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Abstract

We examine forward guidance from the standard New Keynesian economy’s Ramsey

problem. It makes two instruments available: the path of current and future interest

rates, and an “open mouth operation” which selects from the many equilibria consis-

tent with the chosen interest rates. Removing the open mouth operation by imposing

a finite commitment horizon yields policy advice that relies on the forward guidance

puzzle. Removing it by altering the private sector’s forward-looking behavior requires

empirically-implausible separation of asset prices from future economic outcomes. Re-

quiring all agents to follow Markovian strategies can yield an empirically-plausible NK

economy without effective open mouth operations.
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1 Introduction

Consider a standard New Keynesian economy with an intertemporal-substitution (IS) curve

and a forward-looking Phillips curve. Its central banker seeks to minimize deviations of

output and inflation from their steady state values following a transitory markup shock.

The standard solution to this policy problem first calculates the best outcomes for inflation

and output consistent with the sequence of Phillips curves and then calculates the required

interest rates from these choices and the sequence of IS curves. This sequence has been inter-

preted as the central banker’s optimal Odyssean forward guidance (Giannoni and Woodford,

2005; Campbell, Evans, Fisher, and Justiniano, 2012).

We demonstrate that this standard exercise does not yield useful policy advice. Writing

the Ramsey problem in terms of optimal instrument settings instead of choices for inflation

and output clarifies that the Ramsey planner has two instruments: the path of current and

future interest rates, and direct control over the initial inflation rate. Selecting this rate

chooses one equilibrium from the many which are consistent with the selected interest rates.

The model gives no operational guidance on how the central banker coordinates private-

sector expectations on her desired equilibrium, so we label the communications tool she uses

for this task an “open mouth operation” or OMO.

Clarida, Gaĺı, and Gertler (1999) describe this standard Ramsey policy advice as “in

many ways in the tradition of the classic Jan Tinbergen (1952) / Henri Theil (1958) (TT)

targets and instruments problem.”1 In their analysis, the central bank’s instruments are

its interest rate choices, while its targets are the output gap and inflation outcomes. This

description fails to note that the number of targets exceeds the number of interest-rate

instruments and private-sector constraints by one. This error is understandable since all of

these are infinite sequences, but it leads policy makers to interpret outcomes driven by OMOs

as consequences of interest rate choices alone. In this way, the analysis of standard Ramsey

policy advice can diminish rather than enhance understanding. Considering the outcome of

the policy problem as an optimal active interest rate rule fails to add clarity. Following King

(2000), we parameterize such rules with a time-varying intercept and an “active” response

to deviations of inflation from its time-varying target. The adoption of such a rule commits

the central banker to participate in an economic disaster with exploding inflation and output

gaps if households and firms fail to coordinate on the chosen equilibrium.(Cochrane, 2011) If

such a commitment successfully implements the central banker’s chosen values for inflation

and output, then the central bank’s threatened responses to deviations of inflation from its

time-varying target never occur. Therefore, “adoption” of an optimal active interest rate

1See the first paragraph on their page 1670.
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rule requires persuasion rather than action. The constant interest rate projections of Gaĺı

(2009) require a similar commitment to an inherently unobservable rule.

In spite of their empirical implausibility, OMOs are mathematically essential for imple-

menting the policy prescriptions of the standard New Keynesian economy’s Ramsey planning

problem. We provide two complementary demonstrations of this essentiality. First, we note

the existence of a knife edge case in which OMOs are the only instrument which the policy

maker changes in response to a cost-push shock. That is, the central banker with perfect

commitment chooses not to fight inflation with contractionary interest rate policy, but in-

stead uses only the OMO to achieve the Ramsey allocation. Second, we recast the Ramsey

problem from one of choosing outcomes for inflation and output subject to the constraints

of private-sector optimality to one of choosing policy instruments directly. Here, the OMO

appears as an option to choose the initial inflation rate given all current and future interest

rates.

Since the equilibrium multiplicity which underlies OMOs requires an infinite horizon

economy, imposing a finite commitment horizon on the central banker (after which the

output gap and inflation both return to their steady state values) removes it. For a very

long commitment horizon, this constraint imposes almost no welfare cost. However, the

policy relies on small changes to the final interest rate under the central banker’s control to

substitute for the OMO. That is, a central banker with a finite horizon leans heavily upon

the forward guidance puzzle of Carlstrom, Fuerst, and Paustian (2015) to implement her

desired outcomes.

Another class of solutions to the problem of the existence of an OMO is to modify

the agents’ preferences, information-processing technology, or available markets model’s mi-

crofoundations so that expected future outcomes have less influence on desired savings.

For example, Fisher (2015) and Michaillat and Saez (2019) give households direct utility

from financial wealth, while Gabaix (2018) motivates myopic behavior of savers with be-

havioral considerations. McKay, Nakamura, and Steinsson (2017) refer to such modifica-

tions as introducing “discounting” into the IS curve. However, these modifications require

empirically-implausible separations of asset prices from future economic outcomes to elimi-

nate the model’s OMO.

The next section presents our results characterizing the optimal monetary policy prob-

lem in the face of a one-time cost-push shock, as in Giannoni and Woodford (2005). Section

3 demonstrates how selecting an equilibrium with an active rule is equivalent to selecting

one via an open mouth operation. Section 4 contains our characterization of the monetary

policy problem with a finite horizon. These sections’ results warn central bankers against

interpreting outcomes in the New Keynesian economy as direct consequences of their cur-
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rent and future interest rate choices, but they provide no more appropriate procedure for

monetary policy evaluation. Section 5 evaluates the quantitative potential of the model mod-

ifications discussed above to eliminate the OMO, Section 6 demonstrates that requiring all

agents to employ Markovian strategies, which limits the central banker’s commitment, can

both remove open mouth operations from the central banker’s toolkit and resolve the for-

ward guidance puzzle. In this paper, we allow the central banker to make no commitments.

This has the unfortunate direct implication that the model has only trivial implications

for Odyssean forward guidance. In a companion paper (Campbell and Weber, 2019) we

introduce quasi-commitment into the NK model (Roberds, 1987; Schaumburg and Tam-

balotti, 2007; Debortoli and Nunes, 2014). There, we show that if the average duration

of commitment is low enough, then the economy has a unique Markov-perfect equilibrium.

Quantitatively, “low enough” allows for central bank commitments which can last eleven

quarters on average.

2 Ramsey Planning

Here we demonstrate how the well-known indeterminacy present in the standard New Key-

nesian model makes an extra instrument available to the central banker in her corresponding

Ramsey problem.2 The Phillips curve (PC) is

πt = κyt + βπt+1 +mt (1)

with cost-push shock m0 6= 0 and mt = 0 for all t > 0, and the Intertemporal Substitution

(IS) curve is

yt = − 1

σ
(it − πt+1 − i\) + yt+1. (2)

Here it, i
\, πt and yt denote the nominal interest rate, the natural rate of interest, inflation

and the output gap. The parameters satisfy σ, κ ∈ (0,∞) and β ∈ (0, 1). We ignore the

possibility of an effective lower bound on nominal interest rates, so it can take any value.

The central banker seeks to minimize a loss function which is quadratic in current and future

output gaps and inflation rates.

∞∑
t=0

βt
(

1

2
π2
t +

λ

2
y2t

)
(3)

2See Gaĺı (2008) for a derivation of these now-standard equations.
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This can be derived from the representative household’s utility function (Woodford, 2003)

or from the central banker’s legislative environment (Evans, 2011).

A central banker solving the Ramsey problem chooses paths for it, πt, and yt to minimize

her loss in (3) while satisfying the sequences of constraints given by (1) and (2). Since it only

appears in the IS curve, it can be selected to satisfy that equation given arbitrary values

for πt+1, yt and yt+1. Therefore, the only binding constraints on the central banker’s choices

of inflation and output gap sequences come from the sequence of PCs. For this reason,

the standard approach to solving this Ramsey problem first minimizes the loss function

constrained only by that sequence and then backs out the necessary values for it using the

IS curve.

Figure 1 presents an example solution with m0 = 1, or a one percent shock to the

Phillips curve in the initial time period. (All of our numerical examples use the same value

of β = 0.99.) If the central banker did nothing, so that it = i\ for all t, and agents’ inflation

expectations for π1, π2, ... = 0 remained unchanged, then inflation today would have to

increase by one percent. Even while taking future outcomes as given, the central banker

can improve on this outcome by raising it above i\ and thereby reducing both inflation and

output. Because the loss function is quadratic, the central banker receives a first order

gain from reducing inflation, at the cost of a second order loss from reducing output. The

optimal setting of i0 equates the marginal benefit of reducing inflation with the marginal

cost of diminishing output. Given the parameter values used in Figure 1 and no control over

expectations of the future, this policy would yield π0 = .8 and y0 = −.8.

Since the central banker controls π1, she can further improve outcomes by promising a

small deflationary recession. Mechanically, the promised deflation in period one partially

offsets the cost-push shock, allowing the central banker to achieve both lower inflation today

and a smaller output gap (e.g. Campbell, 2013). This reduces inflation and increases output

today, yielding a first order gain, at the expense of a second order loss from the deflationary

recession in the future. Intuitively, such a policy improves outcomes by “spreading the

pain” of a transitory shock across multiple future periods. The dark blue line plots the

first few periods of the optimal plan for inflation, while the red line plots the same for

output. Although it is feasible to close these gaps at any time after t = 0, they close only

asymptotically. This is because the central banker who closes both gaps by some finite time

T can always lower her loss by spreading the pain into T + 1. The light blue line plots the

price level, which is the accumulation of inflation. Optimal policy eventually undoes all the

inflation that was allowed to occur in the initial time period. This is the familiar price level

targeting result of Giannoni and Woodford (2005).

The dashed black line plots the interest rate consistent with the IS curve given the optimal
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Figure 1: The Standard Solution to the Ramsey Problem: m0 = 1
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choices of πt and yt. When the central banker has no control over expectations, the optimal

initial interest rate jumps to i\ + 1.6 percent. The Ramsey planner chooses a more modest

initial response of i\+0.24 percent, but she keeps the interest rate above i\ after the cost-push

shock has dissipated.

In the conventional interpretation of the exercise presented in Figure 1, the central banker

promises to keep interest rates above the natural rate after the cost-push shock has passed,

thereby creating deflationary expectations. However, this explanation fails to describe ac-

curately other, similar forward guidance experiments. To see this, consider Figure 2. This

plots the Ramsey solution given the same values for κ and λ but a different value for σ.

Since the Phillips curve and loss function are unchanged, the chosen values for πt and yt

equal those in Figure 1: and they are given by the dark blue and red lines, respectively.

With the particular IS curve chosen, the interest rate required by this plan is a constant:

it = i\. That is, we have a deflationary recession without contractionary interest rate policy.

This is possible because the central banker’s chosen outcome for t ≥ 1 coincides with one

of the many equilibria consistent with it = i\ always. Indeed, this is the case whenever
σκ
λ

= 1. Implementing this example’s Ramsey planning solution requires no contractionary

interest rate policy, but coordinating agents’ expectations with an Open Mouth Operation

is essential.

We presented the “knife edge” case in Figure 2 to illustrate the use of a tool that is

always available and used by the central banker. To demonstrate its existence analytically,

cast the planning problem in terms of choosing instrument settings instead inflation and

output outcomes. We plug the PC (1) into the IS curve (2). The result is a single, second

order difference equation:

πt −
(

1 + β +
κ

σ

)
πt+1 + βπt+2 = xt. (4)

Here xt ≡ −κ
σ

(
it − i\

)
+ mt −mt+1. Henceforth, we represent interest-rate policy with xt.

The full set of solutions to (4) for a particular path of xt is given by a linear combination of

two homogenous solutions and a particular solution. The rates of decay of the homogenous

solutions are each governed by one of the roots (ϕ, ψ) of the characteristic polynomial:

1−
(

1 + β +
κ

σ

)
q + βq2 = 0.

which are ϕ ∈ (0, 1) and ψ ∈ ( 1
β
,∞). Since πt is governed by a second order difference

equation (with forcing function xt) we generally need two restrictions to pin down a solution.
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Figure 2: Solution to the Ramsey Problem: m0 = 1 and σκ
λ

= 1
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We can and do obtain one from this problem’s transversality condition.

lim
t→∞

βtπt = 0 (5)

Infinitely many nonexplosive possible solutions for {πt} are consistent with (4) and (5).

Imposing a second restriction that π0 be fixed at some value and solving the system for t > 0

yields

πt = ϕtπ0 −
t−1∑
l=0

ϕl+1

∞∑
j=0

ψ−jxt+j−l−1. (6)

Combining this solution for πt in terms of π0 and {xj}∞j=0 with the Phillips curve allows us to

express yt as a function of these instruments. With this, we can express the central banker’s

loss in terms of instruments and proceed to its minimization.

From this exercise, it is clear that the Ramsey problem implicitly assumes that the central

banker can choose both the path of interest rates, which determines xt, and the level of π0.

The interest rates alone do not determine π0; the central banker accomplishes this with an

open mouth operation.

Figure 3 graphically demonstrates this result: the solid line, which represents optimal

desired inflation, is obtained by choosing a particular setting for the OMO. Note that each

of the inflation paths in the figure is also consistent with the interest rate path chosen. In

particular, the line labelled “Path with No Recession” gives the outcome discussed at the

beginning of this section: The central banker leaves interest rates unchanged at i\, m0 passes

through one-for-one to π0, and no other variable moves. The OMO accounts for all of the

movement from this outcome to the Ramsey outcome.

Another unsavory implication of equation (6) is that every solution to the two equa-

tion model is history dependent – not just optimal policy, or the central bankers desired

equilibrium, as is well known. This poses a technical challenge for game theoretic analyses

wishing to make use of the standard NK model while restricting the strategy space to be

Markov, as (6) implies that inflation at time t is determined by a host of variables which

are payoff-irrelevant at that date (in particular, the entire history of realized inflation); see

Campbell and Weber (2019) for a discussion of a game theoretic setting in which – absent

modification – the set of symmetric Markov Perfect Equilibria in a standard New Keynesian

economy characterized by (6) is empty.
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Figure 3: Effect of Changing the Open Mouth Operation
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3 Active Rules as “Open Mouth Operations”

Svensson and Woodford (2005) use the solution to the Ramsey problem to calculate an

optimal interest rate rule for which there is a unique equilibrium consistent with (5). This

procedure explicitly presents the method by which the central banker implements her open

mouth operation, but it does not constrain its use in any way. To see this, construct such an

optimal rule (there are many, indexed by the choice of “active” coefficients) for the current

problem. Denote the Ramsey problem’s solutions for interest rates and inflation with i?t and

π?t , and consider the rule

it = i?t + φ (πt − π?t ) (7)

with φ > 1. To see how this uniquely implements the Ramsey equilibrium, rewrite (4) in

terms of π̃t ≡ πt − π?t , which is the deviation of inflation from the central bank’s “target,”

π?t . Using the fact that the central bank’s target solves the original difference equation and

then plugging in (7) for it− i?t yields a second order homogenous difference equation in terms

of π̃t, analagous – but not identical – to (4):(
1 +

κ

σ
φ
)
π̃t −

(
1 + β +

κ

σ

)
π̃t+1 + βπ̃t+2 = 0. (8)

It is well known that with φ > 1, both roots of the characteristic polynomial associated

with (8) explode when solved forward. Therefore, the trivial solution π̃t = 0 is the unique

non-explosive solution to (8). In this sense, the interest rate rule in (7) uniquely implements

the Ramsey planning solution. Indeed, such a rule can implement any of the non-explosive

equilibria given by (6). Allowing the central banker to choose among rules in the class

described by (7) is thus equivalent to choosing π0 and a path of interest rates.

Cochrane (2011) provides three objections to this monetary policy scheme. First, (5)

is not a requirement for market clearing or any agent’s optimal behavior; so the explosive

solutions to (8) satisfy all conditions for competitive equilibria as specified in the original

model. We wish to place this issue to one side in this paper and focus on Cochrane’s second

and third objections. If private agents coordinate on an equilibrium with π̃0 6= 0, then the

interest rate rule commits the central banker to feed an explosive inflation path by repeatedly

following the conventional monetary policy prescription which is supposed to tame inflation:

respond more than one-for-one to deviations of inflation from its chosen level. Furthermore,

if adopting (7) successfully coordinates agents on the equilibrium with π̃0 = 0, then the

central banker has no opportunity to display her commitment to following that rule. For

this reason, the adoption of (7) is an act of pure communication which requires no action

from the central banker. Publicly adopting an active interest rate rule communicates a

10



threat to create explosive inflation if central banker’s desired outcome does not occur. The

specifics of this attempt at persuasion hardly make the original open mouth operation more

empirically plausible.

The remainder of this paper examines other modifications to the NK model with the

potential to create equilibrium determinacy and thereby remove the OMO from the central

banker’s instrument set. To make it clear that these do not leverage active interest rate

rules, we henceforth specify interest-rate policy as a fixed path.

4 Imposing a Finite Commitment Horizon

Equilibrium multiplicity in the New Keynesian model with a fixed interest rate path depends

on the infinite horizon. If we instead suppose that inflation and the output gap after some

date T + 1 are out of the central banker’s control, then backward induction from that date

yields unique outcomes for any choice of (i0, i1, . . . , iT ). Thus the outcomes of the pivate

sector no longer depend on payoff-irrelevant history. Since real-world central bankers lack

perfect commitment, perhaps the problems presented by OMOs disappear once we limit the

central banker’s commitment to a finite and deterministic date.

To shed light on this possibility, consider the Ramsey planning problem with the addi-

tional constraints that yt = πt = 0 for all t > T . Facing this finite-horizon problem, it is

feasible for the central banker to select the optimal inflation and output gap from the infi-

nite horizon problem for t = 0, . . . , T − 1. To see this, note that by selecting iT = i\ − σ
κ
π?T ,

the central banker sets πT = π?T . Then, selecting it = i?t for all t = 0, 1, . . . , T − 1 and

using backwards induction with (4) sets πt = π?t for the same periods. The central banker’s

loss from this outcome in T + 1, . . . ,∞ equals zero, and it is identical to the loss from the

infinite-horizon solution in 0, . . . , T − 1. The difference between the two outcomes’ losses in

period T is bounded above by
λ

2
y2T =

λ

2κ
(π?T )2.

Putting these results together shows that the welfare cost of imposing a finite planning

horizon on the central banker is bounded above by ςβT (π?T )2, where ς is an uninteresting

constant.

One implication of this construction is entirely foreseen: The welfare loss from imposing

a finite planning horizon on the central banker goes to zero as the planning horizon itself

becomes long. However, one detail illuminates the nature of optimal monetary policy with

a finite horizon well. The central banker can use her final interest rate choice to achieve

any otherwise feasible path for inflation and the output gap that she desires. That is, this
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final rate can substitute for the OMO’s absence at a very small cost. Figure 4 illustrates

this by plotting the central banker’s finite-horizon planning solution (with T = 5 and the

parameter values from Figure 1) alongside the corresponding infinite horizon solution, which

the dashed lines represent. As expected, the values for inflation and the output gap are

relatively close to their counterparts from the infinite horizon solution. For t = 0, . . . , 4, the

two solutions’ interest-rate prescriptions are also very similar to each other. However, i5− i\

rises to 17 basis points to create the disinflationary value of π5 required to support the rest

of the outcome.

The finite-horizon solution’s use of the final interest rate suggests that the central banker

relies substantially on the forward guidance puzzle of Carlstrom, Fuerst, and Paustian (2015)

to implement her desired inflation and output gap sequences. This speculation can be verified

analytically by showing that ∂π0/∂iT diverges as T grows. Figure 5 demonstrates this more

concretely. It plots the finite horizon planning problem’s solution from Figure 4 along with

the competitive equilibrium arising from the central bank setting its interest rates equal to

those from the infinite-horizon solution for t = 0, . . . , T and to zero thereafter. Although

the two interest rate sequences almost equal each other outside of period 5, they produce

quite different outcomes. Removing period 5’s interest rate “bump” raises π0 by 19 basis

points and raises the output gap by 23 basis points. This makes sense, because the change

substantially moderates the future disinflation and output gap used to “spread the pain”

from period zero. The price level in t = 5 provides one summary measure of that change.

As Giannoni and Woodford (2005) demonstrate, the infinite-horizon solution stabilizes the

price level at its original level in the long run. The finite-horizon solution comes close to this

benchmark. In t = 5 and thereafter, the price level is eight basis points above its original

level. However, removing period 5’s interest rate bump leaves the long-run price level drift

60 basis points above its starting value. We conclude that imposing a finite planning horizon

merely replaces the open mouth operation with the forward guidance puzzle without making

the Ramsey problem’s prescription for forward guidance more plausible.

5 Different Private-Sector Primitives

An alternative approach to solving the problem of equilibrium indeterminacy is to change

the primitives underlying private sector behavior in order to make the NK model less forward

looking. More specifically, changes which lower the elasticity of current output with respect

to future output in the IS curve can produce a unique equilibrium given a path of chosen

interest rates. McKay, Nakamura, and Steinsson (2017) label this effect “discounting” of

the IS curve. In this section, we will evaluate the quantitative potential of several such

12
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Figure 4: Solutions to the Finite-Horizon and Infinite-Horizon Planning Problems

Note: The solid lines plot the solution to the finite-horizon Ramsey planning problem with T = 5.
The dashed lines plot the solution to the corresponding infinite-horizon problem.

13



0 1 2 3 4 5 6
Elapsed Time Since Shock

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e 

P
oi

nt
s

Figure 5: The Forward Guidance Puzzle in the Finite-Horizon Planning Problem

Note: The solid lines plot the solution to the finite-horizon Ramsey planning problem. The
dashed lines plot the interest rate from the infinite-horizon planning problem truncated to zero
after T = 5 and the corresponding competitive equilibrium.
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modifications which lead to IS curve discounting given κ/σ = 0.01 and β = 0.993

5.1 Bonds in the Utility Function

The first modification we consider directly alters the nature of financial markets by putting

the household’s stock of bonds into the utility function. Fisher (2015) motivates this as a

representation of the liquidity services they provide, while Michaillat and Saez (2019) argue

that households accumulate wealth for the social status it gives them today rather than for

the consumption opportunities it creates for tomorrow.

In such models, the representative household has preferences over consumption, leisure,

and the stock of bonds in her portfolio.

∞∑
t=0

βt
(
C1−σ
t

1− σ
+ v(Lt) +X

(
Bt+1

RtPt

))

Here, Rt is the gross risk-free nominal interest rate for bonds maturing at time t + 1, Pt is

the price level at t + 1, and Bt+1/(RtPt) is the time t real value of bonds maturing at time

t+ 1 held by the household. The household’s budget constraint is standard. Available funds

sum labor market earnings, redemption of bonds, and profits rebated from firms. Funds are

used for consumption purchases, buying new bonds, and paying lump-sum taxes.

With these preferences, the first-order condition for optimal bond purchases can be writ-

ten as

C−σt = X ′
(
Bt+1

RtPt

)
+ βC−σt+1Rt

Pt
Pt+1

(9)

Both Fisher (2015) and Michaillat and Saez (2019) assume that bonds are in zero net supply.

In this case, the steady-state gross interest rate with zero inflation equals

R? =
1

β
− X ′ (0)

βC−σ?
,

where C? is steady-state consumption. Thus, the steady state interest rate equals the rate

of time preference minus a premium.

To put this into the NK model, we equate consumption with output and log linearize (9)

around the steady state. This gives us

yt = βR?yt+1 −
βR?

σ

(
it − πt+1 − i\

)
(10)

3These parameter values match those from Eggertsson and Woodford’s (2003) numerical example:κ =
0.02, σ = 2, β = 0.99.

15



Since X ′(0) > 0, the IS curve’s right-hand side gets “discounted” by βR? < 1. The

discount factor equals the ratio of two interest rates, the actual steady-state rate divided by

what it would equal in the standard model with X ′(0) = 0.

After plugging the PC into (10), we obtain the following second order difference equation:

πt −
(
βR? + β +

βR?κ

σ

)
πt+1 + β2R?πt+2 = xt (11)

where the forcing function is now xt ≡ βR?κ
σ

(it−i\)+mt−θmt+1. Setting βR? = 1 transforms

(11) into (4). We can proceed with a similar analysis as before, since the characteristic

polynomial continues to have two real roots.4 Its derivative evaluated at one equals:

βR?(β − 1) + β(βR? − 1)− βR?κ

σ
< 0.

Since the coefficient on the highest order term is positive, its larger root is above one. So

if the value of the characteristic polynomial when evaluated at one is positive, then the

smaller root must also be above one. Manipulating the expression for the characteristic

polynomial evaluated at one, 1−
(
βR? + β + βR?κ

σ

)
+β2R?, we obtain the following necessary

and sufficient condition for βR? so that the smaller root is above one:

βR? <
1− β

1− β + κ
σ

(12)

With κ/σ = .01 and β = .99 (12) says that that we need βR? < 0.5 to achieve deter-

minacy. That is, the gross steady-state interest rate equals half of its value in an economy

without bonds in the utility function but with the same rate of time preference. Fisher

(2015) includes only the short-term securities with prices controlled by the central bank

in households’ utility, so βR? can be alternatively identified using the interest rate spread

between those assets and otherwise identical bonds which do not provide liquidity services.

Generously assuming a 10 percentage point quarterly liquidity premium yields βR? ≈ 0.9.

Michaillat and Saez (2019) calibrate β using an annual rate of time preference equal to 40

percent based on experimental observations. This yields a quarterly value of β equal to

0.9048. Plugging this into (12) along with κ/σ = 0.01 and rearranging yields R? < 1.0001.

Thus, the steady-state nominal interest rate must be counterfactually low to generate de-

terminacy.5 We conclude that placing bonds into the household’s utility function might

4It requires some tedious algebra to show that the discriminant can be rewritten as
(
θ + β + θκ

σ

)2−4βθ =(
(θ + β) + θκ

σ

) (
(θ + β) + θκ

σ

)2 − 4θβ =
(
θ − β + θκ

σ

)2
+ 4β θκσ , which is clearly always positive.

5Michaillat and Saez (2019) use a continuous-time model with logarithmic utility and quadratic costs of
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improve some aspects of the NK model, it cannot by itself yield equilibrium determinacy

and remove the OMO from the central banker’s set of instruments while keeping the price

of bonds substantially connected to their expected future payoffs.

5.2 Myopia

Gabaix (2018) introduces discounting by assuming that firms and households are myopic.

Specifically, household expectations of a future-dated random variable Xt+1 equal a factor

M ∈ [0, 1) times the rational expectation. Similarly, producers’ expectations equal M f ∈
[0, 1) times the rational expectation. Under these assumptions, the IS curve and PC become

πt = κyt +M fβπt+1 +mt (13)

yt = − 1

σ
(it −Mπt+1 − i\) +Myt+1 (14)

It is straightforward to show that there exist unique inflation and output sequences satisfying

(13) and (14) for a given sequence of interest rates if and only if

M ≤ 1− βM f

κ/σ + 1− βM f
. (15)

This inequality is analogous to that in (12), with M replacing βR? and βM f replacing

β. If M f = 1, then myopia gives us another microeconomic foundation for the discounted

IS curve. The mechanical condition on M required for determinacy is then exactly the

same as that placed on βR? above. With β = 0.99 and κ/σ = 0.01, determinacy requires

M < 0.5. However, the interpretation of M is different. Long-run interest rates in the myopia

model equal the rate of time preference with no modification. Nevertheless, M dampens the

responses of bond prices to future economic outcomes. We are aware of no empirical failure

of the standard model which such dampening could remedy.

Besides giving another source of IS equation discounting, the myopia model also changes

the discount factor in the PC. Of course, this cannot yield equilibrium determinacy on its

own. However, it can provide a quantitative substitute for discounting in the IS curve. Figure

6 illustrates this point by plotting the right-hand side of (15) in the Cartesian plane for M f

and M . All points below the curve give M f ,M pairs for which the myopia model displays

equilibrium determinacy. As noted above, determinacy requires a low value of M when M f

is very close to one. However, determinacy can be achieved with much larger values of M

price adjustment. They calibrate the Phillips curve’s slope to 0.03. Plugging these values into (12) gives an
upper bound on the risk-free interest rate of 36.74 percent. Thus, their calibration does yield determinacy
within the annualized version of our discrete-time model.
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Figure 6: Determinacy in Gabaix’s (2018) Myopia Model

Note: The line plots the function on the right-hand side of (15). The coefficients M and Mf are
the expectations-adjustment parameters for households and producers, respectively.
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when M f is only somewhat smaller. We conclude from this that including myopic firms

in the NK model could make a substantial contribution to resolving its indeterminacy and

removing the OMO from the central banker’s toolkit. However, this modification’s empirical

evaluation awaits future work.6

5.3 Incomplete Markets

A third class of modifications to the NK model drops the assumption that households trade

in complete markets. For example, Del Negro, Giannoni, and Patterson (2015) develop a

perpetual youth model where agents live finite lives; however, the discounting in this model

cannot deliver quantitatively large amounts of discounting without counterfactually high

death rates; see their Table 2 and their model’s IS curve, equation (43). Relatedly, McKay,

Nakamura, and Steinsson (2016) develop a model where households face uninsurable income

risk and borrowing constraints. The resulting precautionary saving motive drives a wedge

between bonds’ expected future payoffs and their value to households. McKay, Nakamura,

and Steinsson (2017) develop a simplified version of this model. Each period, there are “high

types” who receive high income (who can borrow, though bonds are in zero net supply) and

“low types,” who make no decisions and receive exogenous welfare benefits. The “high types”

put some weight on the probability that their marginal utility next period will be fixed at

the low type level, which introduces a wedge into the Euler equation, similar to the analysis

of bonds in the utility function in Section 5.1. They calibrate the discounting in their model

to match the effects of forward guidance in McKay, Nakamura, and Steinsson (2016), which

yields only a modest amount of discounting in front of the forward looking output term

(θ = .97). These initial explorations into incomplete markets in the NK model leave us

pessimistic about their ability to resolve equilibrium indeterminacy and thereby remove the

OMO from the central banker’s toolkit.

6 Monetary Policy Discretion

The modifications to private agent’s primitives reviewed above are at best empirically un-

proven and at worst quantitatively implausible. In this section, we pursue an alternative

approach to resolving equilibrium indeterminacy and removing OMOs from central bankers’

toolkit: requiring all agents – households, firms, and the central banker – to follow Markov

6Gabaix (2018) estimated M and Mf . However, his procedure chooses these values to help the NK model
fit aggregate data. It did not confronting the model with more direct evidence of inattention. Indeed, he
registers (on page 18) a hope for better measurement of macroeconomic attention parameters like M and
Mf .
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strategies. That is, their decisions may only be functions of payoff-relevant variables, such

as the current cost push shock and the current natural rate of interest. Since the empirical

benchmark for monetary policy formation from which we should depart is probably closer to

perfect discretion than perfect commitment, this modification arguably improves the model’s

realism.

In the standard NK model with indeterminacy, the private sector’s choices for output

and inflation are backward looking. (See equation (6).) Since these equilibria can fairly

be described as self-fulfilling prophecies, this makes sense. Fulfilling a prophecy requires

conditioning your actions on what you prophesied. Therefore, requiring households and firms

to ignore the payoff-irrelevant past can contribute to resolving equilibrium indeterminacy.

Putting the same requirement on the central bank completes the refinement. The mechanics

of the result are very similar to those in McKay, Nakamura, and Steinsson (2017). In that

paper, households ignore macroeconomic outcomes in future states of the world where they

are unemployed, and this leaves less room for self-fulfilling prophecies to arise. Here, private

agents take their own future actions and those of the central bank as given when choosing

current inflation and output. Therefore, there is no room for self-fulfilling prophecies.

We call this game one of complete monetary policy discretion.7 The sequence of cost-

push shocks remains the same, m0 6= 0 and mt = 0 for all t ≥ 1. The players consist of

households, firms, and a central banker. A Markov strategy for the central banker maps the

current value of mt into a choice for the interest rate, and Markov strategies for the private

sector is a pair of mappings from (mt, it). Rather than model the private sector’s objectives

explicitly, we follow Atkeson, Chari, and Kehoe (2010) by merely requiring these mappings

to always satisfy the IS curves and PCs given the central banker’s strategy.

Since the central banker and the private sector take future outcomes as given, the central

banker’s problem is static: Minimize the current loss subject to the current PC with πt+1

and yt+1 taken as given. Since there is one and only one solution for πt and yt given it,

πt+1, and yt+1, the central bank has only the single instrument it. That is, there is no OMO

available. Solving this problem yields the central banker’s choice of inflation as a function

of its future value.

πt = −mt + βπt+1

1 + κ2/λ
(16)

For t ≥ 1, mt = 0 and πt equals a constant. The only possible constant value for inflation

which satisfies (16) is πt = πt+1 = 0. This and the sequence of PCs then gives us yt = 0 for

t ≥ 1. The IS curves then require it = i\ for t ≥ 1. That is, Markov perfect equilibrium

requires the central bank and the private sector to implement together the divine coincidence

7Blake and Kirsanova (2012) demonstrate equilibrium uniqueness in essentially the same model considered
here. We present the result here for the benefit of readers unfamiliar with their work.
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outcome. With this outcome in hand, it is straightforward to show that the central bank

sets

i0 = i\ +
σκ

λ

m0

1 + κ2/λ
.

The resulting inflation and output equal

π0 = − m0

1 + κ2/λ
and

y0 =
κ

λ

m0

1 + κ2/λ
.

This game of complete monetary policy discretion has a single virtue for monetary policy

formulation: There exists exactly one private sector outcome for each choice of the policy

maker’s single instrument. As presented here, this comes at the cost of being able to say

nothing meaningful about central bank communication and Odyssean forward guidance. In

a companion paper (Campbell and Weber, 2019) we demonstrate that the analytic bene-

fits of Markov perfection can be gained while maintaining a meaningful role for forward

guidance. For that, we give the central banker stochastic opportunities for reoptimization.

When optimizing, the central banker chooses the entire infinite future path of interest rates

knowing that she will discard these promises when the next reoptimization opportunity

arrives. Schaumburg and Tambalotti (2007) call this “quasi-commitment” If these opportu-

nities arrive frequently enough, the economy has a unique Markov perfect equilibrium. With

β = 0.99 and κ/σ = 0.01, “frequently enough” means on average once every 11 quarters.

Furthermore, the quasi-commitment economy does not display a forward guidance puzzle.

Therefore, the quasi-commitment monetary policy game gives us well-defined predictions for

output and inflation as functions of interest rates alone while having quantitatively mean-

ingful implications for forward guidance. We refer the reader to that companion paper for

more details.
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