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ABSTRACT

A standard approach to estimating structural parameters in life-cycle models imposes sufficient as-
sumptions on the data to identify the “age profile” of outcomes, then chooses model parameters
so that the model’s age profile matches this empirical age profile. I show that this approach is
both incorrect and unnecessary: incorrect, because it generally produces inconsistent estimators of
the structural parameters, and unnecessary, because consistent estimators can be obtained under
weaker assumptions. I derive an estimation method that avoids the problems of the standard ap-
proach. I illustrate the method’s benefits analytically in a simple model of consumption inequality
and numerically by reestimating the classic life-cycle consumption model of Gourinchas and Parker
(2002).
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1. Introduction

A well-known difficulty in investigating how economic choices change over the life

cycle is that it is impossible to separately identify the effects of age, time, and birth cohort

on the outcome of interest. This paper shows that a standard solution to this age-time-cohort

identification problem will, in general, cause researchers to make incorrect inferences about

the structural parameters of their economic models. I provide a simple alternative that allows

accurate identification of the structural parameters, without having to first identify age, time,

and cohort effects. The alternative method identifies structural parameters from the second

and higher derivatives of the age effects; by comparison, the standard solution resorts to a

normalization on the first derivative.

Consider an economic model that says outcome y depends on age a according to

y(a) = ξ0 + q(a;θ∗), (1)

where ξ0 is an intercept, q is a known function, and θ∗ is a vector of structural parameters. A

researcher who has data on the age profile y(a) might estimate θ∗ by the vector of parameters

that makes q(a;θ∗) as close as possible to the observed age profile.

In the real world, outcomes y depend not only on age but also on other variables —

in particular, time and birth cohort. For example, an investor’s allocation to stocks may

depend not only on her age but also on expected returns this year (time) and on whether she

is averse to stocks because she grew up during the Great Depression (cohort). A researcher

who wishes to confront a model of the form (1) with data therefore has two choices: enrich

the model to describe time and cohort effects, or remove time and cohort effects from the

data before confronting the model. In some applications, the theoretical source of time and

cohort effects is clear, and it is straightforward to enrich the model to include them. But in

other applications, a researcher may prefer a semistructural approach that models only age

effects but not time and cohort effects — either to avoid reliance on assumptions about time

and cohort effects that are not central to the issue being analyzed, or to make the model

more tractable. A researcher who takes a semistructural approach will need to remove time

and cohort effects from the data. This paper is concerned with how best to do so.



Let ya,t be the outcome for people who are age a at time t. One might hope to recover

an age profile purged of time and cohort effects by regressing ya,t on a full set of age, time,

and cohort dummy variables:

ya,t = ξ0 + αa + βt + γc + ua,t, (2)

where c = t − a is the birth cohort and ua,t is an unobservable error. (I impose throughout

the innocuous normalization that
∑

a q(a;θ) =
∑

a αa =
∑

t βt =
∑

c γc = 0.) The age

coefficients αa represent the age profile of y after controlling for period and cohort effects.

However, the αa’s in (2) are not identified: If (2) holds, then for any real number k, so does

ya,t = ξ0 + (αa + ka− kā) + (βt − kt+ kt̄) + (γc + kc− kc̄) + ua,t, (2′)

where ā, t̄, and c̄ are the means of a, t, and c.

The standard method for solving this identification problem is to impose a normaliza-

tion on the age, period, or cohort effects to pin down k, so that the αa’s can be identified and

the parameters θ∗ chosen to match them. But the estimator of θ∗ in the standard approach

depends on the arbitrary normalization used to pin down k. If the normalization is incorrect,

the estimator will be inconsistent. As a trivial example, suppose the model predicts that y

increases with age if and only if a scalar parameter θ∗ is positive. If the age effects estimated

under the chosen normalization increase with age, it would be tempting to conclude that

θ∗ > 0. But this conclusion would be incorrect. For k sufficiently negative, αa + ka − kā

decreases with age, and if a restriction were chosen that corresponded to such a negative value

of k, one would obtain age effect estimates that implied θ∗ ≤ 0. Checking the estimator’s

robustness to a small number of possible normalizations, as is common in the literature, does

not solve the problem, for two reasons. First, even if the estimates do not vary much across

the normalizations that are tested, other normalizations might still have produced different

results. Second, if one of the tested normalizations is correct and another is not, the estimates

may vary across normalizations but the researcher will not know which one is correct.

The new method proposed in this paper exploits the fact that the age effects are

identified up to a single constant k. The method obtains estimated age effects α̂a using any
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just-identified normalization on (2), then chooses k and θ∗ such that α̂a + ka− kā is as close

as possible to q(a;θ∗). The logic is that the model should fit at least as well with a correct

value for k as with an incorrect value. Thus, optimizing over k should produce a consistent

estimator, a result formally proven below.

This paper’s method amounts to removing a linear trend from both the model age

profile q(a,θ∗) and the empirical age profile α̂a, then choosing θ∗ so that these detrended age

profiles match. Thus, this paper’s method identifies θ∗ from the second and higher derivatives

of the age profile, discarding all information about the first derivative. The method therefore

uses strictly weaker assumptions than the standard method, which imposes a normalization

on the first derivative. Hall (1968) shows that the second and higher derivatives of the age

profile are identified even though the first derivative is not. McKenzie (2006) uses the second

derivative to characterize the reduced-form relationship between a and y. The innovation here

is that I show how to use the second and higher derivatives to identify structural parameters.

This procedure requires q to be sufficiently nonlinear, in a sense made precise below.

The method therefore does not guarantee point identification of θ∗, but when q is nonlinear

enough that a normalization on the first derivative of the age effects is not needed to identify

θ∗, the method prevents this unneeded normalization from contaminating the estimates.

The paper proceeds as follows. Section 2 formally defines the new estimator, states

conditions under which it identifies the structural parameters, and shows why the standard

method generally fails to do so. Section 3 reviews literature using the standard method. Sec-

tion 4 illustrates this paper’s method analytically in a simple life-cycle model of consumption

inequality, while section 5 shows that this paper’s method produces different empirical results

in the life-cycle consumption model of Gourinchas and Parker (2002). Section 6 concludes.

2. The method

Assume that the observed ages run from 1 to A and that θ∗ is known to be in a set

Θ. This paper’s method for estimating θ∗ is:

1. Estimate the ordinary least squares regression (2), subject to
∑

a αa =
∑

t βt =
∑

c γc =

0 and to any one additional linear restriction that identifies the parameters. The re-

striction does not matter so long as there is exactly one.
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2. Let α̂ be the vector of estimated age effects from step 1. Define the column vectors

a = [1− ā, . . . , A− ā]′ and q(θ) = [q(1,θ), . . . , q(A,θ)]′. Choose θ̂ and k̂ to solve

(θ̂, k̂) ∈ arg min
θ∈Θ,k

[q(θ)− α̂− ka]′W[q(θ)− α̂− ka], (3)

where W is any A× A symmetric, positive definite weighting matrix.

The choice of identifying restriction in step 1 cannot affect the value of θ̂ in step 2, because

changing the restriction merely adds a linear trend to α̂, which can be removed by changing

the choice of k in (3). The standard method is identical to this paper’s method but imposes

k = 0 in (3). Thus the identifying restriction in step 1 can affect the estimator under the

standard method, and this paper’s method relaxes the assumptions of the standard method.

A. Identification

Identification requires that age, time, and cohort effects are additively separable.

Assumption 1. The observed data satisfy

ya,t = ξ∗0 + q(a;θ∗) + β∗t + γ∗c + ua,t (4)

for some intercept ξ∗0 , time effects β∗t , cohort effects γ∗c , and measurement errors ua,t satisfying

E[ua,t|a, t] = 0 (5)

and the normalizations ∀θ
∑

a q(a;θ) = 0 and
∑

t β
∗
t =

∑
c γ
∗
c = 0.

Assumption 1 is a joint restriction on the sources of time and cohort effects, the

functional form of the structural model, and the choice of variable y with which to estimate

the model. At the level of generality considered here, I cannot provide primitive conditions

under which this joint restriction holds. However, some examples are illustrative. As shown in

section 4, additively separable time and cohort effects can arise from measurement error that

has a different distribution in different years or for different cohorts. Alternatively, if a model’s

objective function and constraint set are homothetic with respect to a shock, this shock will
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enter multiplicatively in policy functions, and logs of choice variables will satisfy assumption

1. For example, a cake-eating problem satisfies this requirement if preferences are homothetic

and the initial size of the cake varies across cohorts. But if the constraint set does not scale

with the shock, then the shock will not be additively separable in logs of choice variables.

For example, in a model with idiosyncratic income shocks and an exogenous borrowing limit,

cohorts with different initial wealth will respond differently to identical income shocks at a

given age, because they will be at different distances from the borrowing limit. However, even

in such a model, some object other than the log of a choice variable might satisfy assumption

1. Alternatively, assumption 1 may be viewed as a first-order approximation to the way time

and cohort effects enter the data when the model provides no guidance on this matter.

I assume the vector of measurement errors u = {ua,t} is asymptotically normal, as

will occur, for example, if the data y = {ya,t} are moments of a random sample. I consider

asymptotics in which the set of observed ages and dates is fixed but the sample size used to

calculate these moments grows:

Assumption 2.
√
Nu

d→ N(0,Σu) as the sample size N →∞.

I also assume that the model satisfies some standard regularity conditions:

Assumption 3. Θ is compact, and q(θ) is continuous on Θ.

Identification requires the structural model to be sufficiently nonlinear:

Condition NL For all θ ∈ Θ\{θ∗}, there is no real number k̄ such that q(θ)− q(θ∗) = k̄a.

Condition NL says there is no parameter vector θ whose age profile q(a;θ) differs from the

age profile under the true parameters by only a linear trend in age. If this condition failed,

it would be impossible to identify the structural parameters from the age profile because the

age profile itself is identified only up to an unknown linear trend. Because condition NL is

stated in terms of the unknown true parameters θ∗, it is not directly testable. Two testable

conditions that imply condition NL are:

• For all θ1 6= θ2, there is no real number k̄ such that q(θ1)− q(θ2) = k̄a.

• ∂3q/∂2a∂θ 6= 0 for some a and all θ.
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We can now show that this paper’s method identifies the structural parameters:

Proposition 1. Under assumptions 1, 2, and 3, and condition NL, in the limit as N goes

to infinity, the solution θ̂ to problem (3) converges in probability to θ∗.

Proof. I sketch the proof here and refer readers to the web appendix for details. Let R =

I−a(a′Wa)−1a′W be the matrix that produces residuals from projecting any vector of length

A on a by generalized least squares (GLS) with weighting matrix W. Let M be the first A

rows of the Moore-Penrose pseudoinverse of the design matrix of the regression in step 1, so

α̂ = My. Minimizing out k in (3) shows that the solution to (3) is

θ̂ ∈ arg min
θ∈Θ

[Rq(θ)−RMy]′W[Rq(θ)−RMy], (6a)

k̂ = c1(θ̂)− ĉ2, (6b)

where c1(θ̂) and ĉ2 are, respectively, the slopes in GLS regressions of q(a; θ̂) and α̂a on a.

Equation (6a) expresses θ̂ as a minimum distance estimator. We need only verify conditions

for consistency of such estimators. Theorem 2.1 of Newey and McFadden (1994) shows

that θ̂
p→ θ∗ if there is a function Q0(θ) such that (i) Q0 is uniquely minimized at θ∗, (ii)

Θ is compact, (iii) Q0 is continuous, and (iv) the estimator’s objective function converges

uniformly in probability to Q0. Define

Q0(θ) = [Rq(θ)−Rq(θ∗)]′W[Rq(θ)−Rq(θ∗)]. (7)

Because W is positive definite, any minimizer of (7) satisfies Rq(θ) = Rq(θ∗), i.e., the resid-

uals from projecting q(θ) on a are the same as those from projecting q(θ∗) on a. Condition

NL then implies θ∗ is the unique minimizer, satisfying hypothesis (i). Hypotheses (ii) and (iii)

hold by assumption 3. Under assumption 1, α̂ = q(θ∗) + k∗a + Mu for some k∗ determined

by the normalization in step 1. It follows that RMy = Rα̂ = Rq(θ∗)+RMu. Hence, under

assumptions 2 and 3, the objective function in (6a) converges uniformly in probability on Θ

to Q0. Therefore, hypothesis (iv) also holds, and θ̂
p→ θ∗. �
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B. Remarks

Inference about θ∗. If the conditions for identification of θ∗ hold, then the estimator of

θ∗ is a standard minimum distance estimator and the usual inference techniques for such

estimators apply, subject to appropriate regularity conditions such as differentiability of q.

Interpretation in terms of detrended age profiles. As equation (6a) shows, the new

method chooses the structural parameters θ∗ so that the detrended age profile from the model

matches, as closely as possible, the detrended age profile in the data.

Necessity of condition NL. Condition NL is necessary for the asymptotic objective func-

tion (7) to have a unique minimum. However, even if condition NL fails, the objective may

have a unique minimum in finite samples. Therefore, condition NL should be verified inde-

pendently, without relying on finite sample behavior as a test of identification.

Age profiles of multiple variables. In many applications, researchers fit a model to

the age profiles of two or more variables. In general, there is no reason to use the same

normalization on the age, time, and cohort effects for all variables. Hence, a different slope

kj should be estimated for each variable j. (However, if theory suggests restrictions on the

relationship between the slopes of different variables’ age profiles, these restrictions could be

imposed in estimation.) For example, suppose the model predicts age profiles of income i

and consumption c:

i(a) = ξ0,i + qi(a;θ∗), c(a) = ξ0,c + qc(a;θ∗). (8)

The structural parameters should be estimated as follows. First, estimate (2) separately for

income and consumption, obtaining age profiles α̂i and α̂c. Second, estimate θ∗ by solving

(θ̂, k̂i, k̂c) ∈ arg min
θ,ki,kc

qi(θ)− α̂i − kia

qc(θ)− α̂c − kca

′W
qi(θ)− α̂i − kia

qc(θ)− α̂c − kca

 . (9)
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A special case: estimation using second differences of age profiles. Let the weight-

ing matrix be W = W̃′W̃, where

W̃ =


1 −2 1 0 · · · 0 0 0

· · ·

0 0 0 0 · · · 1 −2 1

 . (10)

The objective function for this W is the sum of squared deviations between the second-

differenced age profiles from the model and from the data. Because, as shown by Hall (1968),

the second-differenced age profile from the data is invariant to the normalization used to

estimate it, the objective function is invariant to the normalization and so is θ̂.

Comparison with nonlinear least squares (NLS). An alternative approach would be

to estimate θ∗ and the period and cohort effects simultaneously by NLS on (4):

(θ́, ξ́0, {β́t}, {γ́c}) ∈ arg min
θ∈Θ,ξ0,{βt},{γc}

∑
a,t

[ya,t − ξ0 − q(a;θ)− βt − γc]2

s.t.
∑
t

βt =
∑
c

γc = 0. (11)

Under assumptions 1, 2, and 3, (θ∗, ξ∗0 , β
∗
t , γ

∗
c ) is one (asymptotic) solution to (11). I show in

the online appendix that this is the unique asymptotic solution if and only if condition NL

holds. Thus, for both NLS and this paper’s method, condition NL is necessary and sufficient

for the asymptotic objective function to identify θ. However, NLS is more computationally

challenging. If there are P structural parameters and age profiles of L variables, this pa-

per’s method requires L linear regressions, followed by nonlinear optimization over L + P

parameters, while NLS requires nonlinear optimization over (2T +A− 2)L+ P parameters.

For example, the quantitative exercise in section 5 involves 40 ages, 14 time periods, four

structural parameters, and three age profiles, so this paper’s method requires optimization

over seven parameters, while NLS would require optimization over 202 parameters. In ad-

dition, NLS requires raw data on ya,t, while this paper’s method requires only an estimated

age profile α̂, so this paper’s method can be used whenever estimated age profiles have been
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published, without needing to reconstruct the raw data.

Partial identification of θ∗. If condition NL fails, the parameter vector may still be

partially identified. For example, suppose we can partition the parameter vector as θ =

(θ1,θ2) where q(θ) = q1(θ1)+q2(θ2)a for all θ ∈ Θ and where q1(θ1) satisfies condition NL.

Then the same arguments as above show that the paper’s method point identifies θ∗1 using

a minimum distance estimator for which standard inference techniques are available. In this

sense, the paper’s method may make it possible to learn something about θ∗ even if the full

parameter vector is not point identified. If θ∗ cannot be partitioned in this way, estimation

of and inference about identified subsets of the parameter space based on (6a) might still

be possible, but methods such as those in Chernozhukov, Hong, and Tamer (2007) would be

needed, and detailed investigation of the required assumptions is left for further research.

Incorrect results from the standard method. The standard method will generally

produce incorrect results even when this paper’s method produces correct results. Recall

that the standard method is identical to this paper’s method but imposes k = 0 in (3), and

that for any normalization in step 1, we can find k∗ such that α̂ = q(θ∗) + k∗a + Mu. The

standard method therefore estimates the structural parameters not by (6a) but by

θ̃ = arg min
θ∈Θ

[q(θ)− q(θ∗)− k∗a−Mu]′W[q(θ)− q(θ∗)− k∗a−Mu]. (12)

This objective function converges to one whose minimizer generally is not θ∗, unless either

(i) k∗ = 0 or (ii) q(θ) is orthogonal to a for all θ. In case (i), the chosen normalization in

step 1 is correct. In case (ii), the model describes a detrended age profile, so the choice of

trend in the empirical age profile does not matter.

3. Research using the standard method

The literature employing the standard estimation method is large. This literature

requires a normalization on the period or cohort effects. Two common normalizations are:

Cohort view: Secular trends appear only in cohort effects. Period effects are orthogonal to

a time trend (
∑

t βt(t− t̄) = 0), are all zero (βt = 0 for all t), or can be replaced with
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observables such as the unemployment rate that measure cyclical economic variation.

Period view: Secular trends appear only in period effects. Cohort effects are orthogonal to

a time trend (
∑

c γc(c− c̄) = 0) or are all zero (γc = 0 for all c).1

Some authors maintain one normalization throughout. Others investigate how their results

depend on the choice between the cohort view and the period view.

A leading example, examined further in section 5, is Gourinchas and Parker (2002).

The authors model the mean consumption of households of age a as a function of the rate of

time preference, coefficient of relative risk aversion, and other parameters. The model does not

contain cohort or time effects. The authors estimate the empirical age profile of consumption

by regressing log consumption yat on age and cohort dummies and on the unemployment rate,

which substitutes for time effects. Then the authors find the structural parameters that make

the model’s predicted age profile of consumption come as close as possible to the estimated

coefficients on the age dummies in the first-stage regression.

Another example is Huggett, Ventura, and Yaron (2011), who model how learning

and shocks to human capital produce inequality in earnings over the life cycle, as a function

of parameters including the variance of shocks. The model does not contain cohort or time

effects. The authors estimate moments of the earnings distribution in data on people who

are age a in year t and regress these moments yat on age, time and cohort dummies. They

produce two sets of age profiles α̂a — one under the cohort view and one under the period

view. Then they choose parameters to fit the model’s predictions for the same moments of

earnings as a function of age to each of the two sets of empirical age profiles.

Other papers employing this method include the studies of wealth accumulation by

Cagetti (2003); of household investments by Wachter and Yogo (2010); of inequality in con-

sumption, wages, and hours by Kaplan (2012); and of consumption over the life cycle by

Aguiar and Hurst (2013). De Nardi, French, and Jones (2010) use a variant of the method to

study health expenses and saving among the elderly; they model cohort effects structurally,

as a function of lifetime income, but assume the time effects are all zero. Deaton and Pax-

son (1994a,b), Ameriks and Zeldes (2004), and Heathcote, Storesletten, and Violante (2005)

1The all-zero normalization is overidentified because it imposes as many restrictions as there are periods
or cohorts, not just the one restriction needed to identify the slope.
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follow a similar but more qualitative procedure by comparing models’ broad predictions to

the observed relationship between y and a, after controlling for period and cohort effects and

imposing a normalization to identify the age effects.

4. Analytic example: consumption inequality over the life cycle

This section exhibits a simple analytic example in which the standard method does

not identify the structural parameters of an economic model but this paper’s method does.

Agent i is born in year c with assets xi,0,c > 0 and lives for A+1 periods, receiving a stochastic

income yi,a,t in each period. Income is independently and identically distributed across agents

and dates with mean µ and variance σ2. Let Ci,a,t be i’s consumption in year t, when he is

age a = t− c. The agent’s preferences are represented by

−1

2
Ec

A∑
a=0

ρa[C̄ − Ci,a,t]2, (13)

where ρ is the rate of time preference and C̄ is a bliss level of consumption. The agent can

borrow or save without limit at the gross interest rate (1 + r) = ρ−1, but cannot borrow at

age A. The agent maximizes (13) by choice of {Ci,a,t}Aa=0, given xi,0,c. The online appendix

shows that the cross-sectional variance of consumption among agents in cohort c at age a is

Var[ci,a,c+a|a, c] = (1 + φ0)
−2Var[xi,0,c] + σ2

a∑
s=0

(1 + φs)
−2 φa =

A−a∑
s=1

ρs. (14)

Suppose that, as in Deaton and Paxson (1994a), an econometrician observes consump-

tion in repeated cross sections of agents of various ages at various dates. Assume that ob-

served consumption Ĉi,a,t is measured with an error that is independent of Ci,a,t, uncorrelated

across agents, and has mean νa,t and variance η2t at date t. (The bias νa,t and measurement

error variance η2t could change over time due to, for example, changes in the survey instru-

ment.) The econometrician can construct moments of consumption for each age and date.

For simplicity, assume the sample is infinitely large so that sample moments equal population

moments. The mean of observed consumption is uninformative because of the unknown bias
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νa,t. The variance of observed consumption among people who are age a at date t is

Var[Ĉi,a,t|a, t] = η2t + Var[Ci,a,t|a, t] = η2t + (1 + φ0)
−2Var[xi,0,c] + σ2

a∑
s=0

(1 + φs)
−2. (15)

Equation (15) is identical to (4) with θ∗ = (σ2, ρ), ξ∗0 = 0, q(a;θ∗) = σ2
∑a

s=0(1 + φs)
−2,

βt = η2t , and γc = (1 + φ0)
−2Var[xi,0,c]. It follows that this paper’s method identifies σ2 and

ρ as long as condition NL holds, which in turn requires that the following equations have a

unique solution σ̂2 = σ2, ρ̂ = ρ, k = 0:

σ2

a∑
s=0

(1 + φs)
−2 = ka+ σ̂2

a∑
s=0

(
1 + φ̂s

)−2
, φs =

A−a∑
s=1

ρs, φ̂s =
A−a∑
s=1

ρ̂s, a = 0, . . . , A.

(16)

The online appendix shows that σ̂2 = σ2, ρ̂ = ρ, k = 0 is indeed the unique solution and

hence that this paper’s method identifies the structural parameters.

By contrast, the standard method obtains estimated age effects α̂a = k∗(a − ā) +

σ2
∑a

s=0(1 + φs)
−2 for some number k∗ determined by the normalization on the regression

(2), then chooses σ̂2 and ρ̂ to solve (or best fit)

σ̂2

a∑
s=0

(1 + φ̂s)
−2 = α̂a, a = 0, . . . , A. (17)

If k∗ 6= 0, then for all a 6= ā, these equations do not hold when σ̂2 = σ2 and ρ̂ = ρ, so the

standard method must obtain σ̂2 6= σ2, ρ̂ 6= ρ, or both. Thus, if k∗ 6= 0 — that is, if the

normalization is incorrect — the standard method fails to identify the structural parameters.

5. Quantitative example: revisiting Gourinchas and Parker (2002)

Gourinchas and Parker (2002) use the standard method to estimate structural param-

eters of a life-cycle model in which households receive a stochastic income and decide how

much to consume. This section tests how the results change with this paper’s estimator.
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A. Model

I briefly review the model here and refer readers to the original paper for details.

Households work for T = 40 periods and then retire. Preferences while working are given by

E

[
T∑
t=1

βt
(Ct/Zt)

1−ρ

1− ρ

]
, (18)

where β is the rate of time preference; ρ is the coefficient of relative risk aversion; Zt is

a deterministic family size adjustment, reflecting how changes in average family size with

age affect the marginal utility of consumption; κ is a constant; and ζT+1 is terminal liquid

and illiquid wealth. Households choose consumption and savings at each age to maximize

utility given an initial liquid wealth level W1, the constraint that terminal liquid wealth

WT+1 is non-negative, and the budget constraint Wt+1 = R(Wt + Yt − Ct). Income Yt

evolves according to a stochastic process with permanent and transitory shocks as well as

an age-specific deterministic component. At retirement, the household follows a terminal

consumption rule that is linear in liquid wealth normalized by permanent income PT+1,

(CT+1/PT+1) = γ0 + γ1(WT+1 + YT+1)/PT+1. (19)

B. Original estimation procedure

Gourinchas and Parker (2002) use external data to estimate the interest rate R, the

variances of the income shocks, and the mean initial wealth level W1. Next, they use re-

peated cross sections from the Consumer Expenditure Survey to estimate age profiles of log

consumption, income, and family size. The age profile of log consumption is estimated by

an equation analogous to (2), but dummy variables to control for within-age differences in

family size are added, and the time effects are replaced by the unemployment rate to solve

the identification problem. The age profile of the across-ages family size adjustment Zt is

calculated as the mean of the coefficients on the age dummies, weighted by the distribution

of family sizes among households of age t; thus, there are assumed to be no period or cohort

effects in the family size adjustment Zt.
2 Income is normalized by the estimated family size

2Controlling for family size in the consumption regression removes within-age differences in family size,
while including the family size age profile Zt in the structural model accounts for how deterministic changes
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adjustment, and the age profile of normalized income is estimated from an equation analogous

to (2) but with time effects replaced by the unemployment rate.

The remaining parameters — β, ρ, γ0, and γ1 — are chosen by the Method of Simu-

lated Moments to fit the age profile of consumption. Given θ = (β, ρ, γ0, γ1) and first-stage

parameters χ (which include age profiles of income and family size), Gourinchas and Parker

(2002) calculate the household’s consumption rule in the model and simulate the behavior of

a large number of households. They then solve

min
θ

[lnCt − ̂lnCt(θ, χ)]′W[lnCt − ̂lnCt(θ, χ)], (20)

where lnCt is the estimated age profile of log consumption in the data, ̂lnCt(θ, χ) is the mean

of log consumption among simulated households of age t, and W is a weighting matrix.

C. Replication

Before implementing this paper’s estimation method, I replicated the results of Gour-

inchas and Parker (2002) using their method. Jonathan Parker kindly shared with me the

estimated age profiles and the GAUSS code used to estimate the parameters for the original

paper. Because so much time has passed since the original code was written, I could not

obtain a copy of the GAUSS software that could run the original code, so I wrote new code in

C++.3 My code follows as closely as possible all of the decisions made in the original code,

such as the interpolation method used to approximate the consumption rule.

The parameters that minimize my implementation of (20) are close but not identical

to the estimates published by Gourinchas and Parker (2002). The first column of table 1

shows the estimates from Gourinchas and Parker (2002), while the second column shows

the parameters that minimize my implementation of their objective function. Following

Gourinchas and Parker (2002), I focus on results using a robust weighting matrix; results

using the optimal weighting matrix proved to be unstable due to the need to numerically

differentiate the objective function to estimate the optimal weights. The discrepancy between

my results and those of Gourinchas and Parker (2002) for identical estimation procedures

in average family size as an average family ages affect the marginal utility of consumption.
3I use the nonlinear optimization package of Johnson (2012) and utilities from Galassi et al. (2011).
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could be due to differences in the random number draws used for the simulations or differences

in the numerical accuracy of the calculations. (For example, the standard errors are very

sensitive to a tolerance used to calculate numerical gradients. I could not determine the

value of this tolerance in GAUSS.) In all, though, the discrepancies in the point estimates are

small and show that my replication essentially reproduces the published point estimates. If

there are economically significant differences in the point estimates when I apply this paper’s

new estimation method, those differences must be due to the change in method — not to

differences between my replication code and the original code.

D. Estimation without normalizations on the age profiles

Columns 3 through 6 of table 1 show the results of applying this paper’s estimation

method. The estimates with this paper’s method should be compared with my estimates

from the standard method, shown in column 2, given that my code produces results slightly

different from the published estimates even when applying the standard method.

Because there are three age profiles, I estimate up to three arbitrary slopes along with

the structural parameters.4 Column 3 allows an arbitrary trend only in the age profile of

consumption; this change causes the estimated coefficient of relative risk aversion to more

than double — to 1.78 from 0.74 — and decreases γ1, the marginal propensity to consume

out of final wealth, by nearly 20 percent. Columns 4 and 5 instead allow trends in family

size or income, with relatively little effect on the structural parameters. Finally, column 6

allows trends in all three age profiles; the coefficient of relative risk aversion is similar to that

obtained using a consumption trend, and the marginal propensity to consume out of final

wealth is even lower. Allowing arbitrary trends also improves the χ2 statistic for model fit,

though the overidentifying restrictions are still rejected.

Figure 1 shows how the new method identifies parameters from the curvature of the

4Gourinchas and Parker (2002) impose more normalizations than are necessary to identify the age profiles:
For consumption and income, they restrict the time effects to move in parallel with the unemployment rate,
and for family size, they restrict the cohort and time effects to be zero. To maintain comparability, I do
not relax the extra restrictions. Instead, I treat Gourinchas and Parker’s (2002) estimated age profiles as
if they were estimated using only the minimum required restrictions and then apply this paper’s estimation
method. The model also suffers from an unrelated identification problem: If Rβ = 1 and ρ = 0, the household
is indifferent as to the timing of consumption, and any age profile of consumption that satisfies the budget
constraint is consistent with the model. Therefore, I impose Rβ < 1 and ρ > 0.
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age profile. The figure shows detrended age profiles of log consumption, in the data and as

predicted by the model at different parameter values. The new method brings the curva-

ture closer to that in the data, compared with the standard method, by choosing structural

parameters that make the age profile less curved during the first half of the life cycle.

Of course, changing the parameters also affects the first derivative of the age profile.

Figure 2 plots the level of consumption as simulated with the parameters estimated by each

method. The dashed blue line shows the age profile for parameters estimated by the standard

method, while the dashed orange line shows the age profile for parameters estimated by the

new method. The new method estimates higher risk aversion. Hence, the precautionary mo-

tive is stronger, and households save more early in life, implying that consumption rises faster

with age. Such a pattern would be grossly inconsistent with the age profile of consumption

that Gourinchas and Parker (2002) estimate in the data using the normalization they chose,

illustrated with the solid blue line. Therefore, the standard method strongly rejects a high

coefficient of relative risk aversion. But the first derivative of the age profile is a function

of the normalization, not of the data. This paper’s method does not allow this unidentified

first derivative to drive inferences about the structural parameters. Instead, the new method

identifies the structural parameters by matching the curvature, as shown in figure 1. Then,

the new method adds or subtracts a linear trend to rotate the empirical age profile so its slope

is consistent with the age profile that the structural parameters predict. The solid orange

line in figure 2 illustrates this rotated empirical age profile.

Table 1 shows that allowing arbitrary trends increases some standard errors but de-

creases others. In general, the parameter estimates remain relatively precise even after allow-

ing for arbitrary trends. Hence, in the model of Gourinchas and Parker (2002), the structural

parameters remain well identified without having to resort to unneeded normalizations on age

profiles, but removing those normalizations substantially changes one’s conclusions about the

true values of the parameters — significantly increasing the coefficient of relative risk aversion

and reducing the marginal propensity to consume out of final wealth.

Gourinchas and Parker (2002) report a range of robustness checks with widely varying

estimates of risk aversion. Depending on various choices, their estimate of the coefficient of

relative risk aversion ranges from 0.1278 to 5.2823 — a much larger difference than is produced
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by the change in normalization in this paper, and one with substantial economic consequences

given that, for example, risk premia are generally proportional to risk aversion. Beyond the

rejection of overidentifying restrictions, the sensitivity of the estimates to methodological

choices may indicate that the model does not perfectly describe the data.

6. Conclusion

In estimating structural life-cycle models, an age-time-cohort identification problem

arises when researchers project data that vary with both age and time onto a one-dimensional

model that varies only with age. There are many ways to make such projections. A standard

estimation strategy assumes a particular projection is correct, then estimates the structural

parameters conditional on that assumption. This paper shows that such an assumption is

unnecessary and, in general, leads to incorrect results. I provide an alternative approach that

does not have this pitfall. The new method demonstrates that the structural parameters

can be identified — and, in an empirical example, estimated relatively precisely — without

having to first identify the age profile.
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Table 1: Comparison of estimation methods.

Standard method

Published Replication New method

(1) (2) (3) (4) (5) (6)

Structural parameters:
β 0.9598 0.9533 0.9570 0.9533 0.9520 0.9582

(0.0179) (0.0080) (0.0180) (0.0055) (0.0061) (0.3512)
ρ 0.5140 0.7440 1.7802 0.7452 0.8395 1.6527

(0.1707) (0.2516) (0.2995) (0.1922) (0.2335) (0.3747)
γ0 0.0015 0.0002 0.0005 4.28×10−5 4.29×10−5 1.37×10−5

(3.85) (0.4734) (0.3404) (0.2685) (0.2221) (0.0397)
γ1 0.0710 0.0663 0.0546 0.0661 0.0629 0.0363

(0.1244) (0.0450) (0.0228) (0.0630) (0.0199) (0.0294)

Slope nuisance parameters:
kconsumption 0 0.0150 0 0 0.0129

- (0.0081) - - (0.2208)
kfamily size 0 0 -0.0004 0 -0.0162

- - (0.0516) - (0.2303)
kincome 0 0 0 -0.0018 -1.45×10−5

- - - (0.0010) (0.2214)

χ2 174.10 149.40 109.12 147.15 136.15 108.43
d.f. 36 36 35 35 35 33

Column (1) shows the parameter estimates and χ2 statistic published by Gourinchas and
Parker (2002). Column (2) shows the parameter estimates and χ2 statistic produced in a
replication exercise using the same method as Gourinchas and Parker (2002). Columns (3)
through (6) show the parameter estimates produced using this paper’s method. In column
(3), the slope of the consumption age profile is allowed to vary freely, while the slopes of the
family size and income age profiles are fixed at those estimated by Gourinchas and Parker
(2002). In column (4), the slope of the family size age profile is allowed to vary freely, while
the slopes of the consumption and income age profiles are fixed, and in column (5), only
the slope of the income age profile is allowed to vary freely. Column (6) allows the slopes
of all three age profiles to vary freely. Estimates using robust weighting matrix. Standard
errors (in parentheses) and χ2 statistics corrected for first-stage estimation. “d.f.” indicates
degrees of freedom.
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Figure 1: Detrended age profiles of ln(consumption).

Graph shows residuals from regressing age profiles of the natural logarithm of consumption on a
linear trend in age. Lines labeled “estimated model (standard method)” and “estimated model
(new method)” are simulated from the model using parameter values in table 1, columns 1 and 5,
respectively.
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Figure 2: Age profiles of consumption.

Lines labeled “estimated model (standard method)” and “estimated model (new method)” are
simulated from the model using parameter values in table 1, columns 1 and 5, respectively. The
line labeled “data (rotated according to new method)” is the age profile in the data, rotated by the
estimated consumption trend shown in table 1, column 5.
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