become

perfectly informed. Households then decide their consumption, Ct; their demand for one-period

nominal government bonds, Bt; and their labor supply, Nt. At this stage, firms hire labor and
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produce so as to deliver the demanded quantity at the price they have set at stage 1. The fiscal

authority issues bonds and collects taxes from households or pays transfers to households. The

markets for goods, labor, and bonds clear.

2.3 Households

Households have perfect information,4 and hence, we can use the representative household to

solve their problem at stage 2 of every period t:

max
Ct+s,Bt+s,Nt+s

Et
∞∑
s=0

βt+sgt+s [lnCt+s − χnNt+s] ,

where β is the deterministic discount factor and gt is an exogenous variable influencing this

factor. The logarithm of this exogenous variable follows an autoregressive process: ln gt =

ρg ln gt−1 + σgεg,t with Gaussian shocks εg,t v N (0, 1). We refer to gt as demand conditions

and to the innovation εg,t as the demand shock. Disutility from labor linearly enters the period

utility function. The parameter χn affects the marginal disutility of labor.

The flow budget constraint of the representative household in period t is given as follows:

PtCt +Bt = WtNt +Rt−1Bt−1 + Πt − Tt, (1)

where Pt is the price level of the composite good consumed by households and Wt is the (com-

petitive) nominal wage, Rt stands for the nominal (gross) interest rate, Πt is the (equally

shared) dividends paid out by the firms, and Tt stands for the lump-sum transfers/taxes. Com-

posite consumption in period t is given by the Dixit-Stiglitz aggregator Ct =
(∫ 1

0
C

ν−1
ν

j,t dj
) ν
ν−1
,

where Cj,t is consumption of the good produced by firm j in period t and ν is the elasticity of

substitution between consumption goods.

At stage 2 of every period t, the representative household chooses its consumption of the

good produced by firm j, labor supply, and bond holdings subject to the sequence of the flow

budget constraints and a no-Ponzi-scheme condition. The representative household takes as

given the nominal interest rate, the nominal wage rate, nominal aggregate profits, nominal

lump-sum transfers/taxes, and the prices of all consumption goods. It can be shown that the

demand for the good produced by firm j is:

Cj,t =

(
Pj,t
Pt

)−ν
Ct, (2)

4The main results of the paper are unlikely to change if one assumes that households also have dispersed
information. This point is discussed in the online appendix.
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where the price level of the composite good is given by Pt =
(∫

(Pj,t)
1−ν di

) 1
1−ν .

2.4 Firms’Price-Setting Problem

Firms are endowed with a linear technology Yj,t = aj,tNj,t, where Yj,t is the output produced

by firm j at time t, Nj,t is the amount of labor employed by firm j at time t, and aj,t is the

firm-specific level of technology that can be decomposed into a level of aggregate technology

(at) and a white-noise firm-specific component (εaj,t). More specifically,

ln aj,t = ln at + σ̃aε
a
j,t, (3)

where εaj,t
iidv N (0, 1) and at stands for the level of aggregate technology that evolves according

to the autoregressive process ln at = ρa ln at−1+σaεa,t with Gaussian innovations εa,t
iidv N (0, 1).

We refer to the innovation εa,t as the (aggregate) technology shock.

Following Calvo (1983), we assume that a fraction θ of firms are not allowed to reoptimize

the price of their respective goods at stage 1 of any period. Those firms that are not allowed

to reoptimize are assumed to index their price to the steady-state inflation rate. Let us denote

the (gross) steady-state inflation rate as π∗, the nominal marginal costs for firm j as MCj,t =

Wt/aj,t, the time t value of one unit of the composite consumption good in period t + s to

the representative household as ξt|t+s, and the expectation operator conditional on firm j’s

information set Ij,t as Ej,t. The information set contains both private and public signals and
will be defined in Section 2.6. At stage 1 of every period t, an arbitrary firm j that is allowed

to reoptimize its price Pj,t solves

max
Pj,t

Ej,t

[ ∞∑
s=0

(βθ)s ξt|t+s (πs∗Pj,t −MCj,t+s)Yj,t+s

]
,

subject to Yj,t = Cj,t (i.e., firms commit themselves to satisfying any demanded quantity that

will arise at stage 2), to firm j’s specific demand in equation (2), and to the linear production

function. When solving the price-setting problem at stage 1, firms have to form expectations

about the evolution of their nominal marginal costs, which will be realized in the next stage

of the period (i.e., stage 2), using their information set Ij,t. At stage 2, firms produce and
deliver the quantity the representative household demands for their specific goods at the prices

they set in the previous stage 1. At stage 2 we assume that firms do not receive any further

information or any additional signals to what they have already observed at stage 1.
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2.5 The Monetary and Fiscal Authorities

The monetary authority sets the nominal interest rate according to a Taylor-type reaction

function: Rt = (r∗π∗) (π̃t/π∗)
φπ (x̃t)

φx ξm,t, where r∗ is the steady-state real interest rate and

π̃t is the inflation rate observed by the central bank at stage 0 of time t when it has to set

the interest rate Rt. We assume that the central bank knows the current inflation rate πt
up to the realization of a random variable that follows an autoregressive process ln ξπ,t =

ρπ ln ξπ,t−1 +σπεπ,t with Gaussian innovations επ,t
iidv N (0, 1). This exogenous process captures

the central bank’s nowcast errors for the inflation rate. In symbols, π̃t = πtξπ,t. We will refer to

the process ξπ,t as the central bank’s measurement error for inflation. Analogously, x̃t denotes

the output gap when the central bank is called to set the policy rate at stage 0.5 We assume

that the central bank knows the current output gap xt up to the realization of a random variable

that follows an autoregressive process ln ξx,t = ρx ln ξx,t−1 + σxεx,t with Gaussian innovations

εx,t
iidv N (0, 1). This exogenous process captures the central bank’s nowcast errors for the

output gap. We will refer to the process ξx,t as the central bank’s measurement error for the

output gap. In symbols, x̃t = xtξx,t. Furthermore, the process ξm,t is an exogenous random

variable that is driven by the following autoregressive process: ln ξm,t = ρm ln ξm,t−1 + σmεm,t,

with Gaussian innovations εm,t
iidv N (0, 1). We will refer to the process ξm,t as the state of

monetary policy and to the innovation εm,t as the monetary policy shock.

It should be noted that we model policy inertia as a persistent monetary policy shock rather

than adding a smoothing component. Rudebusch (2002, 2006) uses term-structure data to argue

that monetary policy inertia likely reflects omitted variables in the rule and that such policy

inertia can be adequately approximated by persistent shocks in the rule. Furthermore, this

modeling choice serves the purpose of solving the dispersed information model fast enough to

allow likelihood estimation.

The policy rule can then be rewritten as follows:

Rt = (r∗π∗)

(
πt
π∗

)φπ
x
φx
t ηr,t, (4)

where ηr,t ≡ ξm,tξ
φπ
π,tξ

φx
x,t captures the exogenous deviations of the interest rate from the monetary

policy rule. These deviations may occur as a result of monetary policy shocks εm,t or as a result

of measurement errors by the central bank, επ t and εx,t. We will refer to the process ηr,t as the

exogenous deviation from the policy rule.

The budget constraint of the fiscal authority in period t is represented as follows Rt−1Bt−1−
Bt = Tt. The fiscal authority finances maturing government bonds by either collecting lump-

5The output gap is the difference between current output and potential output, which is defined as the level
of output that would arise under perfectly flexible prices (θ = 0) and perfect information.
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sum taxes or issuing new government bonds. The aggregate resource constraint implies Yt = Ct.

2.6 Firms’Information Set

Firms have imperfect knowledge about the history of shocks that have hit the economy. More

specifically, it is assumed that firms’information set includes the history of firm-specific tech-

nology ln aj,t and the history of a private signal gj,t on the demand conditions gt, which evolves

according to the following process: ln gj,t = ln gt + σ̃gε
g
j,t, where ε

g
j,t

iidv N (0, 1). Moreover, firms

observe the history of the nominal interest rate Rt set by the central bank, as well as the history

of their own prices.6 To sum up, the information set Ij,t of firm j at time t is given by

Ij,t ≡ {ln aj,τ , ln gj,τ , Rτ , Pj,τ : τ ≤ t} . (5)

Firms receive the signals in Ij,t at the price-setting stage 1. We assume that firms know the
structural equations of the model and its parameters. For tractability, firms use the log-linear

approximation to the model’s structural equations around its steady-state equilibrium to solve

their signal extraction problem.7 Finally, we assume that firms have received an infinitely long

sequence of signals at any time t. This assumption substantially simplifies the task of solving

the model by ensuring that the Kalman gain matrix is time invariant and the same across firms.

We follow the imperfect-common-knowledge literature (Woodford, 2002; Adam, 2007; Ni-

mark, 2008) in modeling the highly complex process of acquiring the relevant information by

price setters, which includes information about endogenous variables other than the policy rate,

such as the quantities sold by firm j (Cj,t), NIPA statistics with some lags, etc., using a set

of exogenous private signals (âj,t and ĝj,t).8 These exogenous signals are assumed to be idio-

syncratic to capture the idea that price setters may pay attention to different indicators. We

partially depart from this literature as we do not allow firms to observe private signals on all

five exogenous state variables, which also include the three subcomponents (ξm,t, ξπ,t, and ξx,t)

of the overall state of monetary policy ηr,t. Allowing firms to observe specific exogenous signals

6Observing the history of their own price {Pj,τ : τ ≤ t} conveys only redundant information to firms because
their price is either adjusted to the steady-state inflation rate, which is known by firms, or a function of the
history of the signals that have been already observed. Thus, this signal does not play any role in the formation
of firms’expectations and will be called the redundant signal. Henceforth, when we refer to signals, we mean
only the non-redundant signals.

7The log-linearized equations will be shown in the next section.
8In this respect, an important advantage of the rational inattention literature (e.g., Sims 2003, 2006, 2010;

Mackowiak and Wiederholt 2009, 2015; Paciello and Wiederholt 2014; and Matejka 2016) is to go beyond this
reduced-form approach by allowing agents to optimally choose their signal structure under an information-
processing constraint that limits the overall amount of information the signals can convey. Nonetheless, esti-
mating a rational inattention model is not feasible at this stage because solving the problem of how firms allocate
their attention optimally would increase even more the already heavy computational burden that characterizes
the solution of the DIM.
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on the central bank’s measurement errors (i.e., ξπ,t and ξx,t) would imply allowing firms to

have an information advantage about the central bank’s measurement errors over the central

bank itself. This assumption is clearly controversial. In the model price setters know the law of

motion of the central bank’s measurement errors but they have to learn the magnitude thereof

in every period. A less controversial assumption is to endow the firms also with a private

signal about the exogenous deviations from the policy rule ηr,t. However, the estimated value

for the noise variance of this additional private signal turns out to be so large as to become

non-identifiable. The presence of a non-identifiable parameter also affects the convergence of

the estimation procedure for the other parameters. Thus, we did not include this additional

signal to firms’information set.

It should also be emphasized that our information structure follows Woodford (2002) in

assuming that firms observe truth-plus-white-noise type of signals with serially uncorrelated

noise shocks. This signal structure is arguably quite restrictive parametrically. However, these

restrictions are crucial to avoid weak identification of the model parameters.

A novel ingredient of the model is to allow firms to perfectly observe the interest rate

set by the central bank Rt. This assumption is based on the fact that the monetary policy

rate is measured very accurately in real time and is subject neither to revisions nor to delays

in reporting. These features do not extend to other aggregate endogenous variables, such as

inflation or output (e.g., GDP). This assumption is also supported by findings in Andrade et al.

(2014), who document that the Blue Chip Financial Forecasts show very small disagreement on

the next quarter’s federal funds rate compared with other leading macroeconomic aggregates,

such as inflation and GDP.

In Section 4, we will show that the maintained information structure in (5) delivers quite

plausible dynamics for inflation nowcast errors in the estimated DIM. Furthermore, we will also

show that assuming that firms observe other endogenous variables, such as the quantity firms

have sold, turns out to substantially deteriorate the fit of the dispersed information model.

2.7 Log-linearization and Model Solution

We solve the firms’and households’problems, described in Sections 2.3 and 2.4, and obtain the

consumption Euler equation and the price-setting equation. We denote the log-deviation of an

arbitrary (stationary) variable xt from its steady-state value as x̂t. As in Nimark (2008), we

obtain the imperfect-common-knowledge Phillips curve that is given as follows:9

π̂t = (1− θ) (1− βθ)
∞∑
k=1

(1− θ)k−1 m̂c(k)t|t + βθ

∞∑
k=1

(1− θ)k−1 π̂(k)t+1|t. (6)

9A detailed derivation is in an appendix, which is available upon request.
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In this equation, π̂(k)t+1|t denotes the average k-th order expectations about the next period’s

inflation rate, π̂t+1, that is, π̂
(k)
t+1|t ≡

∫
Ej,t . . .

∫
Ej,t︸ ︷︷ ︸

k

π̂t+1dj...dj, for any integer k > 1. Moreover,

m̂c
(k)
t|t denotes the average k-th order expectations about the real aggregate marginal costs m̂ct ≡∫
m̂cj,tdj, which evolve according to the equation m̂c

(k)
t|t = ŷ

(k)
t|t − â

(k−1)
t|t for any integer k > 1.

The imperfect-common-knowledge Phillips curve makes it explicit that price setters forecast the

forecasts of other price setters (Townsend 1983a, 1983b). The Calvo parameter θ determines

the structure of weights for the higher-order expectations in the averages
∑∞

k=1 (1− θ)k−1 m̂c(k)t|t
and

∑∞
k=1 (1− θ)k−1 π̂(k)t+1|t. The smaller the Calvo parameter, the more the model dynamics

are affected by the average expectations of relatively higher orders.

The log-linearized Euler equation is standard and reads as follows:

ĝt − ŷt = Etĝt+1 − Etŷt+1 − Etπ̂t+1 + R̂t, (7)

where Et (·) denotes the expectation operator conditional on the complete information set. The
log-linearized central bank’s reaction function (4) can be written as follows:

R̂t = φππ̂t + φx (ŷt − ât) + η̂r,t, (8)

where ŷt − ât is equal to the output gap.
The demand conditions evolve according to ĝt = ρgĝt−1 + σgεg,t. The process for aggregate

technology becomes ât = ρaât−1 + σaεa,t. The exogenous process that leads the central bank to

deviate from the monetary rule is defined as η̂r,t = ξ̂m,t + φπ ξ̂π,t + φxξ̂x,t. The subcomponents

of η̂r,t evolve as follows: ξ̂i,t = ρiξ̂i,t−1 + σiεi,t with i ∈ {m,π, x}. We log-linearize the signal
equation concerning the level of aggregate technology (3) and obtain âj,t = ât + σ̃aε

a
j,t. The

signal equation concerning the demand conditions is the following: ĝj,t = ĝt+ σ̃gε
g
j,t. The policy

signal R̂t evolves according to equation (8).

A detailed description of how we solve the model is provided in the online appendix. The

proposed solution algorithm improves upon the one used in Nimark (2008) as our approach

does not require solving a system of nonlinear equations.10 When the model is solved, the law

10Nimark (2014a) introduces a method to improve the effi ciency of these types of solution methods for dis-
persed information models in which agents (e.g., firms) use lagged endogenous variables to form their beliefs. An
alternative solution algorithm based on rewriting the equilibrium dynamics partly as a moving-average process
and setting the lag with which the state is revealed to be a very large number is analyzed by Hellwig (2002)
and Hellwig and Vankateswaran (2009). Rondina and Walker (2012) study a new class of rational expectations
equilibria in dynamic economies with dispersed information and signal extraction from endogenous variables.
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of motion of the endogenous variables st ≡
[
ŷt, π̂t, R̂t

]′
reads as follows:

st = v0X
(0:k)
t|t , (9)

where X(0:k)
t|t ≡

[
â
(s)
t|t , ĝ

(s)
t|t , ξ̂

(s)

m,t|t, ξ̂
(s)

π,t|t, ξ̂
(s)

x,t|t : 0 ≤ s ≤ k
]′
is the vector of the average expecta-

tions of any order from zero through the truncation k > 0 about the exogenous state variables

Xt =
(
ât, ĝt, ξ̂m,t, ξ̂π,t, ξ̂x,t

)
. The average s-th order expectations about the level of aggregate

technology, â(s)t|t , are defined as the integral of firms’expectations about the average (s− 1)-th

order expectations across firms. In symbols, this is given as follows: â(s)t|t =
∫
Ej,t

(
â
(s−1)
t|t

)
dj,

for 1 ≤ s ≤ k, where conventionally â(0)t|t = ât. The average expectations about the demand

conditions (ĝt), the state of monetary policy (ξ̂m,t), and the central bank’s measurement errors

for inflation (ξ̂π,t) and for the output gap (ξ̂x,t) are analogously defined. Note that in order to

keep the dimensionality of the state vector finite, we truncate the infinite hierarchy of aver-

age higher-order expectations. The vector of average expectations about the exogenous state

variables X(0:k)
t|t is assumed to follow a VAR model of order one:11

X
(0:k)
t|t = MX

(0:k)
t−1|t−1 +Nεt. (10)

We solve the model by guessing and verify the dynamics of higher-order beliefs (i.e., the

matrices M and N). However, solving for higher-order expectations is nothing other than a

particular solution method in the context of this paper. There exist other approaches that

rely on the fact that average first-order expectations about the endogenous variables can be

computed given the guessed laws of motion of the endogenous variables by using the assumption

of rational expectations. In this case, the problem of solving the model boils down to finding

a fixed point over the parameters that characterizes the laws of motion for the endogenous

variables of interest. See Máckowiak and Wiederholt (2009) for an example of how this type

of solution method works. When applied to our model, that approach turns out to be harder

to combine with the estimation procedure (i.e., the Metropolis-Hastings posterior simulator),

which requires a high degree of automatization of the solution routine. Furthermore, studying

the higher-order beliefs helps interpret some of the predictions of the model.

11As is standard in the literature (e.g., Woodford 2002), we focus on equilibria where the higher-order ex-
pectations about the exogenous state variables follow a VAR model of order one. To solve the model, we also
assume common knowledge of rationality. See Nimark (2008, Assumption 1, p. 373) for a formal explanation
of this assumption.
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2.8 The Perfect Information Model (PIM)

If firms were perfectly informed, higher-order uncertainty would fade away (i.e., X(k)
t|t = Xt for

any integer k > 0) and the linearized model would boil down to a prototypical three-equation

New Keynesian dynamic stochastic general equilibrium (DSGE) model (e.g., Rotemberg and

Woodford 1997; Lubik and Schorfheide 2004; Rabanal and Rubio-Ramírez 2005). Unlike in

the dispersed information model, we add an exogenous process affecting the price markup

so as to avoid stochastic singularity of this model, which would preclude estimation.12 The

exogenous markup evolves according to the autoregressive process ξ̂p,t = ρpξ̂p,t−1 + σpεp,t with

Gaussian innovations εp,t
iidv N (0, 1). The New Keynesian Phillips curve is given as follows:

π̂t = κpcm̂ct + βEtπ̂t+1 + ξ̂p,t, where κpc ≡ (1− θ) (1− θβ) /θ with the real marginal costs

given by m̂ct = ŷt − ât . To improve the empirical performance of this alternative model,

we assume that households’ utility is affected by consumption habits. The Euler equation

for consumption is as follows: ĉt = h (1 + h)−1 ĉt−1 + (1 + h)−1Etĉt+1 − (1− h) (1 + h)−1 R̂t +

(1− h) (1 + h)−1Etπ̂t+1 + (1− h) (1 + h)−1
(
1− ρg

)
ĝt. The Taylor rule is the same as in the

dispersed information model. We call this prototypical New Keynesian DSGE model the perfect

information model (PIM).

3 Empirical Analysis

This section contains the econometric analysis of the model and the signaling channel of mon-

etary policy. In Section 3.1, we present the data set. In Section 3.2, we discuss the prior and

posterior distribution for the model parameters. In Section 3.3, we evaluate the ability of the

DIM to fit the data relative to that of the PIM. In Section 3.4, we assess the relative ability of

the DIM to replicate a few stylized empirical facts about the propagation of monetary impulses.

In Section 3.5, we study the propagation of the structural disturbances in the estimated DIM.

In Section 3.6, we run a Bayesian counterfactual experiment to assess the empirical relevance

of the signaling effects of monetary policy.

3.1 The Data

The model is estimated using a data set that comprises the following seven observable variables

for the U.S. economy: the Hodrick-Prescott (HP) output gap,13 the inflation rate (GDP defla-

12In our estimation we use data on both the output gap and inflation. In the absence of price markup shocks,
it is well-known that the three-equation perfect information model features almost perfect correlation between
the output gap and inflation, causing the model to be stochastically singular. Adding a markup shock loosens
this tight relation between the output gap and inflation, allowing us to estimate the perfect information model.
13The results are robust if one computes the potential output using a quadratic trend or uses the output gap

computed by the Congressional Budget Offi ce.
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tor), the federal funds rate, one-quarter-ahead and four-quarters-ahead inflation expectations

from the Survey of Professional Forecasters (SPF), the real-time output gap, and real-time in-

flation from the Federal Reserve’s Greenbook.14 The data are quarterly and run from 1970:Q3

through 2007:Q4. The measurement equations and more details on how the observables are

constructed are available in the online appendix. We use the SPF data to inform the average

first-order expectations about inflation; that is, π̂(1)t+1|t and π̂
(1)
t+4|t. To avoid stochastic singular-

ity, we assume that the two series for inflation expectations are observed with i.i.d. Gaussian

measurement errors. We use the real-time data on the output gap and inflation to inform the

central bank’s perceived output gap ŷt− ât+ ξ̂x,t and its perceived inflation rate π̂t+ ξ̂π,t, respec-
tively. These series were constructed by Orphanides (2004) until 1995:Q4. We have completed

the series using the tables kept by the Federal Reserve Bank of Philadelphia after harmonizing

it.15

3.2 Bayesian Estimation

As is standard, we fix the value for β so that the steady-state real interest rate is broadly

consistent with its sample average. The prior and posterior statistics for the model parameters

are reported in Table 1. As will become clear, the degree of persistence of signaling effects

ultimately hinges on the persistence of the shocks that the monetary authority signals to firms

by changing the policy rate. Therefore, the priors for the autoregressive parameters ρa, ρg, ρm,

ρπ, and ρx are set to be broad enough to accommodate a wide range of persistence degrees for

the five exogenous processes. The values of the volatilities for the structural innovations (σa,

σg, σm, σπ, and σx) are also crucial as they affect firms’signaling extraction problem. Hence,

we select quite broad priors for those volatilities. The noise variances of the exogenous private

signals regarding aggregate technology and demand conditions (σ̃a and σ̃g) are crucial for the

macroeconomic implications of the signaling channel as they affect the accuracy of private

information and, hence, to what extent firms rely on the policy signal to learn about these

non-policy shocks. To avoid determining a-priori how strongly the signaling channel influences

firms’ beliefs, we set a loose prior over these parameters. Finally, the prior means for the

measurement errors associated with inflation expectations are set so as to match the variance

of inflation expectations reported in the Livingston Survey following the practice of Del Negro

and Schorfheide (2008).

We combine the prior distribution for the parameters of the two models (i.e., the DIM

14A detailed description of the data set is provided in Section E of the online appendix.
15The Federal Reserve Bank of Philadelphia computes the real-time output gap as percent deviations of output

Yt from its potential Y ∗t (i.e., 100 (Yt − Y ∗t ) /Y ∗t ). Therefore, these data must be adjusted so as to make them
consistent with the data set constructed by Orphanides (2004) for the earlier quarters and with the model’s
concept of the output gap (i.e., 100 (lnYt − lnY ∗t )). Analogous transformation is made for the real-time inflation
rate.
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DIM - Posterior PIM - Posterior Prior
Name Mean 5% 95% Mean 5% 95% Type Mean Std.
θ 0.3608 0.3137 0.4112 0.4622 0.4061 0.5135 B 0.50 0.30
φπ 1.6782 1.4454 2.1392 1.5560 1.3770 1.7519 G 1.50 0.40
φx 0.6731 0.4898 0.7917 0.0092 0.0004 0.0195 G 0.50 0.40
h − − − 0.1629 0.0795 0.2414 B 0.50 0.20
ρa 0.9764 0.9635 0.9897 0.6043 0.5112 0.6886 B 0.50 0.20
ρg 0.9038 0.8663 0.9207 0.9721 0.9576 0.9873 B 0.50 0.20
ρm 0.9468 0.8807 0.9748 0.3483 0.2834 0.4112 B 0.50 0.20
ρπ 0.3411 0.2472 0.4577 0.2357 0.1409 0.3276 B 0.50 0.20
ρx 0.9541 0.9311 0.9812 0.9641 0.9379 0.9897 B 0.50 0.20
ρp − − − 0.9952 0.9897 0.9995 B 0.50 0.20

100σa 1.4208 0.9764 2.0395 0.5197 0.4437 0.5980 IG 0.80 1.50
100σ̃a 2.6068 1.5364 3.3252 − − − IG 0.80 1.50
100σg 3.6786 2.8764 4.0607 1.4489 0.6312 2.5713 IG 0.80 1.50
100σ̃g 34.884 34.240 35.522 − − − IG 0.80 1.50
100σm 0.8474 0.6866 0.9842 0.5266 0.4545 0.6030 IG 0.80 1.50
100σπ 0.2686 0.2415 0.3043 0.2567 0.2284 0.2849 IG 0.80 1.50
100σx 1.0448 0.9278 1.1762 1.0442 0.9260 1.1633 IG 0.80 1.50
100σp − − − 0.5796 0.4226 0.7605 IG 0.80 1.50
100σµ1 0.1226 0.1088 0.1388 0.1109 0.0959 0.1262 IG 0.10 0.08
100σµ2 0.1087 0.0963 0.1215 0.0658 0.0540 0.0788 IG 0.10 0.08
100ln π∗ 0.6532 0.5661 0.7482 0.8651 0.7562 0.9591 N 0.65 0.10

Table 1: Prior and posterior statistics for the parameters of the dispersed information model (DIM) and the
perfect information model (PIM)

and the PIM) with their likelihood function and conduct Bayesian inference. As explained in

Fernández-Villaverde and Rubio-Ramírez (2004) and An and Schorfheide (2007), a closed-form

expression for the posterior distribution is not available, but we can approximate the moments of

the posterior distribution via the Metropolis-Hastings algorithm. We obtain 250,000 posterior

draws for the dispersed information model and 1,000,000 draws for the perfect information

model. As far as the DIM is concerned, the posterior mean for the Calvo parameter θ implies

very flexible prices, with implied duration of roughly half a year.

The posterior mean for the inflation coeffi cient of the Taylor rule (φπ) is higher than its

prior mean and quite similar across models. The output gap coeffi cient in the Taylor rule φx
is substantially larger in the DIM than in the PIM. Since the Taylor rule also plays the role of

signaling equation in the DIM, a higher value for this parameter raises, all other things equal,

the amount of information conveyed by the policy rate about the central bank’s estimates

of the output gap. On the contrary, the federal funds rate is found to respond very weakly

to the output gap in the PIM. The other Taylor rule’s parameters are very similar across

the two models with the only exception of the persistence of monetary shocks ρm, which is
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substantially larger in the DIM. Note that highly persistent monetary shocks have the effect

of increasing the persistence of the signaling effects of monetary policy on the macroeconomy

insofar as changes in the policy rate signal this type of shock. It should also be noted that the

autoregressive parameter for the price markup ρp in the PIM is estimated to be very close to

unity, highlighting serious shortcomings of the PIM when it comes to endogenously accounting

for the persistent dynamics of inflation in the data. This is a point to which we will return in

the next section.16

The posterior mean for the variance of the firm-specific technology shock σ̃a implies that the

posterior mean of the signal-to-noise ratio σa/σ̃a is 0.54. The posterior mean for the signal-to-

noise ratio σg/σ̃g is extremely small, suggesting that firms’private information is less accurate

about demand shocks than about aggregate technology shocks. The posterior distribution

implies that the following properties characterize the estimated information structure. First,

firms learn mostly about aggregate technology from their private signal: the posterior median

for the ratio of private information to public information about the aggregate technology is

88 percent.17 Second, firms largely rely on the policy signal R̂t to learn about the demand

conditions ĝt, since the private signal conveys only 21 percent of the overall information firms

gather about this exogenous state variable. Third, the policy signal conveys roughly the same

amount of information about the demand shocks (ε̂g,t) and the exogenous deviations from the

policy rule (ε̂m,t, ε̂π,t, ε̂x,t). The second property of the estimated information structure implies

that firms rely mostly on the public signal to learn about the demand shocks and the exogenous

deviations from the Taylor rule. However, the third property implies that firms find it hard

to tell whether observed changes in the policy rate are due to exogenous deviations from the

policy rule or are instead due to the central bank’s response to demand shocks. This feature is

crucial to understanding most of the analysis that follows.

16Interestingly, the estimated steady-state inflation rate π∗ is 20 basis points lower in the DIM than in the
PIM. In both models, steady-state inflation affects only the intercept of the measurement equations for the
following observables: inflation, the federal funds rate, one-quarter-ahead and four-quarters-ahead inflation
expectations, and real-time inflation. As a result, this parameter is most likely informed by the sample mean of
those observables. Since we use the same data set to estimate the two models, a 20-basis-point difference in the
estimated value for steady-state inflation is striking. While it is very challenging to disentangle the exact reasons
behind this result, it is conceivable that the highly sluggish responses of inflation and inflation expectations to
shocks to the output gap mismeasurement (ξ̂x,t) in the DIM, along with the persistent overestimation of potential
output observed in the 1970s and in the 1980s, have affected the estimation of this parameter. This finding
is quite interesting in light of the growing theoretical literature on trend inflation (e.g., Ascari and Sbordone
2014.)
17We show how to use entropy-based measures to assess how much information is conveyed by signals to firms

in the online appendix. These measures quantify information flows following a standard practice in information
theory (Cover and Thomas 1991).
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3.3 The Empirical Fit of the DIM

The objective of this section is to validate the DIM as a reliable modeling framework for

macroeconomic analysis. To this end, we compare the goodness of fit of the DIM relative to

that of the PIM, which is a prototypical New Keynesian DSGE model that has been extensively

used for monetary policy analysis (e.g., Rotemberg and Woodford 1997; Clarida, Galí, and

Gertler 2000; Lubik and Schorfheide 2004; Coibion and Gorodnichenko 2011).

In Bayesian econometrics, non-nested model comparison is based on computing the posterior

probability of the two candidate models. The marginal likelihood is the appropriate density

for updating prior probabilities over a set of models.18 Since the marginal likelihood penalizes

for the number of model parameters (An and Schorfheide 2007), it can be applied to gauge the

relative fit of models that feature different numbers of parameters, such as the DIM and the

PIM. The DIM has a log marginal likelihood equal to -319.89, which is higher than that of the

PIM (-334.95). It follows that starting with a 50 percent prior probability over each of the two

competing models, the posterior probability of the DIM turns out to be extremely close to one.

Since the PIM has one more aggregate shock than the DIM, this result has to be interpreted

as fairly strong evidence in favor of the ability of the DIM to fit the data relatively well.

3.4 VAR Evidence

To further investigate the empirical performance of the DIM relative to perfect information

models, we evaluate the relative ability of this structural model to account for some key em-

pirical facts regarding the transmission of monetary disturbances to inflation and inflation

expectations. We use a VAR model to establish these facts.19 We perform Bayesian estimation

of this VAR model with four lags by using the data set described in Section 3.1. The results

that follow are robust to adopting the larger data set used in the influential study by Christiano,

Eichenbaum and Evans (2005) along with the SPF inflation expectations described in Section

3.1. We use a unit-root prior (Sims and Zha 1998) for the parameters of this Bayesian VAR with

a presample of six quarters. As is standard, the number of lags and the five hyperparameters

pinning down the prior are chosen so as to maximize the marginal likelihood.

The upper graphs of Figure 1 show the response of inflation expectations to monetary

shocks identified with sign restrictions (Uhlig 2005); that is, contractionary monetary shocks

move output and inflation down and the federal funds rate up for the first five quarters. The

lower graphs show the implied one-quarter-ahead (left plot) and four-quarters-ahead (right

18Furthermore, Fernández-Villaverde and Rubio-Ramírez (2004) show that the marginal likelihood allows
the researcher to select the best model to approximate the true probability distribution of the data-generating
process under the Kullback-Leibler distance.
19The VAR model unsurprisingly attains a higher marginal likelihood than that of the two structural models,

which validates the VAR model as the benchmark model from a Bayesian perspective (Schorfheide 2000).
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Figure 1: VAR Impulse Responses to a Monetary Shock and Conditional Forecast Errors. Upper graphs:

Impulse response functions to a monetary policy shock identified with sign restrictions. Lower graphs: The

implied one-quarter-ahead (left plot) and four-quarters-ahead (right plot) inflation forecast errors conditional

on the monetary shock. Solid lines denote posterior median responses. Shaded areas denote the 70 percent

posterior credible set. All numbers are annualized and in percent.

plot) inflation forecast errors conditional on the monetary shock. The gray areas denote the

70 percent posterior credible sets and the solid line the posterior median. Three facts have

to be emphasized. First, inflation forecast errors conditional on monetary shocks are fairly

persistent. In the aftermath of a monetary tightening, the lower graphs of Figure 1 show that

the posterior median (the solid line) of the one-quarter-ahead and four-quarters-ahead inflation

forecast errors are larger than zero for almost five years. The 70 percent posterior upper bound

for these forecast errors stays in negative territory for at least three years. Second, inflation

expectations barely move immediately after a monetary shock. Third, the responses of both

inflation and inflation expectations to monetary shocks exhibit a great deal of persistence, with

a half life20 exceeding 20 quarters. This last fact suggests that inflation expectations remain

disanchored for a few years after a monetary contraction.

While, as we shall see, the DIM can explain large and persistent conditional forecast errors

through signaling effects, perfect information models cannot. Indeed, the first fact is a conun-

20Half life is defined as the number of quarters after the initial shock it takes for the largest effect of a shock
to reduce to half.
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Figure 2: Smets and Wouter (2007) Model’s Prior Predictive Checks (1,000,000 draws). The dark and light
gray areas denote the 70 percent and 90 percent prior interquantile ranges for the contemporaneous response of

inflation expectations at one-quarter and four-quarters horizons to contractionary monetary shocks that raise

the interest rate by 0.25 percent in the model developed by Smets and Wouters (2007). The rectangle marks

the 70 percent posterior interquantile range of the VAR-implied contemporaneous responses to an equivalently

scaled monetary shock. All numbers are in percent. The red dashed lines are the zero axes.

drum for every perfect information model. A general property of perfect information models

is that the response of h-period-ahead expectations turns out to be identical to the response

of the actual variable h periods after the shock was realized. To put it differently, perfect in-

formation models predict conditional forecast errors to be always equal to zero. This property

of perfect information models arises because the nature and the magnitude of the initial shock

are perfectly known by the agents in every period. This property is not shared by the dispersed

information model in which rational agents are confused about the nature and the magnitude

of realized shocks.

State-of-the-art perfect-information models also struggle to explain the second and the third

fact. Figure 2 illustrates this point. The gray areas denote the prior interquantile ranges for the

contemporaneous response of inflation expectations in the Smets and Wouters (2007) model,

which is a state-of-the-art New Keynesian DSGE model with perfect information.21 These areas

21We use this relatively large-size DSGE model, instead of the PIM introduced in Section 2.8, to give perfect
information models the best chance to replicate the VAR impulse response functions. That model features a lot
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are computed by simulating 1 million parameter draws from the prior distribution described

in Tables 1A and 1B in Smets and Wouters (2007).22 In Bayesian econometrics this analysis

is called a prior predictive check (Geweke 2005, p. 262; An and Schorfheide 2005; Del Negro

and Schorfheide 2011; Leeper et al. 2015) and is often an important ex-ante specification check

to assess whether a given model has any chance to replicate an empirical finding of interest.

The rectangle with black solid edges marks the 70 percent posterior interquantile ranges for

the contemporaneous response of the inflation expectations implied by the VAR in Figure 1.

This plot shows that the VAR-implied contemporaneous responses lie far in the right tail of

the prior distribution implied by the model developed by Smets and Wouters (2007). This

means that for plausible parameterizations, the Smets and Wouters model cannot explain why

the observed inflation expectations do not contemporaneously respond to monetary shocks. In

particular, this structural model finds it very hard to rationalize contemporaneous drops in the

one-quarter-ahead inflation expectations that are smaller than 10 basis points while the VAR

analysis suggests that the 70 percent lower-bound fall is about 6 basis points.

As far as the third fact is concerned, we compute the prior distribution for the half life of

the response of inflation and inflation expectations to a monetary shock in the model developed

by Smets and Wouters (2007).23 The prior medians for the half life of the response of inflation,

one-quarter-ahead inflation expectations, and four-quarters-ahead inflation expectations are five

quarters, four quarters, and two quarters, respectively.24 These numbers are way below what

the VAR evidence suggests in Figure 1. The 90th percentile of these prior distributions is seven

quarters for the response of inflation, six quarters for the response of one-quarter-ahead inflation

expectations, and three quarters for the response of four-quarters-ahead inflation expectations.

Such low percentiles suggest that the Smets and Wouters (2007) model is unable to adequately

explain the large degree of persistence that characterizes the VAR response of inflation and

inflation expectations to monetary innovations. In the next section, we will show that the DIM

is significantly more successful at replicating this piece of VAR evidence.

3.5 Impulse Response Functions

In this section, we study the propagation of shocks in the estimated DIM. In Section 3.5.1,

we analyze the propagation of monetary shocks. We deal with the transmission of non-policy

of mechanisms to fit the persistence in the data and has been found to fit the data well relative to a Bayesian
VAR model (Del Negro et al. 2007 ). Note that the Smets and Wouters (2007) model features serially correlated
monetary shocks as we assume in the DIM.
22We rescale the monetary shocks so that the contemporaneous response of the interest rate in the model is

equal to 25 basis points, and we discard those prior draws that imply a drop in the interest rate immediately
after a contractionary monetary shock.
23Plots of these prior distributions are reported in the online appendix.
24The prior means are very close to the prior medians.
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Figure 3: Impulse Response Functions to a Contractionary Monetary Shock. Upper graphs: Impulse response
functions to a monetary shock that raises the federal funds rate by 25 bps. Responses are in percentage

deviations from their steady-state values. The responses of inflation, the interest rate, and inflation expectations

are annualized. The solid lines denote the posterior median of the responses. The gray areas denote 90 percent

credible sets. The horizontal axis in all graphs measures the number of quarters after the shock. Lower graphs:

Responses of average expectations about the five exogenous state variables in percentage deviations from their

steady-state level. Black solid lines denote the average first-order expectations. Dashed black lines denote the

average second-order expectations. Dashed-dotted lines denote the average third-order expectations.

shocks (i.e., demand shocks and aggregate technology shocks) in Section 3.5.2.

3.5.1 Propagation of Monetary Shocks

Figure 3 shows the impulse response functions (and their 90 percent posterior credible sets

in gray) of the level of real output (GDP), the inflation rate, the federal funds rate, one-

quarter-ahead inflation expectations, and four-quarters-ahead inflation expectations to a mon-

etary shock that raises the interest rate by 25 basis points. Four features of these impulse

response functions have to be emphasized. First, the DIM delivers impulse response functions

of inflation expectations that look remarkably similar to those implied by the VAR model intro-

duced in Section 3.4 (Figure 1). This similarity is striking if one takes into account that the DIM

is a small-scale model. As discussed in Section 3.4, even a state-of-the-art perfect-information

model, such as the one developed by Smets and Wouters (2007), has a hard time explaining the

high degree of persistence that characterizes the response of inflation and inflation expectations
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to monetary shocks implied by the VAR model. Second, the responses of inflation and inflation

expectations are very sluggish, even though the estimated degree of nominal rigidities is quite

small. These persistent patterns are in line with the VAR evidence introduced in Section 3.4.

Third, the DIM predicts fairly strong real effects of money. Sluggish adjustments in prices

imply a lower path for households’inflation expectations. Consequently, the expected path of

the real interest rate shifts upward after the contractionary monetary shock, leading the Euler

equation (7) to predict a large drop in real activity.25 Fourth, firms’ inflation expectations

respond positively to contractionary monetary shocks with some posterior probability, which is

also consistent with the VAR evidence depicted in Figure 1.

In the lower graphs of Figure 3, we report the response of the average higher-order expec-

tations (from the first order up to the third order). Notice that the signaling channel induces

firms to partially believe that the rise in the interest rate is due to either a positive demand

shock or a negative technology shock or an overestimation of the output gap by the central

bank. These signaling effects are not surprising given the poor quality of the private signal

about the demand conditions relative to the public signal and the information mix conveyed by

the policy signal, as discussed in Section 3.2. Furthermore, note that the average expectations

about the state of monetary policy ξ̂m,t and those about the central bank’s measurement error

for the output gap ξ̂x,t virtually respond in the same fashion to monetary shocks. The only

thing firms observe about these two exogenous processes is the interest rate R̂t. Therefore,

firms can rationally tell the two processes apart only if these processes have different statis-

tical properties. For instance, firms understand that a persistent change in the interest rate

is relatively more likely to be explained by the more persistent shock. Nevertheless, the sta-

tistical properties of these two exogenous processes turn out to be almost identical (Table 1).

Notice that, for given parameters of the monetary policy rule, the in-sample dynamics of these

two exogenous processes and hence their statistical properties are exactly determined by the

actual and real-time output gap as well as actual and real-time inflation, which are observable

variables in our estimation.

Figure 3 shows that a contractionary monetary shock causes inflation expectations (i) to

barely move upon impact and (ii) to remain persistently away from their steady-state value

(disanchoring). In Section 3.4, we showed that these patterns are observed in the data. The

DIM offers a structural interpretation of these patterns. To this end, we show the contribution

of the average expectations X(0:k)
t|t about the five exogenous state variables to the response of

inflation and inflation expectations in Figure 4. The vertical bars show the response of inflation

(left graph) and inflation expectations (middle and right graphs) to a contractionary monetary

25It should be noted that the log-linearized Euler equation (7) can be expanded forward to obtain x̂t =

−
∑∞
k=0

(
R̂t+k − Etπ̂t+k − r̂nt+k

)
, where

(
R̂t − Etπ̂t

)
denotes the real interest rate and r̂nt denotes the natural

rate, which is a function of aggregate technology shocks and demand shocks.
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Figure 4: Contributions of Average Expectations to the Response of Inflation and Inflation Expectations to
Monetary Shocks. Parameter values are set equal to the posterior mean. The monetary shock is rescaled so

as to raise the interest rate by 0.25 percent. The solid red line captures the response of inflation (left graph),

one-quarter-ahead inflation expectations (middle graph), and four-quarters-ahead inflation expectations (right

graph). The vertical bars capture the contribution of the true shock as well as that of the average expectations

to these responses.

shock obtained by simulating the DIM using only one of the five exogenous state variables and

the associated average expectations. The sum of the five vertical bars equals the response of

inflation and inflation expectations (i.e., the solid red line) evaluated at the posterior mean

reported in Table 1. Upon impact, the contribution of the average expectations about positive

demand shocks (the dark gray bars lying in positive territory) almost perfectly offsets the

contribution of the average expectations about the exogenous deviations from the monetary

policy rule (the light gray and white bars lying in negative territory). This finding implies

that the monetary tightening owing to the policy shock immediately signals that the central

bank is responding to a demand shock, exerting upward pressures on inflation expectations.

These signaling effects explain why inflation expectations hardly move as the monetary shock

hits and then evolve sluggishly. The persistent disanchoring of inflation expectations observed

in the longer run is explained by the fact that the monetary tightening ends up signaling the

central bank’s persistent mistakes in measuring the output gap, as captured by the white bars

lying in negative territory. These signaling effects raise the half life of the response of inflation
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expectations in line with what is observed in the data.26

The DIM seems to overstate the persistence of inflation forecast errors after a monetary

policy shock compared with the predictions of the VAR model introduced in Section 3.4. In

this respect, we should not forget that the DIM is a very small-scale model. While a more so-

phisticated version of the DIM could do better at reproducing the persistence of the conditional

forecast errors implied by the VAR model, no perfect information model can for the reasons

explained in Section 3.4.

The real effects of money in the estimated DIM are stronger than what the VAR literature

typically finds. While introducing consumption habits is likely to dampen the response of out-

put, this extension would substantially complicate the solution of the DIM, preventing Bayesian

estimation. Incomplete information on the side of households could also cause consumption and

output to respond more sluggishly to monetary shocks. This extension is discussed in the on-

line appendix. Nakamura and Steinsson (2015) use unexpected changes in interest rates over

a 30-minute window surrounding scheduled Federal Reserve announcements to identify mone-

tary policy shocks in a reduced-form model. These scholars find that the response of inflation

is small and delayed. They use this evidence to estimate the key parameters of a workhorse

perfect-information New Keynesian model and find that the implied real effects of money are

quantitatively larger than what is usually found by the VAR literature.

As shown in the lower graphs of Figure 3, some average expectations respond very sluggishly

to monetary shocks. While these persistent adjustments are crucial for the model to deliver

a degree of persistence in line with the data, they may also raise concerns about what may

appear to be an implausibly long period for firms to learn the true value of the exogenous state

variables. These concerns will be addressed in Section 4. Shocks to the central bank’s forecast

errors regarding the output gap εx,t propagate across the macroeconomy almost identically to

the monetary shocks εm,t, and hence, their analysis is omitted.27

26To understand why signaling an adverse technology shock has deflationary consequences (black bars in
Figure 4), recall that the average expectations about the real marginal cost in the imperfect-common-knowledge
Phillips curve (6) are given by m̂c(k)t|t = ŷ

(k)
t|t − â

(k−1)
t|t , k ≥ 1. Note that shocks are orthogonal and hence

∂â
(0)
t|t /∂εm,t = ∂ât/∂εm,t = 0. Since expecting an adverse technology shock leads firms to expect a fall in output

(ŷ(1)t|t ), the average first-order expectations about the real marginal costs m̂c
(1)
t|t = ŷ

(1)
t|t − ât would fall, driving

down inflation and inflation expectations. If this first-order effect (m̂c(1)t|t = ŷ
(1)
t|t − ât) dominates the higher-order

effects (m̂c(k)t|t = ŷ
(k)
t|t − â

(k−1)
t|t , k ≥ 2), then expecting a negative technology shock will bring about deflationary

pressures.
27The propagation of real-time measurement errors regarding inflation is less interesting from the perspective

of this paper and is omitted. The results are available upon request.
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Figure 5: Impulse Response Functions to a Positive Demand Shock. Upper graphs: Impulse response functions
to a one-standard deviation positive demand shock. Responses are in percent deviation from steady-state values.

The responses of inflation, the interest rate, and inflation expectations are annualized. The solid lines denote

posterior median of the responses. The gray areas denote 90 percent posterior credible sets. The horizontal axis

in all graphs measures the number of quarters after the shock. Lower graphs: Responses of average expectations

about the five exogenous state variables in percentage deviations from their steady-state value. Black solid lines

denote the average first-order expectations. Dashed black lines denote the average second-order expectations.

Dashed-dotted lines denote the average third-order expectations.

3.5.2 Propagation of Non-Policy Shocks

The propagation of a one-standard-deviation positive demand shock is described in Figure

5. This figure shows the responses of output in percentage deviations from its steady state.

The responses of inflation, the federal funds rate, and inflation expectations are expressed in

annualized percentage deviations from their steady-state value. Interestingly, inflation and

inflation expectations respond negatively to demand shocks, while output responds positively.

Note that the central bank raises its policy rate in the aftermath of a positive demand shock

leading to two types of signaling effects. First, the monetary tightening induces firms to believe

that a contractionary deviation from the monetary policy rule has happened. Second, the

observed rise in the federal funds rate induces firms to believe that a negative technology

shock might have occurred. Figure 6 shows that both of these effects push inflation down,28

28Signaling adverse technology shocks brings about deflationary pressures because it leads firms to anticipate
a fall in output, as discussed in Section 3.5.1.
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Figure 6: Contributions of Average Expectations to the Response of Inflation and Inflation Expectations to
Demand Shocks. Parameter values are set equal to the posterior mean. The shock is positive and its size equals

one standard deviation. The solid red line captures the response of inflation (left graph), one-quarter-ahead

inflation expectations (middle graph), and four-quarters-ahead inflation expectations (right graph). The vertical

bars capture the contribution of the true shock as well as that of the average expectations to these responses.

countering the rise in inflation due to the positive demand shock, which is captured by the gray

bars. While the second effect (captured by the black bars in Figure 6) has quantitatively a fairly

small impact on inflation expectations, the first effect (captured by the white bars) appears to

substantially contribute to pushing inflation expectations down. Furthermore, the second effect

is generally shorter lived than the first one. The first effect is very persistent indeed, reflecting

the following two facts. First, firms find it hard to disentangle whether changes in the policy

rate are due to exogenous deviations from the monetary rule or are instead due to demand

shocks for reasons that were analyzed in Section 3.2. Second, in the aftermath of a positive

demand shock, monetary policy ends up signaling persistent contractionary deviations from

the monetary rule. The high persistence of the exogenous state variables ξ̂m,t and ξ̂x,t in the

estimated DIM (Table 1) clearly drives this result because rational firms know that when the

central bank deviates from the rule, this behavior is expected to last for a fairly long time.

Quite interestingly, the signaling channel transforms demand shocks (ε̂g,t) into supply shocks

that move output and inflation in opposite directions. Unlike technology shocks, this artificial

supply shock implies a negative comovement between the federal funds rate and the rate of

inflation, as well as between the interest rate and inflation expectations. This property is likely
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to help the model fit the 1970s, when the policy rate was relatively low while inflation and

inflation expectations attained quite high values.

A drop in the policy rate owing to a positive technology shock induces firms to believe

that the central bank is responding to either an expansionary deviation from the monetary

policy rule (ξ̂m,t < 0 and ξ̂x,t < 0) or a negative demand shock. These two signals turn out to

have almost perfectly offsetting effects on inflation and inflation expectations. The fairly high

accuracy of private information about aggregate technology clearly contributes to this result.

Because of this, the propagation of technology shocks is qualitatively the same as that in perfect

information models, with output responding positively and inflation responding negatively. The

propagation of technology shocks is analyzed in greater detail in the online appendix.

3.6 The Signaling Effects of Monetary Policy

In this section, we use the DIM to empirically assess the signaling effects of monetary policy on

inflation and inflation expectations. To this end, we run a Bayesian counterfactual experiment

using an algorithm that can be described as follows. In Step 1, for every posterior draw of

the DIM parameters, we obtain the model’s predicted series for the five structural shocks (the

aggregate technology shock εa,t, the demand shock, εg,t, the monetary shock εm,t, and the

shocks to the central bank’s measurement errors επ,t and εx,t) using the two-sided Kalman filter

and the seven observable variables introduced in Section 3.1. In Step 2, these filtered series of

shocks are used to simulate the rate of inflation and inflation expectations from the following

two models: (i) the DIM and (ii) the counterfactual DIM, in which monetary policy has no

signaling effects. The latter model is obtained from the DIM by assuming that firms do not

observe the history of the policy rate R̂t. This assumption implies that the signaling channel

is inactive, so firms form their expectations by using only their private information (i.e., the

history of the signals âj,t and ĝj,t). In Step 3, we compute the mean of the simulated series

across posterior draws for the two models.

The shocks are filtered in Step 1 by using the data set used for estimation and described

in Section 3.1. Since this data set includes both the final (HP-filter-based) output gap and the

real-time output gap from the Greenbook, the errors made by the central bank in measuring

the current output gap ξ̂x,t are identical to the errors measured by Orphanides (2004). This

feature allows us to evaluate the signaling effects of monetary policy after controlling for the

inflationary effects due to the Federal Reserve’s persistent mismeasurement of the output gap

in the 1970s, which Orphanides (2001, 2002, 2003) advocate as one of the leading reasons why

inflation was so heightened in that decade.29

The solid blue line in the upper graphs of Figure 7 denotes the inflation rate (left graph)

29The series of the real-time output gap is plotted in the online appendix.
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Figure 7: Signaling Effects of Monetary Policy on Inflation and Inflation Expectations. Upper graphs: Solid
blue line: inflation rate (left graph) and inflation expectations (middle and right graphs) simulated from the

estimated dispersed information model (DIM) using the two-sided filtered shocks from the estimated DIM. Red

dashed line: simulation from the counterfactual DIM, in which the signaling channel is shut down, using the

two-sided filtered shocks from the estimated DIM. All numbers are annualized and in percent. Lower graphs:

The signaling effects of monetary policy on inflation (left graph) and inflation expectations (middle and right

graphs). All numbers are annualized and in percent.

and the inflation expectations (middle and right graphs) simulated from the DIM using the

two-sided filtered shocks from the estimated DIM.30 The red dashed line denotes the series

of inflation (left graph) and inflation expectations (middle and right graphs) simulated from

the counterfactual DIM, in which the signaling channel is shut down. The vertical difference

between the two simulated series in the upper graphs captures the signaling effects of monetary

policy over the sample period and is reported in the lower graphs.

In the model, signaling effects on inflation are particularly strong in the 1970s, adding up to

6.4 percentage points to the rate of inflation in that decade. Specifically, signaling effects play

an important role in explaining why inflation was persistently heightened in the second half

of the 1970s. These effects are even more pronounced when one looks at the signaling effects

of monetary policy on inflation expectations. The signaling effects on inflation expectations

30The simulated series of inflation is by construction the same as in the data. The simulated series of inflation
expectations do not exactly replicate the actual data because of the measurement errors we attribute to the
observed inflation expectations. However, the discrepancy between these two series is rather minuscule, since
i.i.d. measurement errors just smooth out the simulated series slightly.
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Figure 8: Contributions of Shocks to Signaling Effects on Inflation Upper graphs: The solid blue line captures
the signaling effects of monetary policy on inflation. Red dashed line captures the signaling effects on inflation

when only one shock is used for simulation. Left graphs: only aggregate technology shocks are used. Right

graphs: only demand shocks are used. Lower graphs: the two-sided filtered dynamics of aggregate technology

ât(left) and demand conditions ĝt (right) used for simulation. All numbers are annualized and in percent.

are always positive until the end of the 1990s, largely explaining why in the data inflation

expectations were almost always above the rate of inflation from 1981:Q2 through the end of

the 1980s.31

To shed light on the origin of the estimated signaling effects on inflation, in Figure 8 we

compare the dynamics of the signaling effects on inflation (the solid blue line) with the signaling

effects (the red dashed line) that are driven only by technology shocks (upper left graph) and

only by demand shocks (upper right graph).32 In the lower graphs of Figure 8, we show

the two-sided filtered series of the two exogenous state variables ât (left graph) and ĝt (right

graph) obtained in Step 1 of the Bayesian counterfactual experiment. We observe that most

of the signaling effects on inflation in the 1970s are due to negative demand shocks because

the signaling effects driven only by these shocks (the red dashed line) are similar to the overall

31In that period, observed one-quarter-ahead (four-quarters-ahead) inflation expectations have been 70 basis
points (40 basis points) higher on average than the inflation rate.
32These counterfactual series are obtained by simulating the estimated DIM by using only the two-sided

filtered estimate of technology and demand shocks. The larger figure reporting the contribution to signaling
effects of all five shocks is available upon request. The omitted shocks are found to contribute only marginally
to the signaling effects of monetary policy on inflation and inflation expectations.
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Figure 9: Contributions of Shocks to Signaling Effects on Inflation Expectations. Solid blue line: signaling
effects of monetary policy on inflation expectations. Red dashed line: signaling effects on inflation expectations

when only one shock is used for simulation. Left graphs: only aggregate technology shocks are used. Right

graphs: only demand shocks are used. Upper graphs: One-quarter-ahead inflation expectations. Lower graphs:

Four-quarters-ahead inflation expectations.

signaling effects (the blue solid line) in that decade. In particular, two large negative demand

shocks that occurred in 1974 explain the large and positive signaling effects on inflation in the

second half of the 1970s. As shown in Section 3.5.2, negative demand shocks prompted the

Federal Reserve to lower the policy rate, which signaled both persistent expansionary monetary

shocks and long-lasting nowcast errors in measuring the output gap by the policymaker. In

Section 4, we will show that there is strong VAR evidence supporting the realization of these

two large demand shocks in 1974 once the signaling effects of monetary policy are taken into

account for identifying these shocks.

Signaling effects associated with positive technology shocks contributed to raising inflation

by up to 3 percentage points in 1975-1976. However, this contribution was quite short-lived

because of the predominance of negative technology shocks in the 1970s, which brought about

deflationary signaling effects, as shown in the upper left graph of Figure 8. According to

the model, in the 1980s and in the early 1990s, the signaling effects of monetary policy on

inflation are predominantly driven by aggregate technology shocks. Improvements in aggregate

technology during this period induced the Federal Reserve to carry out a monetary policy that

ended up signaling expansionary deviations from the monetary policy rule.
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Figure 10: Signaling Effects on Inflation and Inflation Expectations due to Negative Technology Shocks. Upper
graphs: Response of inflation (the left graph), one-quarter-ahead inflation expectations (the mddle graph), and

four-quarters-ahead inflation expectations (the right graph) to a one-standard-deviation negative technology

shock in the estimated DIM, with signaling effects (the solid blue line) and in the counterfactual DIM, with no

signaling effects (the red dashed line). Lower graphs: Black circles denote the response of the true exogenous

state variables to a negative technology shock. The solid blue line denotes the response of the average first-

order expectations in the estimated DIM, with signaling effects. The red dashed line denotes the response of

the average first-order expectations in the counterfactual DIM, with no signaling effects.

The main drivers of signaling effects on inflation expectations are shown in Figure 9. These

graphs compare the dynamics of the signaling effects on inflation expectations (blue solid line)

with the technology-driven (left graphs) and the demand-driven (right graphs) signaling effects

on the one-quarter-ahead (upper graphs) and four-quarters-ahead (lower graphs) inflation ex-

pectations, which are denoted with the red dashed line. Similar to the signaling effects on

inflation, the signaling effects on inflation expectations during the 1970s are largely driven by

demand shocks (see the right plots). The red dashed line in the left graphs of Figure 9 shows

that technology-driven signaling effects on inflation expectations started building up slowly in

the 1970s, which was a decade characterized by large and repeated negative technology shocks.

This slow-moving pattern suggests that technology shocks bring about delayed signaling effects

on inflation expectations. This pattern is fairly different from the dynamics that characterized

the technology-driven signaling effects on inflation, which move around the zero line during the

1970s in the upper left graph of Figure 8. The improvements in aggregate technology observed
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from 1982 through the early 1990s slowly bring about a downward trend in the technology-driven

signaling effects on inflation expectations. However, these effects are delayed and signaling ef-

fects on inflation expectations remain positive until the mid-1990s. Thus, technology-driven

signaling effects contribute to explaining why inflation expectations were higher on average

than inflation throughout the 1980s.

Why do negative technology shocks raise inflation expectations through the signaling chan-

nel with delays? To investigate this question, in Figure 10 we show the response of inflation

(the upper left graph) and inflation expectations (the upper middle and right graphs) to a

one-standard-deviation negative technology shock in the estimated DIM (the solid blue line)

and in the counterfactual DIM with no signaling effects (the red dashed line). The difference

between these two lines captures the signaling effects due to negative technology shocks. Two

features deserve to be emphasized. First, while signaling effects associated with technology

shocks predominantly affect inflation at short horizons, inflation expectations are primarily in-

fluenced at longer horizons. Second, signaling effects on inflation and inflation expectations

switch in sign and become inflationary a few quarters past the shock. This happens because six

quarters after a negative technology shock, firms consider the policy rate to be lower than the

level that they would have expected based on their beliefs about inflation and the output gap.

Consequently, monetary policy starts signaling long-lasting expansionary deviations from the

monetary rule (ξ̂m,t < 0 and ξ̂x,t < 0), as shown in the lower graphs of Figure 10. This suggests

that large negative technology shocks that occurred in the late 1970s and early 1980s brought

about signaling effects of monetary policy that contributed to slowly raising inflation expecta-

tions well into the 1980s. Conversely, improvements in technological conditions throughout the

1980s caused signaling effects on inflation expectations to slowly fall from mid-1980s through

the end of the 1990s, as shown in the left graphs of Figure 9.

4 Discussion

The sluggish dynamics of beliefs in the DIM seem to be quite successful in explaining the persis-

tent macroeconomic dynamics of inflation and inflation expectations. However, one may argue

that such persistent dynamics of beliefs imply that firms are implausibly confused about the

aggregate state of the economy. To mitigate this concern, we have included one-quarter-ahead

and four-quarters-ahead inflation expectations in our data set for estimation. In addition, an

important check to assess the plausibility of the information set is to compare the nowcast errors

for inflation predicted by the DIM (π̂t − π̂(1)t|t ) to those measured by the Survey of Professional
Forecasters. Figure 11 shows this comparison. The two nowcast errors exhibit a great deal of

comovement with a correlation coeffi cient of 0.82. Furthermore, the mean of the absolute now-

cast errors for inflation is 0.79 in the model vis-a-vis 0.81 in the data. This result suggests that
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Figure 11: Inflation Nowcast Errors. The model-implied nowcast errors are obtained by subtracting the
smoothed estimates of firms’inflation nowcasts (i.e., lnπ∗ + π̂

(0)
t|t ) from the realized inflation rate. Smoothed

estimates are obtained by setting the value of the DIM parameters to their posterior mean. Nowcast errors are

reported in percentage points of annualized rates.

the degree of information incompleteness in the estimated DIM is not implausible. It should

also be noted that perfect information models predict that nowcasts errors are counterfactually

equal to zero.

We showed that the signaling channel explains the heightened inflation and inflation expec-

tations observed in the 1970s because of two large negative demand shocks that occurred in

1974. These two shocks caused the Federal Reserve to lower the policy rate, signaling expan-

sionary monetary shocks and the central bank’s mismeasurement of the output gap. Were there

negative demand shocks in 1974? Recall that the signaling channel mutes the propagation of

demand shocks so that they look like supply shocks, moving output and inflation in opposite

directions (Figure 5). We know that traditional demand shocks were not so important in the

1970s. But what about demand shocks after controlling for the signaling effects of monetary

policy? Is there any evidence that these demand shocks in disguise actually occurred in the

1970s and, more specifically, in 1974? The answer to this question is yes. To reach this con-

clusion, we estimate a Bayesian VAR model using a large data set that includes GDP growth,

consumption growth, investment growth, the growth rate of real compensation per hour, the

growth rate of money (M2), the federal funds rate, the inflation rate, the growth rate of labor
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Figure 12: The solid black line denotes the posterior median of the demand shocks identified using the VAR
model. The red dashed line captures the posterior median of the smoothed estimates of demand shocks implied

by the dispersed information model.

productivity, one-quarter-ahead (SPF) inflation expectations, and four-quarters-ahead (SPF)

inflation expectations. Apart from the last two observables, this data set is very similar to the

one used in the influential study by Christiano, Eichenbaum and Evans (2005).

Demand shocks are identified by using sign restrictions that are consistent with the DIM

(Figure 5); that is, positive demand shocks are assumed to lower inflation and to raise output as

well as the federal funds rate for the first five quarters. Figure 12 shows the historical sequence

of demand shocks identified by applying these sign restrictions to the VAR (solid black line)

along with the two-sided estimate of these innovations identified using the estimated DIM (red

dashed line). First, the two series seem to be quite positively correlated, with the VAR estimates

being less volatile. The coeffi cient of correlation is slightly below 0.60. Second, judging from

the series of the demand innovations implied by the VAR model (i.e., the red dashed line), it

looks like the first half of the 1970s was characterized by a few of these large negative demand

shocks in disguise. Third, consistent with the estimated DIM, the VAR model suggests that

the two largest negative demand shocks of the sample were realized in 1974, which is marked

by the gray area in the plot. According to the estimated DIM, these two large negative demand

shocks gave rise to sizable signaling effects on inflation and inflation expectations throughout

the second half of the 1970s.
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On the narrative side, 1974 was a year of high political uncertainty in the U.S. because of

the unraveling of the so-called Watergate scandal, which led the House of Representatives to

open the impeachment process against President Richard Nixon that year. The scandal started

in 1972 but it arguably became a major constitutional crisis starting on February 6, 1974, when

the House of Representatives approved a resolution giving the Judiciary Committee authority to

investigate impeachment of the President.33 On July 27, 1974, the House Judiciary Committee

voted to recommend the first article of impeachment against the President: obstruction of

justice. The House recommended the second article, abuse of power, on July 29, 1974. The

next day, on July 30, 1974, the House recommended the third article: contempt of Congress.

On August 9, 1974, President Richard Nixon resigned. These events undoubtedly marked a

period of high political uncertainty for U.S. households that might well have had an impact on

how they discounted future events.

Another concern has to do with the assumption that firms observe only one endogenous

variable, the interest rate, and all the remaining private information comes from exogenous sig-

nals. As discussed in Section 2.6, our information structure is built on the imperfect-common-

knowledge literature (Woodford 2002; Adam 2007; Nimark 2008). However, one may be reason-

ably concerned that firms are not allowed, for instance, to use information about the quantities

they sell for price-setting decisions. The log-linear approximation to Equation (2) implies that

observing the quantities sold would be one additional endogenous signal that would perfectly

reveal nominal output to firms. We find that estimating a DIM in which firms perfectly ob-

serve nominal output would deliver a substantially lower marginal likelihood (-586.76<-319.89),

suggesting that this alternative specification of the DIM fits the data rather poorly. Allowing

firms to perfectly observe nominal output ends up endowing them with too much information,

critically weakening the ability of the dispersed information model to generate macroeconomic

fluctuations with the right degree of persistence. This is particularly true for the case of the

federal funds rate and for the observed inflation expectations. This empirical shortcoming of

the DIM in which firms observe nominal output cannot be fixed by simply dropping the ex-

ogenous signals aj,t and gj,t from firms’information set. This finding suggests that firms may

not pay attention to nominal output when making their price-setting decisions, even though

information about this variable is arguably quite cheap to obtain. This result is in line with

the empirical study by Andrade et al. (2014), who use the Blue Chip Financial Forecasts to

document that disagreement about inflation and GDP is quite high at short horizons.

33Even though many resolutions to impeach the President were submitted in 1972 and 1973, the Judiciary
Committee always refused to take up the case.
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5 Concluding Remarks

This paper introduces a dynamic general equilibrium model in which information is dispersed

across price setters and the interest rate set by the central bank has signaling effects. In

this model, monetary impulses propagate through two channels: (i) the channel based on

the central bank’s ability to affect the real interest rate due to price stickiness and dispersed

information and (ii) the signaling channel. The latter arises because changing the policy rate

conveys information about the central bank’s assessment of inflation and the output gap to

price setters.

We fit the model to a data set that includes the Survey of Professional Forecasters as a

measure of price setters’inflation expectations. We perform an econometric evaluation of the

model with signaling effects of monetary policy, showing that this model can closely replicate

the response of inflation expectations to monetary shocks implied by a VAR model. We also

find that the signaling channel makes demand shocks look like supply shocks that move inflation

and output in opposite directions. Moreover, we show that the signaling effects of monetary

policy can account for why inflation and inflation expectations were so persistently heightened

in the 1970s.34

While there exist several channels through which central banks can communicate with mar-

kets nowadays, our paper focuses on interest-rate-based communication. Interest-rate-based

communication was virtually the only form of the central bank’s communication until February

1994 in the U.S. (Campbell et al., 2012). The importance of this type of communication has

been growing in recent years. See, for instance, the widespread endorsement of the practice of

providing information about the likely future path of the policy rate, which goes by the name

of forward guidance. While we do not study the effects of forward guidance in this paper, we

have shown how to formalize interest-rate-based communication in dynamic general equilibrium

models and how to use these models to formally evaluate the macroeconomic effects of this type

of communication.

Changes in the Federal Reserve’s attitude toward inflation stabilization have been docu-

mented by Davig and Leeper (2007), Justiniano and Primiceri (2008), Fernández-Villaverde,

Guerrón-Quintana and Rubio-Ramírez (2010) and Bianchi (2013). Time-varying model para-

meters allow us to study how the signaling effects of monetary policy on the macroeconomy

have changed over time. This fascinating topic is left for future research.

34Other popular theories for why inflation rose in the 1970s are (i) the bad luck view (e.g., Cogley and Sargent
2005; Sims and Zha 2006; Primiceri 2005; and Liu, Waggoner, and Zha 2011), (ii) the lack of commitment view
(e.g., Chari, Christiano, and Eichenbaum 1998; Christiano and Gust 2000), (iii) the policy mistakes view
(e.g., Sargent 2001; Clarida, Galí, and Gertler 2000; Lubik and Schorfheide 2004; Primiceri 2006; Coibion and
Gorodnichenko 2011), and (iv) the fiscal and monetary interactions view (e.g., Sargent, Williams, and Zha 2006;
Bianchi and Ilut 2016; Bianchi and Melosi, 2014b).
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