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“How did you go bankrupt?”

“Two ways. Gradually, then suddenly.”

– Ernest Hemingway, The Sun Also Rises

1 Introduction

Most of the literature on debt issuance and optimal capital structure assumes that corporate

bond investors observe a noiseless signal of firm value when determining the fair market

price of debt. In practice, however, investors typically must rely on imperfect accounting

statements and other public information to infer firm value. Aware that managers have

inside knowledge of a firm’s value, creditors will account for this informational disadvantage

when they price debt. The presence of such asymmetric information in debt markets could

potentially expose investors to unanticipated credit events in that, from the perspective of

their information set, a firm may unexpectedly “jump to default.”1

In this paper, we propose a tractable model of a firm’s dynamic choice of equity and

defaultable debt in the presence of asymmetric information. In this setting, we demonstrate

that managers of firms with access to the debt markets (which we refer to as “investment-

grade” (IG) firms) conceal any bad private signal by servicing existing debt through the

issuance of new debt. Because this debt issuance shields shareholders from infusing capital

into the firm, it is in their best interest for the firm not to default at this time. Thus,

jumps to default can occur only after a firm has exhausted its ability to borrow, and thus

has dropped to “fallen angel” status. We conclude that IG spreads cannot be explained

by credit-event premia associated with asymmetric information, because the probability of a

credit event through this channel is zero. An implication of our model is that other channels,

such as asymmetries in state and federal taxes, market imperfections (e.g., illiquidity), and

jumps in asset value due to public information, are needed to explain the large spreads on

short-maturity IG debt identified by the empirical credit risk literature.

The notion of jump-to-default (or credit-event) risk arises naturally in reduced-form

1This type of default contrasts with defaults observed in standard diffusion-based structural models of
default (Merton (1974)), in which firm value dynamics are assumed to be observed by all agents. In these
models, default is “predictable,” in that all agents observe firm value diffuse toward the (known) default
boundary.
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credit-risk models (e.g., Duffie and Singleton (1997); Jarrow, Lando, and Turnbull (1997)),

in which default is an unpredictable jump event. In their seminal paper, Duffie and Lando

(2001) provide an economic justification for reduced-form models. Specifically, they investi-

gate the optimal behavior of the manager of a firm that can issue only equity to service debt

in place. They show that if this manager receives a sufficiently bad private signal, then it

will be in the best interest of shareholders for the manager to declare default, rather than

have them continue to service debt payments. From an outsider’s information set, such a

default is unexpected and can be characterized by a default intensity process similar to that

specified in reduced-form models.

Building on the insights of Duffie and Lando (2001), we study a firm in which a manager

with private information can issue new debt to service existing debt, at least until the firm

exhausts its debt capacity. In contrast to Duffie and Lando (2001), our model predicts that

IG firms will never jump to default due to a bad private signal. Since shareholders receive

zero payoff in the event of a default, it is optimal for a manager acting on shareholders’

behalf to avoid an immediate default by issuing new debt in order to service existing debt.

Because IG firms have residual debt capacity, their managers pursue this strategy even if

they receive a bad private signal about the firm’s value, in the hope that asset valuations

will improve before debt capacity is exhausted. Because IG debt does not jump to default

in our model, it does not command a jump-to-default premium, and thus short-maturity

spreads are essentially zero. However, creditors rationally account for their informational

disadvantage when pricing the firm’s debt, resulting in higher spreads at longer maturities.

Only after the firm has reached “fallen angel” status, implying it has lost its ability to tap

the credit market, is a jump to default possible in our framework.2

In some respects, our model’s predictions for IG bonds are the opposite of those of Duffie

and Lando (2001). By precluding the manager from accessing the credit market after the

initial debt offering, Duffie and Lando (2001) show that firms can jump to default due

to asymmetric information even if the underlying asset value dynamic follows a diffusion

process. In contrast, by allowing the manager of IG firms to issue debt in the future, such

firms would not immediately jump to default after a bad private signal even if the asset value

2The prediction that high-yield bonds can jump to default is consistent with the empirical findings of
Strebulaev and Zhao (2012), who report that the default event of speculative-grade debt is associated with
significant unanticipated losses in firm value. See also Clark and Weinstein (1983), Giesecke (2006), Jarrow
and Protter (2004), Lang and Stulz (1992), and Warner (1977).
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follows a jump process that drops below a default threshold.

Our paper contributes to two strands of the literature.3 The first is the extensive body

of work that studies structural models of capital structure choice and leverage dynamics.4

Unlike most papers in this literature, we allow for information asymmetry between the

manager and creditors. The combination of dynamic debt issuance and the presence of

information asymmetry between the manager and creditors provides a framework that nests

most of the models studied in the literature. We exploit this generality to compare the

implications of our model for optimal capital structure choice, credit spreads, and default

frequencies to the predictions of previous studies. Specifically, by restricting the manager

to issue only equity after the initial debt offering, our setting reverts to Duffie and Lando

(2001). If we assume that the manager and creditors are equally informed, we obtain a model

of optimal capital structure dynamics with complete information (e.g., Fischer, Heinkel, and

Zechner (1989)). By removing both the ability to issue debt and the presence of informational

asymmetry, we recover a version of the Leland (1994) model.

The second strand of literature to which we contribute investigates credit spreads in

reduced-form frameworks. In particular, we build on the body of work that focuses on

decomposing credit spreads into components of expected loss, risk premia, liquidity premia,

and taxes.5 In this literature, there is disagreement on the magnitude of the jump-to-default

premium. At opposite ends of the spectrum, Driessen (2005) estimates the ratio of risk-

neutral to actual default intensity, λQ/λP, to be 2.3, while Bai, Collin-Dufresne, Goldstein,

and Helwege (2015) argue that, if jump risk is priced due to a contagious response, then the

ratio λQ/λP has an upper bound of approximately 1.1. In contrast, in our paper we claim

3A third literature, less directly linked to our work, studies voluntary disclosure of managerial information,
e.g., Shin (2003), and the roll-over of short-maturity debt, market runs, and market freezes, e.g., Diamond
and Dybvig (1983), Acharya, Gale, and Yorulmazer (2011), He and Xiong (2012), Schroth, Suarez, and
Taylor (2014), Dang, Gorton, and Holmström (2015), and Carré (2016).

4An incomplete list of contributions to this literature includes Merton (1974); Black and Cox (1976);
Fischer, Heinkel, and Zechner (1989); Leland (1994); Goldstein, Ju, and Leland (2001); Dangl and Zechner
(2004, 2016); Hennessy and Whited (2007); Abel (2016, 2017); DeMarzo and He (2018); Admati, DeMarzo,
Hellwig, and Pfleiderer (2017). Our work is also related to the previous literature that models firms’ earnings
or assets with complete information via jump-diffusion processes (e.g., Zhou (2001); Gorbenko and Strebulaev
(2010)). These specifications, however, do not give rise to a stochastic intensity for default unless the only
variation in asset levels is through jumps. Finally, Chernov, Schmid, and Schneider (2017) study endogenous
debt capacity in a model of sovereign debt issuance.

5See, e.g., Elton, Gruber, Agrawal, and Mann (2001), Longstaff, Mithal, and Neis (2005), Chen, Lesmond,
and Wei (2007), Feldhütter and Schaefer (2018), and Culp, Nozawa, and Veronesi (2018).
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that the actual default intensity λP is tiny for IG firms, especially at very short horizons.

Firms holding an IG status tend to gradually move toward their default boundary, and can

jump to default only thereafter.

Most empirical studies of corporate bonds report evidence of a “credit-spread puzzle,” in

that it is difficult to explain observed spreads between corporate bond yields and Treasury

yields in terms of expected losses and standard measures of risk. Our analysis is most

relevant for IG spreads of short-maturity debt where the credit-spread puzzle is prevalent.

Indeed, a growing literature6 argues that IG spreads for maturities greater than a few years

can be explained by combining pricing kernels that capture time-varying Sharpe ratios over

the business cycle with models that match the empirically observed clustering of defaults

during recessions. In contrast, we show that incomplete information combined with debt

issuance lowers short-term credit spreads of IG firms. Hence, our findings deepen the credit

spread puzzle for IG firms at short maturities.

The rest of the paper is organized as follows. In Section 2, we motivate our analysis with

empirical stylized facts for IG companies. Section 3 builds a model of corporate debt issuance

and default decisions in the presence of asymmetric information between the manager and

creditors. In Section 4, we present the implications of our model for optimal capital structure

decisions and derive model-implied credit spreads and default rates. Section 5 concludes.

Proofs and further details concerning the empirical analysis are in the Online Appendix.

2 Stylized facts

In this section, we discuss four stylized facts about the corporate bond market that provide

empirical foundations for our model.

Fact 1: IG companies dominate the bond market. The top panel of Figure 1 docu-

ments the evolution in the dollar amount of non-financial IG bonds outstanding and compares

it to that of higher- and lower-quality speculative grade bonds (labeled B and C).7 As a per-

6See, for example, Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010),
Chen (2010), Gomes and Schmid (2018), Bai, Goldstein, and Yang (2018).

7There is an increase in the size of the market of bonds rated by credit agencies. This is due in part
to the growth in bond issuance by companies, but also to an increase in the coverage of bonds by credit
agencies, i.e., the proportion of bonds that are not rated has been decreasing over time. In Figures 1 and 2,
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centage share, IG bonds comprise the majority of non-financial debt rated by credit agencies

(Figure 2, top panel). The proportion is around 80% at the beginning of the sample period in

1990 and remains steadily high, around 70%, throughout the rest of the sample period. The

middle panels in Figure 1 and 2 show the dollar amount and percentage shares of new bond

issues. The IG portion of new issues exhibits more variation than the share in total amount

outstanding, but remains high throughout the 1990–2017 sample period. On average, new

issues of speculative-grade bonds comprise 30.5% of the market, an estimate consistent with

the figures reported by, e.g., Greenwood and Hanson (2013).8 Finally, the bottom panel of

Figure 1 contains the dollar amount of bonds issued, net of bonds that have matured or have

been recalled. Also in this case, net IG issues are preponderant, especially during economic

downturns (Figure 2, bottom panel).

Fact 2: Firms rarely default while holding IG status. Table 1 shows average annu-

alized default rates for companies in the IG, B, and C groups. Panels A and B concentrate

on firms classified based on credit ratings over the periods 1985–2014 and 2001–2014 (see

Section A in the Online Appendix for more details). It is evident that defaults by IG

firms are extremely rare. Panel A shows that on average only 0.11% of IG companies file for

bankruptcy within a year of being assigned an IG classification. Defaults over the first month

are even less frequent, with an annualized rate of 0.06%. Since credit ratings can reflect stale

information, we also classify firms’ creditworthiness based on CDS data (see Section B in

the Online Appendix for more details). In Panel C of Table 1, we show that (annualized)

IG default rates are virtually zero at horizons from one to three months, with a 0.01% point

estimate that is statistically insignificant from zero.9 It is mostly the lowest-rated firms that

file for bankruptcy. At the one-month horizon, the average default rate for C companies can

exceed an annualized rate of 15% (Table 1, Panel A); beyond the first month, default rates

we exclude bonds that are not rated by credit agencies.
8For instance, using the Mergent Fixed Income Security Database (FISD), Greenwood and Hanson (2013)

document that on average 32% of debt issuance in the 1983–2008 period consists of high-yield bonds. Drawing
from Moody’s Bond Surveys, they report that the dollar fraction of high-yield new issues is 11% in the 1926–
1982 (Table 1, panel C, page 1491).

9In the Online Appendix, we document that even the few IG firms that default experience a significant
credit deterioration within the year before bankruptcy. Investors could have unwinded their positions in
these firms when they lost IG status, thus avoiding exposure to jump-to-default risk.
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for firms in the C group decline progressively but remain elevated.10

Fact 3: Firms go bankrupt gradually, then suddenly. Figure 3 reports the average

amount of bonds outstanding for firms that defaulted from 1985 to 2017 as a function of time

to default. Companies take advantage of the credit market by steadily issuing bonds along

their path to default. From ten years to about a year prior to default, their stock of debt

increases by a factor of four. Starting from one year prior to default, the amount of debt

levels off and declines slightly immediately before bankruptcy. A possible interpretation of

these patterns is that companies rely on the credit market as a means to buffer negative

shocks. However, their ability to issue debt is curtailed as they get closer to bankruptcy,

suggesting that they eventually face a debt capacity constraint.

Fact 4: Firms gradually transition to fallen angels before defaulting. Figure 4

depicts the average credit rating for firms that defaulted from 1985 to 2017 as a function of

time to default. The plot shows that the typical firm experiences a progressive deterioration

in its credit status before eventually defaulting. Five years prior to the default event, the

typical firm has a BB+ credit rating. Moreover, in unreported results we find that as the

time to default increases, the firm’s credit rating improves to investment grade. Figure 5

shows that along its path to default, the firm experiences an increase in leverage. Five years

prior to default leverage is approximately 45%, it then increases at an accelerating pace to

reach 80% the year before default. In sum, this evidence supports the interpretation that

firms gradually transition to fallen angels, then suddenly default.

In summary, we have presented evidence that IG firms (i) dominate the bond market in

terms of debt issuance, (ii) hardly ever default while holding IG status, (iii) accumulate a

significant amount of debt up to about a year before default, when their access to the bond

market is curtailed, and (iv) typically diffuse into fallen angels before defaulting.

10It is likely that credit default swaps (CDS) trading declines when the company is close to distress and
the contract is in the money. In contrast, credit agencies are likely to update their ratings more frequently
when conditions for a company deteriorate. Hence, since CDSs are less traded when default risk is high, it
is not surprising that empirical default rates for companies assigned a C label based on CDS-implied ratings
underestimate the default rate obtained when companies are classified based on credit ratings (Table 1,
Panel C vs. Panels A and B). This is consistent with the evidence in, e.g., Subrahmanyam, Tang, and Wang
(2014).
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3 Model

To explain the stylized facts of the previous section, we develop a model of corporate debt

issuance and default decisions in the presence of asymmetric information. As in Duffie and

Lando (2001), we assume that creditors have less information than the firm’s managers.

However, two main features distinguish our model from Duffie and Lando (2001). First, we

allow firms to issue both debt and equity, consistent with the empirical observation that a

large fraction of IG firms are net issuers of corporate debt. Second, we model asymmetric

information by assuming that creditors can continuously observe the value of the firm’s

assets with a delay. This feature reflects the fact that it takes time for market participants

to acquire the accounting information needed to accurately value a firm’s assets, while also

limiting the ability of managers from forever hiding information from the public.

3.1 Setup

There are two state variables in this economy. The first is EBIT (Xt), whose risk-neutral

dynamics are exogenously specified:

dX

X
= µ dt+ σ dBQ. (1)

We specify the risk free rate r to be constant and to satisfy the constraint (r > µ). As

such, the present value (Vt) of the claim to EBIT can be determined from the risk-neutral

expectation:

Vt = EQ
t

[∫ ∞

t

ds e−r(s−t) Xs

]
=

Xt

r − µ
. (2)

Since the claim to EBIT is proportional to EBIT itself, it inherits the same dynamics:

dV

V
= µ dt+ σ dBQ. (3)
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As required to preclude arbitrage, these dynamics imply that the risk-neutral expected return

on the claim to EBIT equals the risk free rate:

dV +X dt

V
= r dt+ σ dBQ. (4)

Due to the linear relation between Xt and Vt in equation (2), we are free to choose either as

the exogenous state variable. We find it more convenient to choose Vt . While management

directly observes Xt (and hence also Vt) at time-t, creditors observe only lagged EBIT X
t−L

,

and thus, only a lagged firm value V
t−L

, where L is a time lag that captures the information

asymmetry between management and creditors.

The second state variable is the face value of outstanding debt Ft , which is characterized

by a constant amortization rate ξ and coupon rate c. The effective average maturity is 1
ξ
.

During the interval (t, t+ dt), ξFt dt units of debt mature. Therefore, over this interval, the

sum of coupon and principal payments to debtholders is (c+ ξ)Ft dt. The dynamics for the

face value of debt follows:

dFt = (−ξFt + Γt) dt, (5)

in which Γt captures debt issuance at date-t, the form of which will be specified below.

The firm chooses an initial financing mix of debt and equity at time zero. After time

zero, we assume that firms can issue additional debt, at least until the time in which they

exhaust their “debt issuing capacity,” which we refer to as τc . Given that debt capacity is

specified below in terms of lagged firm value, all agents are aware of whether the current

time t is greater than or less than τc . After this time, if the firm is losing money, it is limited

to either issue equity to service the debt in place or choose to default, as in Duffie and Lando

(2001). There are four relevant time regimes:

1. Regime 1: t ∈ (0, τc). In this regime, firms have the ability to raise new debt to

service debt in place. Because equity holders do not need to infuse money into the firm

during this time regime, there is no advantage for them to choose to default. Therefore,

this regime is characterized by a zero default intensity. We refer to firms in this regime

as “Investment-Grade” firms.
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2. Regime 2: t = τ−
c
. At this point in time, the firm exhausts its debt capacity. Because

the firm can no longer issue debt, if its asset value (which is known only by the manager)

falls below the default threshold (the value of which is publicly known), then the firm

immediately defaults. Rather than a default intensity, this regime/instant of time is

associated with a finite probability of default.

3. Regime 3: t ∈ (τc , τc + L). Firms can no longer issue debt and may default. Absent

default, creditors observe lagged firm value V
t−L

and infer that the firm’s assets must

have remained above the default threshold over the time interval [τc , t], which has

duration (t− τc) less than L. This regime is characterized by a time-dependent default

intensity.

4. Regime 4: t ∈ (τc + L,∞). As in Regime 3, firms can no longer issue debt and may

default. Absent default, creditors observe lagged firm value V
t−L

and infer that the

firm’s assets must have remained above the default threshold over the time interval

[τc , t], which has duration (t− τc) greater than L. It is convenient to express this time

interval as [τc , t − L] ∪ [t − L, t]. Below we show that the knowledge of lagged asset

value V
t−L

makes the knowledge that firm value remained above the default threshold

during the interval [τc , t − L] redundant. Thus, given V
t−L

, the only additional useful

information is that default did not occur over the interval [t− L, t]. This information

structure leads to a time-independent default intensity.

To solve for the value of debt and equity under the information set of creditors, we first need

to derive the optimal default boundary chosen by management (that is, for times after debt

capacity has been exhausted) and then solve for the value of the firm’s securities backward

in time, starting from Regime 4.

Below, it will be convenient to introduce the scaled state variable vt = Vt/Ft , which can

be interpreted as a proxy for inverse leverage.11 There is a lower boundary v
b
at which it is

optimal for shareholders to default. We define the date of this event as τ
b
and thus obtain the

relation v
b
= Vτ

b
/Fτ

b
. For times t ≥ τc (i.e., times after debt capacity has been exhausted),

11Note that V is not the sum of debt and equity values, but rather the claim to EBIT, which includes
the claims to taxes, bankruptcy costs, and issuance costs. Still, we find it convenient to refer to v = V

F as
inverse leverage.
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the firm is restricted from issuing additional debt, implying that Γt = 0 for these dates. As

such, the dynamics for the face value of debt simplify to

dF = −ξF dt, (6)

with solution

Ft = Fτc
e−ξ(t−τc ) ∀t ∈ (τc , τb). (7)

For times t ≥ τc , an application of Ito’s lemma implies that vt =
Vt

Ft
evolves via:

dvt

vt

= (µ+ ξ) dt+ σ dBQ. (8)

Assuming a constant tax rate θ, the cash flows to equity, government and debt for times

t ∈ (τc , τb) are therefore:

Equity : Xt − θ(Xt − cFt)− (c+ ξ)Ft

Government : θ(Xt − cFt)

Debt : (c+ ξ)Ft . (9)

At default, firm value is split among debtholders, government, and bankruptcy costs as:

Debt : (1− α)(1− θ)Vτ
b

Government : (1− α)θVτ
b

Bankruptcy Costs : αVτ
b
. (10)

3.2 Shareholders’ optimal default policy

In our framework, it is in the shareholders’ best interest for management to avoid default

prior to the firm’s debt capacity being exhausted, i.e., t < τc . This is because equity holders

receive zero payoff in case of bankruptcy and, therefore, it is best for them to maintain

solvency as long as no cash injection into the firm is required from them. Since default

10



can occur only after debt capacity is exhausted, we determine the optimal default policy by

considering equity valuation at times t > τc .

The equity claim S(Vt , Ft) is the solution to:

S (Vt , Ft) = EQ
t

[∫ τ
b

t

ds e−r(s−t)

(
Xs − θ(Xs − cFs)− (c+ ξ)Fs

)]
t ∈ (τc , τb) (11)

= EQ
t

[∫ τ
b

t

ds e−r(s−t)

(
(1− θ)(r − µ)Vs − Fs (c(1− θ) + ξ)

)]
t ∈ (τc , τb),

where we have used the identity Xs = (r − µ)Vs . Because

e−rtS (Vt , Ft)+
∫ t

0
ds e−rs

(
(1− θ)(r − µ)Vs − Fs (c(1− θ) + ξ)

)
is aQ-martingale, it follows

that S (Vt , Ft) satisfies the PDE:

0 = −rS + µV S
V
+

σ2

2
V 2S

V V
− ξFS

F
+ (1− θ)(r − µ)Vs − Fs (c(1− θ) + ξ) , (12)

subject to the boundary conditions:

S(V = v
b
F, F ) = 0

lim
(V/F )→∞

S(V, F ) = (1− θ)V − F

(
c(1− θ) + ξ

r + ξ

)
. (13)

We look for a solution of the form:

S(Vt , Ft) = Ft s (vt = Vt/Ft) . (14)
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It follows that

S
V
(Vt , Ft) = sv(vt)

S
V V

(Vt , Ft) =

(
1

Ft

)
svv(vt)

S
F
(Vt , Ft) = s(vt)− vtsv(vt). (15)

Plugging these into the PDE in equation (12), we find that our conjectured solution holds if

s(vt) satisfies the ODE:

0 = −(r + ξ)s+ (µ+ ξ)vsv +
σ2

2
v2svv + (1− θ)(r − µ)vt − (c(1− θ) + ξ) . (16)

The solution to this ODE is:

s(v) = Avϕ +Bv−ω + (1− θ)v −
(
c(1− θ) + ξ

r + ξ

)
, (17)

in which the parameters (ϕ, ω) are defined by

ϕ =

(
1

σ2

)((σ2/2)− (µ+ ξ)

)
+

√√√√((σ2/2)− (µ+ ξ)

)2

+ 2σ2(r + ξ)



−ω =

(
1

σ2

)((σ2/2)− (µ+ ξ)

)
−

√√√√((σ2/2)− (µ+ ξ)

)2

+ 2σ2(r + ξ)

 . (18)

It can be shown that both ϕ and ω are positive.

The values of constants A and B are determined by the boundary conditions:

s(v
b
) = 0

lim
v→∞

s(v) = (1− θ)v −
(
c(1− θ) + ξ

r + ξ

)
. (19)
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We find:

s(v) =

{
(1− θ)

(
v − v

b
(v/v

b
)−ω

)
−
(
c(1− θ) + ξ

r + ξ

) (
1− (v/v

b
)−ω

)}
1

(v>v
b
)
. (20)

So far, the solution has been expressed in terms of an exogenous bankruptcy threshold v
b
.

Below, we assume that shareholders will choose v
b
optimally. This optimal solution can be

found using either the smooth pasting condition ds/dv|v=v
b
= 0, or the first order condition

ds/dv
b
|v=v

b
= 0. The optimal location for the default boundary is:

v
b

=

(
1

1− θ

)(
c(1− θ) + ξ

r + ξ

)(
ω

1 + ω

)
. (21)

For the analysis that follows, it is convenient to define the variable

yt = log

(
Vt

v
b
Fτc

e−ξ(t−τc )

)
. (22)

For times t > τc , debt is amortized at a rate ξ and so, by equation (7), Ft = Fτc
e−ξ(t−τc ).

Using vt ≡ Vt/Ft, definition (22) is then equivalent to yt = log(vt/vb
), which provides a

measure of how far the firm is away from the default boundary.12 From equation (3) and

Ito’s lemma, we find:

dy = mdt+ σ dBQ, (23)

where we have defined m = (µ+ ξ − σ2

2
). We define the random default time τ

b
as the first

time when firm value drops below the default threshold:

τ
b
= inf{t ≥ τc : vt ≤ v

b
} = inf{t ≥ τc : yt ≤ 0}. (24)

12As we will see below, for times t < τ
c
, it is more useful to define y

t
as in equation (22) rather than as

yt = log(vt/vb
), which explains our choice of definition.
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3.3 Debt valuation

To solve for the bond price, we work backwards in time, starting with the time interval

t ≥ τc . We further break this regime into two separate sub-intervals, depending on whether

τc ≤ t ≤ τc + L (which we refer to as regime 3) or t ≥ τc + L (which we refer to as regime

4). In the following subsections, we formally characterize the solution for each regime.

3.3.1 Debt value in Regime 4: t ≥ τc + L

If default has not yet occurred by time t ∈ [τc + L,∞), then creditors, aware that the firm

had previously exhausted its debt capacity at time τc , infer that the value of the firm’s assets

must have remained above the threshold level v
b
during the time interval (τc , t):

min
s∈[τc ,t]

{vs − v
b
} > 0, or equivalently, min

s∈[τc ,t]
{ys} > 0. (25)

In addition, at time t, creditors know the lagged asset value v
t−L

,13 or, equivalently, y
t−L

.

Because the firm value process is one-factor Markov, it follows that the probability density

for yt conditional upon the creditor’s information set can be expressed as:

π

(
yt

∣∣∣∣∣ min
s∈[τc ,t−L]

{ys} > 0, y
t−L

, min
s∈[t−L,t]

{ys} > 0

)
= π

(
yt

∣∣∣∣∣ yt−L
, min
s∈[t−L,t]

{ys} > 0

)
.

(26)

Equation (26) states that knowing y
t−L

makes the information that ys > 0 for all times

s ∈ (τc , (t − L)) incrementally useless for determining the conditional probability density

for yt . As we demonstrate below, this fact makes the transition density independent of

time t, leading to bond prices that are more tractable in Regime 4 than in Regime 3. For

conciseness, we use the notation:

F4,t = {y
t−L

, τ
b
> t} (27)

13More accurately, at time t, creditors know the time series {vs}, s ∈ (−L, t − L). However, for our
purposes, v

t−L
serves as a sufficient statistic.
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in spite of the fact that τ
b
may be less than t (in which case the security is worthless) and

that creditors observe Ft .

The following proposition shows that the information set F4,t generates a time-invariant

setting in which the default intensity depends only on survival up to time t, and y
t−L

≡
log(v

t−L
/v

b
).

Proposition 1 For times t ≥ τc + L, the value of debt D4(1{τ
b
>t}, yt−L

, Ft) with face value

Ft, coupon c, and amortization rate ξ, is given by the sum of two components:

D4(1{τ
b
>t}, yt−L

, Ft) = D4,1(1{τ
b
>t}, yt−L

, Ft) +D4,2(1{τ
b
>t}, yt−L

, Ft), (28)

where

D4,1(1{τ
b
>t}, yt−L

, Ft) = (c+ ξ)Ft1{τ
b
>t} d4,1(yt−L

) (29)

D4,2(1{τ
b
>t}, yt−L

, Ft) = (1− α)(1− θ)v
b
Ft1{τ

b
>t}

[
1− (r + ξ)d4,1(yt−L

)
]
, (30)

with

d4,1(yt−L
) =

∫ ∞

t

dT e−(r+ξ)(T−t) πQ (τ
b
> T |F4,t

)
(31)

and πQ
(
τ
b
> T |F4,t

)
given in equation (D.18) of the Online Appendix.

In Proposition 1, D4,1(1{τ
b
>t}, yt−L

, Ft) is the value of a claim to coupons and maturing

principal prior to default, while D4,2(1{τ
b
>t}, yt−L

, Ft) is the claim to recovery conditional

upon default.

The following corollary shows that, in this regime, the default intensity is time-independent

and is similar to that derived in Duffie and Lando (2001).
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Corollary 1 For times t ≥ τc + L, the time-t default intensity λQ
4,d
(y

t−L
) satisfies

λQ
4,d

(
y
t−L

)
=

σ2

2

∂

∂yt

πQ
4
(yt |τb > t, y

t−L
)

∣∣∣∣
yt=0

=
y
t−L√

2πσ2L3

 e−(
1

2σ2L
)(yt−L

+mL)
2

N
(

y
t−L

+mL
√
σ2L

)
− e−

2y
t−L

m

σ2 N
(

−y
t−L

+mL
√
σ2L

)
 1{y

t−L
>0}, (32)

where the conditional density πQ
4
(yt|τb > t, y

t−L
) is given by equation (D.1) of Lemma 1.

It is worth noting that the bond price D4(1{τ
b
>t}, yt−L

, Ft) does not satisfy the standard

ordinary differential equation (ODE) for pricing contingent claims, that is,

(c+ ξ)Ft −
(
r + ξ + λQ

4,d
(y

t−L
)
)
D4 +mD4,y +

σ2

2
D4,yy + (1− α)(1− θ)v

b
λQ

4
(y

t−L
) ̸= 0,

(33)

where we have used the notation D4,y = ∂
∂y

t−L
D4 , D4,yy = ∂2

∂y2
t−L

D4 . This is because the

expected growth rate of yt conditional upon the information set of creditors is larger than

the unconditional growth rate m:14

µy(yt−L
) ≡

(
1

dt

)
EQ [dy

t−L

∣∣ y
t−L

, τ
b
> (t− L)

]
> m. (34)

14To understand this result intuitively, consider a gambler with initial wealth W
0
who wagers each period

(of duration ∆t) a bet of size $
√
∆t on a fair coin for N =

(
T
∆t

)
periods and must stop gambling if they ever

become bankrupt. That is, each bet pays off +$
√
∆t (−$

√
∆t) if the coin flip returns “Heads” (“Tails”). If

we are told only that the gambler never went bankrupt, then the conditional probability that the first coin
flip was “Heads” is higher than 50%. Moreover, this probability increases the lower is W0 . Indeed, for the
special case W

0
=

√
∆t, the conditional probability that the first coin flip was heads equals 100% (because,

had it been tails, the gambler would have gone bankrupt immediately), and the conditional expected change

in wealth per period is µ
y
(y

t−L
) =

(√
∆t
∆t

)
=
(

1√
∆t

)
, which explodes in the continuous time limit.
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Indeed, we find that

lim
y
t−L

→0
µy(yt−L

) = ∞

lim
y
t−L

→0
D4,y

t−L
(y

t−L
) = 0, (35)

but that the product
(
µy(yt−L

)D4,y
t−L

(y
t−L

)
)
remains finite in the limit.

3.3.2 Debt value in Regime 3: τc ≤ t < τc + L

We next determine the value of debt for times t ∈ [τc , τc + L), which we refer to as Regime 3.

An important special case to consider is the price of debt at t = τc , which will be used as

an input to determine bond prices at earlier times. In this section, we focus on this case,

leaving the more general case of t ∈ (τc , τc + L) to Section E of the Online Appendix.

Note that during Regime 3, assuming default has not occurred by time t, outsiders know

only lagged firm value y
t−L

and that firm value has remained above the default boundary

during the time interval s ∈ [τc , t]:

F3,t =

{
y
t−L

, min
s∈[τc ,t]

{ys} > 0

}
, ∀ t ∈ (τc , (τc + L)) . (36)

In contrast to the information set in Regime 4, for all times t ∈ [τc , (τc + L)), the duration

of the time interval [τc , t] in which the creditor knows that the firm value remained above

the default boundary is less than L. In particular, for the special case t = τc , creditors

know only that firm value is above the default boundary at a single instant, namely, yτc
> 0.

Because of this feature, as we demonstrate in Section E of the Online Appendix, the price

of debt and the default intensity are a function of time t in Regime 3, in contrast to the

time-independent values derived for Regime 4 in Proposition 1.

The instant τc is the time at which the firm exhausts its debt capacity. We define it

as the first time the ratio of lagged firm value V
t−L

to the face value of debt Ft reaches a

lower threshold Ψ, which is contractually specified in the covenants of previous bond issues.
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Formally,

τc = inf

{
t :

V
t−L

Ft

= Ψ

}
. (37)

It therefore follows that V
τc−L

= ΨFτc
. It is straightforward to show that:

y
τc−L

= ln
(
Ψ/
(
v
b
eξL
))

. (38)

That is, y
τc−L

is a pre-determined number, not a variable. With these definitions in hand,

as well as the simplified notation for the creditors’ information set F3,τc
in equation (36), we

now price the time-τc value of debt in Regime 3.

Proposition 2 The time-τc value of debt, D3(1{τ
b
>τc}, Fτc

), with coupon c, and amortiza-

tion rate ξ > 0, is the sum of two components:

D3(1{τ
b
>τc}, Fτc

) = D3,1(1{τ
b
>τc}, Fτc

) +D3,2(1{τ
b
>τc}, Fτc

), (39)

where

D3,1(1{τ
b
>τc}, Fτc

) = (c+ ξ)Fτc
1{τ

b
>τc} d3,1 (40)

D3,2(1{τ
b
>τc}, Fτc

) = (1− α)(1− θ)v
b
Fτc

1{τ
b
>τc}

[
1− (r + ξ)d3,1

]
, (41)

with

d3,1 =

∫ ∞

τc

dT e−(r+ξ)(T−τc ) πQ (τ
b
> T | F3,τc

)
, (42)

and πQ(τ
b
> T |Fτc

), given in equation (D.33) of the Online Appendix.

In Proposition 2, the term D3,1(1{τ
b
>τc}, Fτc

) is the time-τc present value of a coupon and

principal payments stream, (c+ ξ)F
T
dT , for times T ∈ (τc , τb). The term D3,2(1{τ

b
>τc}, Fτc

)

is the time-τc present value of the claim to recovery (1 − α)(1 − θ)v
b
Fτ

b
if default occurs

during the interval (T, T + dT ), for times T ∈ (τc ,∞). Note that, given d3,1 is independent

18



of Fτc
, it follows that each component of equation (39) is linear in Fτc

, and hence so is the

debt value D3(1{τ
b
>τc}, Fτc

).

In what follows, it is convenient to normalize the bond price by Fτc
:

(
D3(1{τ

b
>τc}, Fτc

)

Fτc

)
= 1{τ

b
>τc}

[
(c+ ξ)d3,1 + (1− α)(1− θ)v

b

(
1− (r + ξ)d3,1

)]
. (43)

We emphasize that the normalized bond price given in equation (43) is a constant determined

by the parameters of the model, rather than a random variable.

3.3.3 Debt value in Regime 2: t = τ−
c

Because firm value dynamics follow a diffusion process, the time τc at which debt capacity

is exhausted is predictable by both creditors and the manager in that, moments prior to

τc , the probability that debt capacity will be exhausted in the next instant approaches one.

Therefore, for the special case t = τ−
c
, we define

F
2,τ−

c

=
{
Fτc

, y
τc−L

= log(Ψe−ξL/v
b
)
}
. (44)

It follows from the evolution of yt in equation (23) that the probability density of yτc
con-

ditional on the lagged value y
τc−L

= log
(
Ψe−ξL/v

b

)
is normally distributed, with mean(

ln(Ψe−ξL/v
b
) +mL

)
and variance σ2L. Hence:

πQ
(
yτc

| F
2,τ−

c

)
=

1√
2πσ2L

e−(
1

2σ2L
)[yτc −(ln(Ψe−ξL/v

b
)+mL)]

2

. (45)
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Therefore, the probability that default occurs at time τc equals the probability that (yτc
< 0),

or

πQ
2

(
τ
b
= τc | F2,τ−

c

)
=

∫ 0

−∞
π
(
yτc

| y
τc−L

)
dyτc

= N

(
− ln(Ψe−ξL/v

b
)−mL√

σ2L

)
, (46)

and thus the probability of survival is:

πQ
2

(
τ
b
> τc | F2,τ−

c

)
= N

(
ln(Ψe−ξL/v

b
) +mL√

σ2L

)
. (47)

The next proposition characterizes the bond price in Regime 2.

Proposition 3 The time-τ−
c

value of debt, D2(Fτc
), with face value Fτc

, coupon c, and

amortization rate ξ > 0, is given by

D2(Fτc
) = N

(
log(Ψe−ξL/v

b
) +mL√

σ2L

)
D3(1{τ

b
>τc}, Fτc

)

+(1− α)(1− θ)ΨFτc
e(m−ξ+σ2

2
)L N

(
− log(Ψe−ξL/v

b
)− (m+ σ2)L√

σ2L

)
, (48)

where the debt value D3(1{τ
b
>τc}, Fτc

) is given in Proposition 2.

In Proposition 3, the value of the debt claim at time τ−
c

is the sum of two terms: (i) the

value of debt D3(1{τ
b
>τc}, Fτc

) multiplied by the probability that default does not occur at

τc and (ii) the expected recovery if default occurs at τc .

Below, it will be convenient for us to identify the ratio of the value of debt scaled by the
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outstanding face value:

D2(Fτc
)

Fτc

= N

(
log(Ψe−ξL/v

b
) +mL√

σ2L

)
D3(1{τ

b
>τc}, Fτc

)

Fτc

+(1− α)(1− θ)Ψ e(m−ξ+σ2

2
)L N

(
− log(Ψe−ξL/v

b
)− (m+ σ2)L√

σ2L

)
, (49)

where the ratio
(

D3 (1{τ
b
>τc}, Fτc

)

Fτc

)
is given in equation (43). As in that case, the ratio(

D2 (Fτc
)

Fτc

)
in equation (49) is a constant determined by the parameters of the model, rather

than a random variable.

3.3.4 Debt value in Regime 1: 0 ≤ t < τc

For all times (t < τc), creditors know (i) the face value of debt outstanding Ft , and (ii) lagged

firm value V
t−L

, that is,

F1,t =
{
V

t−L
;Ft

}
, t < τc , (50)

Note that, because (t < τc), it necessarily follows that (V
t−L

−ΨFt) > 0.

At time t = 0, the firm issues debt with initial face value F0 and with a maturity structure

such that a fraction ξ dt of outstanding principal matures during each interval dt. In the

absence of any additional debt issuances, the level of outstanding principal at date-t would

be Ft = F0e
−ξt. However, similar to DeMarzo and He (2018), we assume that the firm can

issue new pari-passu debt in order to both service existing debt and to augment dividend

payments to shareholders. We assume that the firm continues to issue debt until it exhausts

its debt capacity, which we referred to above as time τc . Because shareholders are not

required to infuse additional funds into the firm (i.e., no equity issuances) for times t < τc , it

is optimal for them to avoid default during this regime, implying that the default intensity

is zero for these times. After exhausting debt capacity, we assume that covenants restrict

any future debt issuances. That is, for times t > τc , the firm has to either issue new equity

to service debt in place or default, as in Duffie and Lando (2001).

The dynamics dFt for the face value of debt are determined endogenously by identifying

how much future cash flow must be promised to new bondholders in order to entice them
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to purchase the new debt issuance. During the interval (t, t+ dt), the firm owes debtholders

principal and interest payments of (c + ξ)Ft dt. However, due to the tax deductability

of interest payments, the amount that needs to be raised to service existing debt is only

(c(1− θ) + ξ)Ft dt. Following DeMarzo and He (2018), whose model predicts that firms will

issue debt more aggressively when leverage levels are low, we assume that at date-t, the firm

chooses to raise more debt than what is needed to service existing debt. Specifically, for a

given parameter value β ≥ 0, we set debt issuance equal to15

debt issuance =

[(
c(1− θ) + ξ

)
Ft + β

(
V

t−L
−ΨFt

)]
dt. (51)

Combining these debt issuance cash flows with cash flows to equity in the absence of debt

issuance (i.e., equation (9)), we find that dividends paid out to shareholders at date-t equal:

dividends =
[
(1− θ)Xt + β

(
V

t−L
−ΨFt

)]
dt. (52)

Because EBIT Xt is guaranteed to be positive, and given that, by construction, the term(
V

t−L
−ΨFt

)
is positive within Regime 1, it follows that dividends are positive for all times

during Regime 1, implying that management, acting in the best interest of shareholders,

would never default prior to their debt capacity being exhausted.

In order to raise this money, the firm issues additional debt, which we assume is pari-

passu. As the debt issuance policy is known, in order to preclude arbitrage, the price of

debt per unit of face value,
(

D1 (Vt−L
,Ft )

Ft

)
must remain constant prior to and after the debt

issuance. The fraction of debt owned by the new owners, determined at time t, is

πnew =

(
F

t+dt
− Fte

−ξ dt

F
t+dt

)
. (53)

15Below, we define Ψ
t
≡ V

t−L
/F

t
, which can be interpreted as a proxy for lagged inverse leverage. By

definition of being in Regime-1, we have the restriction Ψt ≥ Ψ. Note that the amount of debt issued above
what is required to service existing debt, β

(
V

t−L
−ΨFt

)
= βV

t−L
(1− (Ψ/Ψt)) is positive for all times t < τc ,

and is increasing in inverse leverage Ψ
t
. The implication is that, consistent with DeMarzo and He (2018),

debt issuance is more aggressive when the firms leverage ratio is low. Incidentally, setting β = 0 does not
qualitatively affect any of our results.
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The intuition for this equation is as follows: The firm enters time t with face value Ft . If

there were no additional debt issuance, the firm would leave with Fte
−ξ dt = (1 − ξ dt)Ft in

face value of debt, because an amount ξFt dt matured. This implies that the fraction of debt

owned by previous owners is

π
old

=

(
Fte

−ξ dt

F
t+dt

)
. (54)

It follows that the dynamics dFt can be determined by equating the value of the new debt

claim to the amount new creditors pay for this claim:

[(
(1− θ)c+ ξ

)
Ft + β

(
V

t−L
−ΨFt

)]
dt =

(
D1(Vt−L

, Ft)

Ft

)[
F

t+dt
− Fte

−ξ dt
]
. (55)

In the continuous-time limit, this implies that the dynamics for the face value of debt is

locally deterministic, and equal to:

dFt =

[
−ξFt +

(
Ft

D1(Vt−L
, Ft)

)[(
(1− θ)c+ ξ

)
Ft + β

(
V

t−L
−ΨFt

)]]
dt. (56)

Note that this equation specifies the face value of debt dynamics in terms of the yet-to-be-

identified value of outstanding debt D1(Vt−L
, Ft). We identify the value of debt as a solution

to the following expectation:

D1(Vt−L
, Ft) = (c+ ξ)Ft dt+ e−r dtEQ

[(
Fte

−ξ dt

F
t+dt

)
D1(Vt−L+dt

, F
t+dt

)

]
. (57)

Intuitively, this states that the debt claim at date-t is the sum of cash flows received this

period from coupon and maturing debt, plus the risk-neutral expected value of the future

claim, scaled by the fraction of the future claim owned by the date-t bondholders. Using Itô’s
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lemma, we can express this expectation in terms of the partial differential equation (PDE):

0 = θcFt − rD + β(V
t−L

−ΨFt)

[(
Ft

D

)
D

F
− 1

]
+ µV

t−L
D

V

+
σ2

2
V 2

t−L
D

V V
− ξFtDF

+

(
F 2

t

D

)
D

F

(
c(1− θ) + ξ

)
. (58)

The following proposition shows that the PDE (58) and the boundary conditions satisfy

a certain scaling condition that allows us to rewrite the price of the bond in Regime 1 as the

solution to an ordinary differential equation (ODE).

Proposition 4 The bond price D1(Vt−L
, Ft) is homogeneous of degree one in its arguments

and thus can be expressed as:

D1(Vt−L
, Ft) = Ftd (Ψt) , Ψt ≡

V
t−L

Ft

(59)

where d (Ψt) satisfies the following ODE:

0 = −(r + ξ)d+ (c+ ξ) +
σ2

2
Ψ2d

ΨΨ
+

Ψd
Ψ

[
(µ+ ξ)−

(
1

d

)(
β(Ψ−Ψ) + (1− θ)c+ ξ

)]
, (60)

subject to the boundary conditions:

d(Ψt = Ψ) =

(
D2

(
Fτc

)
Fτc

)
(61)

lim
Ψt→∞

d
Ψ
(Ψt) = 0. (62)

The boundary condition (61) is a value-matching condition that precludes arbitrage op-

portunities at date τc , that is, when Ψt = Ψ. The boundary condition (62) states that the
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debt price approaches a constant as (lagged) firm leverage approaches zero (i.e., as lagged

inverse leverage approaches infinity).16

3.4 Creditors’ valuation of equity

It is convenient to define V̂t = V
t−L

in order to emphasize that, at date t, creditors know

only V̂t . Furthermore, we define Ŝt = Ŝ(V̂t , Ft) to be the equity value conditional on the

creditors’ information set, and St = S(Vt , Ft) to be the equity value conditional on the

manager’s information set.

Recall that, from definition (22), for t ≥ τc , yt = log (Vt/(vb
Ft)). For this time interval,

with a slight abuse of notation, we find it convenient to express the value of equity as S(yt , Ft)

rather than S(Vt , Ft). Specifically, from equation (20), we have;

S(yt , Ft) = Ft1(yt>0)

{
(1− θ)v

b

(
eyt − e−ωyt

)
−
(
c(1− θ) + ξ

r + ξ

)(
1− e−ωyt

)}
. t ≥ τc .

(63)

The following proposition characterizes the equity value Ŝ(y
t−L

, Ft) conditional upon the

creditors’ information set.

Proposition 5 For times t ≥ τc, creditors’ valuation of equity is given by

Ŝ(y
t−L

, Ft) =


∫ ∞

0

πQ
3
(yt | τb > t, y

t−L
)S(yt , Ft) dyt if τc ≤ t < τc + L (64a)∫ ∞

0

πQ
4
(yt|τb > t, y

t−L
)S(yt , Ft) dyt if t ≥ τc + L , (64b)

16For the case β = 0, debt becomes risk free as Ψ
t
→ ∞, because in this limit it takes infinitely long

for the firm to reach τ
c
. Guessing that d(Ψ) approaches a constant as Ψ

t
→ ∞, and plugging in this guess

into equation (60), we find that the bond price satisfies the risk-free valuation limΨt→∞ d(Ψ
t
) = c+ξ

r+ξ . For

β > 0, however, debt is not risk free as Ψ
t
→ ∞. Indeed, as β increases, the expected time for τ

c
(and

in turn, the expected time to default) decreases. Under this scenario, one can investigate bond prices for
large values of Ψt via the Taylor series expansion d(Ψt) =

∑∞
j=0 djΨ

−j
t

(where the {dj} are constants). As
limΨt→∞ d(Ψt) = d0 , the debt price is asymptotically constant, and therefore satisfies equation (62). Thus
the boundary condition (62) holds even when β is positive.
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where πQ
3
(yt | τb > t, y

t−L
) is given by equation (D.4) in Lemma 2, πQ

4
(yt | τb > t, y

t−L
) is

given in equation (D.1) in Lemma 1, and S(yt , Ft) is given by equation (63).

For times t < τc, creditors’ valuation of equity is given by

Ŝ(V̂t , Ft) = EQ
t

[∫ τc

t

dT e−r(T−t)
[
(1− θ)(r − µ)V̂

T+L
+ β

(
V̂

T
−ΨF

T

)]
+ e−r(τc−t) Ŝτc

|Ft

]
,

(65)

where

Ŝτc
= (1− θ)ΨFτc

eL(m−ξ+(σ2/2))N

[
y
τc−L

+mL+ σ2L
√
σ2L

]

−
(
c(1− θ) + ξ

r + ξ

)
Fτc

N

[
y
τc−L

+mL
√
σ2L

]

+

[(
c(1− θ) + ξ

r + ξ

)
− (1− θ)v

b

]
Fτc

e
−ωy

τc−L eL((ω
2σ2/2)−ωm)N

[
y
τc−L

+mL− ωσ2L
√
σ2L

]
,

(66)

with y
τc−L

= log
(
Ψe−ξL/v

b

)
.

With the value of Ŝτc
obtained in equation (66), we can determine the outsiders’ valuation

of equity St for t < τc by solving the expectation in equation (65). Because e−rtŜ(V̂t , Ft) +

EQ
t

[∫ t

0
dT e−rT

[
(1− θ)(r − µ)V̂

T+L
+ β

(
V̂

T
−ΨF

T

)]]
is a Q-martingale, the expectation in

equation (65) reduces to the following PDE:

0 = −rŜ + µV̂ Ŝ
V̂
+

σ2

2
V̂ 2Ŝ

V̂ V̂
+ (1− θ)(r − µ)V̂ eµL + β

(
V̂ −ΨF

)
+Ŝ

F

[
−ξF +

(
F

D1(V̂ , F )

)[(
(1− θ)c+ ξ

)
F + β

(
V̂ −ΨF

)]]
. (67)

The following proposition shows that the PDE (67) and the boundary conditions satisfy

a certain scaling condition that allows us to rewrite the price of equity in the creditors’
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information set as the solution of an ODE.

Proposition 6 The equity price Ŝ(V
t−L

, Ft) is homogeneous of degree one in its arguments,

and thus can be expressed as:

Ŝ(V̂t , Ft) = Ft ŝ(Ψ = V̂t/Ft). (68)

where ŝ(Ψ) satisfies the ODE:

0 = −rŝ+ µΨŝ
Ψ
+

σ2

2
Ψ2ŝ

ΨΨ
+ (1− θ)(r − µ)ΨeµL + β (Ψ−ΨF )

+ (ŝ(Ψ)−Ψŝ
Ψ
(Ψ))

[
−ξ +

(
1

d(Ψ)

)[(
(1− θ)c+ ξ

)
+ β (Ψ−Ψ)

]]
, (69)

subject to the boundary conditions:

ŝ(Ψ = Ψ) =
Ŝτc

Fτc

(70)

lim
Ψ→∞

ŝ
ΨΨ

(Ψ) = 0. (71)

The boundary condition (70) guarantees continuity of the equity price at time τc , that

is, when Ψt = Ψ. The boundary condition (71) is a standard “no bubble” condition.17

3.5 Optimal capital structure and debt dynamics

In this section, we solve for the firm’s optimal capital structure at time t = 0. For tractability,

we assume that the manager does not have an informational advantage at this time and that,

like the creditors, she observes only the lagged asset value V̂0 = V−L
. Because the firm begins

with no debt (i.e., F
0−

= 0), it follows that shareholders will receive as dividend the present

value of debt D1(V̂0 , F0). Therefore, the objective of management is to choose F0 in order to

17One can express the scaled equity function as a Taylor series expansion ŝ(Ψ
t
) =

∑∞
j=−1 sj

Ψ−j
t

(where
the {sj

} are constants). This functional form clearly satisfies the boundary condition (71).
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maximize:

max
F0

[
Ŝ(V̂0 , F0) +D1(V̂0 , F0)

]
= max

F0

[F0 ŝ(Ψ0) + F0d(Ψ0)] . (72)

Because V̂0 is an exogenous constant, we can divide equation (72) by V̂0 , implying that

equation (72) is equivalent to:

max
Ψ0

[(
1

Ψ0

)
ŝ(Ψ0) +

(
1

Ψ0

)
d(Ψ0)

]
. (73)

After choosing its initial capital structure, the firm continuously issues debt at a rate

dFt given by equation (56), until it exhausts its debt capacity. Applying Itô’s lemma to

Ψt ≡
(
V̂t/Ft

)
we obtain the following dynamics for Ψt :

dΨt

Ψt

=

[
µ+ ξ −

(
1

d(Ψ)

)[
((1− θ)c+ ξ) + β (Ψ−Ψ)

]]
dt+ σ dBQ t ∈ (0, τc). (74)

By construction, at the random time τc , Ψτc
= Ψ, where Ψ is an exogenous parameter

representing the firm’s debt capacity.18

18It is worth noting that our framework does not permit firms to create a Ponzi scheme in which it can
forever issue debt to service debt in place, even for the case in which Ψ = 0. That is, leverage can reach

infinity, or equivalently, inverse leverage can reach zero, in finite time. To see this, note that
(

1
d(Ψ)

)
=(

F
D

1

)
=
(
1
Ψ

) (
V̂
D

1

)
. As the recovery rate is finite in our model, thus so is

(
1

recov

)
=
(

V̂
D

1

)
. Therefore

limΨ→0

(
Ψ

d(Ψ)

)
=
(

1
recov

)
. Therefore, when Ψ = 0, the dynamics of Ψ as Ψ → 0 is

lim
Ψ→0

: dΨ ≈ −
(

1

recov

)
((1− θ)c+ ξ) dt+ σΨ dBQ, (75)

which can clearly reach Ψt = 0 in finite time.
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4 Results

There are two defining features of our model that, taken together, set it apart from the

previous literature. First, we allow for informational asymmetry between the firm’s manager

and creditors. Second, the firm is able to issue debt until it reaches its debt capacity. It is

useful to organize the discussion of our model’s implications along these two elements, so as

to more easily draw a comparison with the previous literature.

The key model coefficients associated with information asymmetry and debt issuance are

the information lag parameter L and the debt capacity parameter Ψ. In the baseline case, we

assume that it takes creditors six months to learn the true value of the firm’s assets. Hence,

they observe firm value Vt with a delay L = 0.5. Furthermore, we use Ψ = 1.60; this value

generates a market leverage at time τc of approximately 75%, in line with leverage values of

firms that recently transitioned to “fallen angel” status.

Other special cases are also relevant. For instance, when (L = 0, Ψ = V̂0/F0), the

manager and creditors share the same information set, and the firm is permitted to issue

debt only at time t = 0. This case is similar to the Leland (1994) setting. Another special

case is (L > 0, Ψ = V̂0/F0). This case is closely related to the economy of Duffie and Lando

(2001), in which a better-informed manager chooses the optimal mix of debt and equity

at time zero, but is prevented from issuing debt in the future. Finally, the case in which

(L = 0, Ψ > V̂0/F0) falls within the literature on optimal capital structure dynamics with

complete information (e.g., Goldstein, Ju, and Leland (2001), Hennessy and Whited (2007),

DeMarzo and He (2018)).

Table 2 reports the rest of the model coefficients for the baseline calibration. We set

the annual risk-free rate to 3.0%, a value consistent with a 1% real rate and 2% expected

inflation. We choose a 3.5% coupon rate, so that bonds are priced at par when they are

issued by a firm that selects its time-0 capital structure optimally. The drift and volatility

of the EBIT dynamics in equation (1) are set to µ = 0 and σ = 25%, respectively. In the

model, the capital structure choice is driven by the trade-off between debt tax shield and

bankruptcy cost. In this respect, we assume that corporate profits are taxed at a θ = 25%

rate, while the loss given default parameter is set to α = 40%. As in DeMarzo and He (2018),

we assume an amortization rate ξ = 10%, corresponding to an expected debt maturity of

1/ξ = 10 years. Also as in DeMarzo and He (2018), we assume that the firm issues debt
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more aggressively when leverage is low, which we capture by setting β = 0.01%.

4.1 Optimal initial capital structure

Figure 6 shows the optimal firm capital structure at time t = 0 as a function of the informa-

tion lag L. The blue line, labeled “BGG,” portrays the solution for our model, computed

as in Section 3.5. The red line shows similar results for a firm that is restricted to issuing

equity only at time t = 0, i.e., Ψ = V̂0/F0 .
19 We label this case “Duffie-Lando.”

In our baseline calibration (L = 0.5), the optimal initial leverage is 25.1%, compared with

48.4% in the Duffie-Lando case. In our model, the firm continues to borrow after time t = 0

to service debt in place, and its leverage increases to 75.8% by the time the credit constraint

binds at time τc . Hence, the ability to issue debt guarantees that default cannot occur in the

“short term” (i.e., prior to τc), in contrast to a firm that is restricted from issuing debt after

date-0 (as in Duffie and Lando (2001)). However, these future debt issuances significantly

increase the probability of default at longer maturities. This in turn makes it optimal for

the firm to choose a lower initial leverage in our framework compared with that of Duffie

and Lando (2001).

Furthermore, Figure 6 shows that as the information asymmetry between the manager

and creditors increases, the firm issues less debt initially. For instance, when creditors observe

the value of the assets with a one-year delay, optimal initial leverage decreases to 22% in

our model; a similar drop occurs in the Duffie-Lando case, in which optimal initial leverage

is 45.3%. At the other extreme, when L → 0, both manager and creditors observe the true

value of the assets. In this case, the Duffie-Lando case collapses into the Leland model, with

initial optimal leverage peaking at 51.7%. In our model, the ability to issue additional debt

in the future increases the riskiness of the initial debt in place, which in turn causes the

optimal initial leverage to be lower (28.9%).

Next, we illustrate the sensitivity of the firm’s optimal initial capital structure to the

credit constraint coefficient Ψ. Figure 7 shows both the optimal leverage at time t = 0 (the

red stars) and the time-τc leverage (the blue triangles) as a function of Ψ. At time-0, the op-

19In our model, we treat Ψ as an exogenous credit constraint that binds at a random time τc (equation (37)).
From time τ

c
onward, our economy is similar to that of Duffie and Lando (2001). Therefore, in the Duffie-

Lando capital structure illustration, we assume that the firm is put in place at time τ
c
and we treat Ψ as a

choice variable selected by the manager to maximize the initial firm value.
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timal leverage ratio is hump-shaped in Ψ. When Ψ is small, the manager issues a substantial

amount of debt before exhausting debt capacity, and the firm reaches time τc with leverage

ratios in excess of 90%. Original creditors anticipate a high default probability shortly after

τc , resulting in a high time-0 cost of debt financing. Thus, the manager will choose a low

initial leverage ratio. As Ψ increases, creditors know that the manager will exhaust debt

capacity at lower levels of leverage and that the firm faces a lower default probability at “in-

termediate” maturities. Lower default rates increase the value of the original debt issuance

and, in turn, the optimal initial leverage.

As Ψ increases further, the debt capacity constraint puts an upper bound on the initial

leverage. In particular, as Ψ → ∞, the time-0 and time-τc leverage converge at a speed that

depends on the amortization parameter ξ. When ξ > 0, the firm is under strain to repay

its debt after it reaches τc and thus faces a higher default probability. Hence, it is optimal

for the manager to choose a lower initial leverage. To confirm this intuition, Figure 8 shows

that, when ξ = 0, the initial and time-τc leverage coincide for values of Ψ as low as 2.5,

while in the baseline case of ξ = 0.1, the initial leverage converges to the time-τc leverage

for values of Ψ in excess of 50 (Figure 7).

Figure 9 shows the effect of the amortization coefficient ξ on the optimal time-0 leverage

and debt-capacity leverage at t = τc . There are two effects driving the time-τc leverage. A

higher amortization rate (i) increases debt value because the firm repays debtholders faster;

and (ii) lowers debt value because the perpetual coupon stream thins out as the firm repays

the principal. In our baseline calibration, the first effect dominates and the time-τc leverage

increases with ξ. At time t = 0, the pattern in the time-0 optimal leverage mirrors that of

the time-τc leverage. When the time-τc leverage increases, the time-0 creditors anticipate a

higher probability of default. This perception decreases the value of time-0 debt, leading the

manager to choose a lower initial leverage.

Finally, Figure 10 shows firm leverage as a function of the EBIT volatility coefficient σ.

As the riskiness of cash flows increases, the firm faces a higher debt financing cost and, as a

result, it chooses a more conservative time-0 mix of debt and equity and reaches τc with a

lower leverage.
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4.2 Term structure of credit spreads

We use the debt pricing formulas, derived in Section 3, to simulate model-implied default

times and then compute the term-structure of defaultable bond spreads as in Section 2.4,

page 647, of Duffie and Lando (2001). Specifically, in each simulated path for asset values,

we price a defaultable zero coupon bond with maturity T whose payoff at maturity is either

$1, if there is no default, or a recovery value of $(1−α) if default occurs at any time τ
b
≤ T .

Figure 11 shows the model-implied term structure of credit spreads as a function of the

information lag L. For all value of L, we fix Ψ0 at the optimal time-0 value.20 As the

information lag L increases, debt becomes riskier and credit spreads go up. However, in

all cases short-maturity credit spreads are nearly zero. This is because in our model IG

companies are not subject to (instantaneous) jump-to-default risk; hence, they command no

(instantaneous) jump-to-default premium.

Figure 12 documents the sensitivity of credit spreads to changes in Ψ. As Ψ decreases,

firms arrive at τc with a larger stock of debt. Hence, creditors expect the firm to reach its

default boundary sooner than in the baseline case and therefore price debt lower. Even in

this case, however, the impact of a lower Ψ is mostly visible in longer-dated spreads. In

contrast, short-maturity debt largely remains safe, as the IG company can avoid default

at short horizons by accessing its available debt capacity. A similar pattern is evident in

Figure 13: As asset volatility increases, debt becomes riskier and spreads go up. However,

the increase is mostly visible at longer maturities, while short-term IG spreads stay low.

Figure 14 shows the effect of an increase in the amortization rate ξ. The main point of

the plot is to demonstrate that even when the firm issues short-maturity debt, short-term

IG spreads remain small. For example, spreads with tenor up to two years are virtually zero

for all values of ξ. The reason is that, in our model, as long as the firm has access to the

credit market, it can raise as much funds as necessary to service debt in place. This is in

stark contrast with other models of debt issuance that allow for positive amortization, e.g.,

Leland and Toft (1996). In their model, the manager issues new debt with face value equal

to that of the amortized bonds. Since debt is issued at market price, the dollar amount

raised might be insufficient to fully cover the cost of repaying the amortized debt. In such a

case, the manager would have to issue additional equity to keep the firm operating, possibly

20For ease of comparison, we use the same value of Ψ0 across Figures 11 to 14.
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leading to a strategic default. In contrast, in our model, the manager issues enough debt to

service debt in place. This is consistent with IG companies’ ability to tap the credit market.

Hence, as long as the firm has not exhausted its debt capacity, the firm will not jump to

default and short-term credit spreads are not affected.

For maturities larger than two years, spreads are positive, albeit small, regardless of the

amortization rate ξ. Figure 14 shows that the sensitivity of these spreads to ξ depends on

maturity. Specifically, for tenors between approximately two to 30 years, the dependence

of spreads on ξ is non-monotonic. At these intermediate horizons, firms have reached their

time-τc debt capacity and are forced to issue equity to service debt in place. From this point

onward, a higher amortization rate ξ increases the financial burden on the firm, resulting in

higher default probabilities and credit spreads. For tenors longer than 30 years, spreads fall

as ξ increases. By this time, firms have repaid most of their debt that is sinking at a faster

rate ξ. Hence, at long maturities default probabilities and credit spreads fall with ξ.

In contrast to the previous illustrations that focused on IG firms, Figure 15 shows spreads

for a fallen-angel company that has reached a leverage of 85%. In the complete information

case (L ≈ 0), spreads are small and close to zero at short maturities. As the degree of

asymmetric information between managers and creditors increases, spreads rise considerably.

For instance, an information lag of L = 1 year produces spreads of 250 basis points at the

one-month horizon. This happens because after the firm reaches its debt capacity at time

τc , it behaves similarly to a firm described by the Duffie-Lando economy. In particular, as

leverage increases, jumps to default are possible and are priced in the firm’s debt.

4.3 Default rates

Table 3 shows model-implied expected default rates for firms in different credit-rating groups.

We assume an annual 5% risk premium to express the asset value process in equation (3)

under the physical probability measure. We then simulate a sample of 10,000 firms, and track

each of them until its eventual default. For each firm and at each point of its simulated life

span, we record the time to the company’s default and use the firm’s leverage as a proxy for

credit worthiness. In particular, we assign firms with leverage no higher than 60% to the IG

group. Companies with leverage between 60% and 70% are in the B group, while the rest

are given a C label. We then compute the proportion of the firms in a rating group that
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default at various time horizons and report the annualized default rate in the table.

Model-implied default rates are close to the empirical estimates in Table 1. Just as in the

data, IG companies hardly ever go bankrupt; at short horizons, default rates are virtually

zero and they increase progressively over time. Failures remain infrequent among B firms,

while firms in the C category behave in a way that is consistent with the possibility of jumps

to defaults. At the one-month horizon, the annualized default rate is approximately 11%, a

number that closely matches the empirical default rates for high-yield bonds. Beyond the

first month, default rates decline progressively, though they remain elevated, as in the data.

5 Conclusion

In their seminal paper, Duffie and Lando (2001) demonstrate that if managers observe a

sufficiently bad private signal, then it will be in the best interests of shareholders to declare

default, rather than have shareholders service existing debt. Based on the creditors’ infor-

mation set, such a default would be unanticipated and thus would be described as a “jump

to default.” Duffie and Lando (2001) conclude that the asymmetric information channel

provides an economic justification for the so-called reduced-form models of default.

In this paper, we argue that the conclusions of Duffie and Lando (2001) are based upon

the assumption that firms are unable to issue new debt in order to service existing debt.

While such an assumption may be an appropriate description for highly leveraged firms

(which we refer to as “high-yield” firms, or “fallen angels”), in general, moderately-leveraged

firms (which we refer to as “investment-grade” (IG) firms) have the ability to access debt

markets. To account for this reality, we generalize the framework of Duffie and Lando (2001)

by allowing investment-grade firms to raise debt in order to service existing debt. Under

this more realistic assumption, a manager of an IG firm will maximize shareholder value

by concealing any bad private signal and servicing existing debt via additional borrowing.

This strategy permits IG firms to avoid jumping to default, at least until their debt capacity

has been exhausted and the firm has been downgraded to “fallen angel” status. Creditors

are aware of the manager’s informational advantage and price it rationally into the firm’s

claims. Since IG firms do not face jump-to-default risk, their bond yields do not command

a jump-to-default premium. A jump-to-default due to asymmetric information is possible in

our model only after firms become “fallen angels” and exhaust their ability to borrow.
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An implication of our model is that the relatively large spreads on short-maturity IG debt

over risk-free securities cannot be explained by jump-to-default premia due to asymmetric

information. Therefore, other channels such as asymmetric taxes, market imperfections (e.g.,

illiquidity), or jumps due to public information, are needed to explain these large spreads.

In this respect, our paper deepens the credit-spread puzzle.

While our framework allows for an important generalization over that of Duffie and Lando

(2001), certain restrictive and counterfactual assumptions are made to maintain tractability.

For instance, in our model, it is assumed that firms continue to borrow until debt capacity

has been fully utilized. In both theory and practice, however, if the manager receives a

sufficiently strong positive private signal, it would be in the the best interest of shareholders

for the firm to issue equity rather than debt. Such an equity issuance would provide a

signal regarding the firm’s true value and therefore, would create a filtering problem even

more complex than the one we solve in this paper. As a second example of an unrealistic

restriction, we assume that once a firm becomes a fallen angel, it is never able to access debt

markets again, even if the firm eventually regains its IG status. We emphasize however, that

accounting for either of these restrictions will not impact our main conclusion, namely, that

the asymmetric information channel will not generate the possibility of a jump-to-default for

any firm that has the ability to raise debt to service existing debt.
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Table 1: Empirical Default Rates. Each month, we classify firms as investment
grade (IG), higher-quality speculative grade (B), and lower-quality speculative-grade
firms (C). In Panels A and B, the classification is based on credit ratings issued by the
three main rating agencies (Moody’s, Standard and Poor’s, and Fitch). In Panel C, the clas-
sification is implied by the price of CDS contracts written on debt issued by the firms. Panel
A shows average annualized default rates from 1985 to 2014 for firms in each rating category
that have defaulted in the next 12 months; Panels B and C show default rates for the 2001-
2014 period. Heteroskedasticity- and autocorrelation-robust (Newey-West) standard errors
are in parentheses.

Annualized Default Rates
Rating

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

Panel A: Classification based on credit ratings, 1985-2014

IG 0.06 0.07 0.07 0.08 0.11 0.15 0.10
( 0.02) ( 0.03) ( 0.03) ( 0.02) ( 0.03) ( 0.04) ( 0.02)

B 0.20 0.34 0.48 0.63 0.84 1.02 0.71
( 0.05) ( 0.08) ( 0.10) ( 0.13) ( 0.16) ( 0.20) ( 0.13)

C 14.46 13.66 12.54 11.10 9.14 7.47 10.31
( 1.41) ( 1.45) ( 1.21) ( 1.08) ( 0.92) ( 0.75) ( 0.94)

Panel B: Classification based on credit ratings, 2001-2014

IG 0.07 0.09 0.09 0.09 0.12 0.17 0.11
( 0.03) ( 0.04) ( 0.04) ( 0.03) ( 0.04) ( 0.05) ( 0.03)

B 0.21 0.37 0.50 0.58 0.75 0.84 0.63
( 0.07) ( 0.10) ( 0.13) ( 0.15) ( 0.18) ( 0.21) ( 0.15)

C 12.94 12.12 11.03 9.74 7.76 6.18 8.93
( 1.64) ( 1.65) ( 1.34) ( 1.22) ( 0.93) ( 0.73) ( 0.98)

Panel C: Classification based on CDS-implied ratings, 2001-2014

IG 0.01 0.01 0.01 0.04 0.04 0.05 0.03
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.02) ( 0.02) ( 0.01)

B 0.29 0.35 0.34 0.42 0.51 0.51 0.44
( 0.11) ( 0.12) ( 0.13) ( 0.15) ( 0.19) ( 0.20) ( 0.14)

C 3.30 3.12 3.12 3.05 2.94 2.81 3.00
( 0.91) ( 0.95) ( 0.82) ( 0.80) ( 0.73) ( 0.61) ( 0.60)
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Table 2: Baseline Model Coefficients. Below are the values of the model coefficients in
the baseline calibration.

Parameter Symbol Value

Coupon rate c 3.5%

Annual risk-free rate r 3.0%

Annual asset volatility σ 25%

Corporate tax rate θ 25%

Loss given default α 40%

Maximum debt capacity Ψ 1.60

Creditors’ information delay (in years) L 0.5

Amortization rate ξ 10%

Discretionary debt issuance intensity β 0.01%

Table 3: Average Model-Implied Default Rates. We simulate a history of 10,000 firms
from our model and track them from inception through their default time. For each firm
and at any point in time of the simulations, we record the time to default and classify the
observation as investment grade (IG) if the firm’s leverage is below 60%. We classify firms
with leverage between 60% and 70% as higher-quality speculative grade (B). Lower-quality
speculative-grade firms (C) have leverage in excess of 70%. The table shows average default
rates across firms in the simulated sample.

Average annualized default rates

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

IG 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B 0.28 0.65 1.04 1.58 2.12 2.47 1.71

C 11.06 10.66 10.19 9.18 7.81 6.63 8.57
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Figure 3: Average Amount of Bonds Outstanding along the Default Path. The
plot shows the average amount of bonds outstanding for firms that defaulted from 1985 to
2017 as a function of time to default. The dashed lines show the 90% confidence bands.
Source: Mergent database.
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Figure 4: Average S&P Rating along the Default Path. The plot shows the average
credit rating for firms that defaulted from 1985 to 2017 as a function of time to default. The
dashed lines show the 90% confidence bands. Source: S&P Credit Ratings from Capital IQ.
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Figure 5: Average Firm Leverage along the Default Path. The plot shows the average
leverage for firms that defaulted from 1985 to 2017 as a function of time to default. Each
year, we compute the average value of the firm total outstanding equity using CRSP data,
and the total book value of debt from Compustat; leverage is the ratio of debt book value
over total firm value, given by the sum of the equity and debt values. The dashed lines show
the 90% confidence bands. Sources: S&P Credit Ratings from Capital IQ, Compustat, and
CRSPr, Center for Research in Security Prices, Booth School of Business, The University
of Chicago. Used with permission. All rights reserved. crsp.uchicago.edu.

41



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 6: Optimal Capital Structure. The plots show the optimal time-0 capital structure
as a function of the information lag L between creditors and the manager, where L ranges
from 0 to 1 year, 0 ≤ L ≤ 1. The ‘BBG’ line denotes our baseline model in which the manager
can issue debt till borrowing capacity is reached; the ‘Duffie-Lando’ line corresponds to a
firm that can only issue equity to service debt in place. The other parameter values are in
Table 2.
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Figure 7: Optimal Capital Structure and Credit Constraints, ξ = 0.1. The plot
shows the optimal leverage at time t = 0 (the red stars) and the time-τc leverage (the blue
triangles) as a function of the credit constraint parameter Ψ. The other parameter values
are in Table 2.
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Figure 8: Optimal Capital Structure and Credit Constraints, ξ = 0. The plot shows
the optimal leverage at time t = 0 (the red stars) and the time-τc leverage (the blue triangles)
as a function of the credit constraint parameter Ψ. The other parameter values are in Table 2.
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Figure 9: Optimal Capital Structure and the Amortization Rate ξ. The plot shows
the optimal leverage at time t = 0 (the red stars) and the time-τc leverage (the blue triangles)
as a function of the amortization rate ξ. The other parameter values are in Table 2.
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Figure 10: Optimal Capital Structure and Volatility. The plot shows the optimal
leverage at time t = 0 (the red stars) and the time-τc leverage (the blue triangles) as a
function of the EBIT volatility coefficient σ. The other parameter values are in Table 2.
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Figure 11: Credit Spreads and Information Asymmetry. The plot illustrates the
sensitivity of the credit spreads curve to the information gap parameter L. In all cases, Ψ0 is
fixed at the optimal time-0 value that corresponds to a 25.1% leverage in the baseline case.
The other parameter values are in Table 2.
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Figure 12: Credit Spreads and Credit Constraints. The plot illustrates the sensitivity
of the credit spreads curve to the credit constraint parameter Ψ. In all cases, Ψ0 is fixed
at the optimal time-0 value that corresponds to a 25.1% leverage in the baseline case. The
other parameter values are in Table 2.
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Figure 13: Credit Spreads and EBIT Volatility. The plot illustrates the sensitivity of
the credit spreads curve to the EBIT volatility parameter σ. In all cases, Ψ0 is fixed at the
optimal time-0 value that corresponds to a 25.1% leverage in the baseline case. The other
parameter values are in Table 2.
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Figure 14: Credit Spreads and the Amortization Rate ξ. The plots illustrate the
sensitivity of the credit spreads curve to the amortization rate ξ. In all cases, Ψ0 is fixed
at the optimal time-0 value that corresponds to a 25.1% leverage in the baseline case. The
other parameter values are in Table 2.
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Figure 15: Credit Spreads for Fallen Angels. The plots shows credit spreads for a
company that has reached an 85% leverage in the baseline case. The three lines contrast
the complete information case (L ≈ 0) to the cases in which the information lags between
creditors and the manager are L = 0.5 and L = 1 years. The other parameter values are in
Table 2.
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This Online Apendix contains addional analysis to accompany the manuscript. Sec-

tions A, B, and C provide further empirical details regarding the stylized facts in Section 2

of the paper. Section D contains proofs and Section E derives the bond price in Regime 3

for times t ∈ (τc , τc + L).

A Classifying firms based on bond ratings

We collect the entire history of credit ratings given by the three main U.S. rating agencies

(Moody’s Investor Services, Standard & Poor’s Ratings Services, and Fitch Ratings) from

the Mergent database. While Mergent contains ratings going back to the early part of the

20th century, ratings are limited to a very small number of debt issues through the mid 1980s.

Hence, here we focus on the sample period from 1985 to 2014.

Mergent provides ratings specific to particular bond issues, rather than an overall com-

pany rating. Hence, for a given issuer, each month we collect all ratings awarded on that

month to any of its outstanding bonds and use that information to classify the company.1

We divide individual bond ratings in three categories: investment grade (IG), higher-quality

speculative grade (B), and lower-quality speculative grade (C and lower), where the last

two categories, B and C, together comprise the universe of speculative grade ratings. We

then assign the company to one of the three categories when the majority of the company’s

bond ratings are in that category. When no fresh ratings are given by any agency to the

outstanding bonds of that company, we classify the firm based on ratings collected in the

previous month. If no new ratings were issued the previous month, we go further back, up

to 12 months. In case no new ratings are available in the entire 12 month period, we do

not classify the firm. This approach mitigates the problem of classifying companies based

on stale ratings.

Figure A.1 shows the percentage of firms in each of the three rating categories: investment

grade (the IG category), higher-quality speculative grade (the B category), and lower-quality

speculative grade (the C category). The figure reflects the changing nature of debt markets

and the evolution of the rating agencies’ services. Prior to the 1980s, rating agencies were

mostly focusing on blue chip industrial firms. This is consistent with a preponderance of IG

1We exclude ratings on government agencies’ bonds (e.g., U.S. Treasury, U.S. and foreign agencies, mu-
nicipalities).
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ratings in the early part of the sample period. Over time, financial disintermediation and

capital markets development allowed a broader variety of firms to raise funds in the bond

market. Along the way, rating agencies expanded their coverage of lower-quality issues.

These changes are reflected in an increased proportion of speculative-grade firms. Higher-

quality speculative issues display an increasing trend through the 1990s. The proportion

of lower-quality ratings remains mostly stable over the sample period, but increases during

recessions; for instance, the percentage of firms in the C category peaks in 1991, 2001, and

2009.
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Figure A.1: Percentage of Firms by Credit Ratings. The plots show the percentage of
firms in each of the three rating categories: investment grade (IG), higher-quality speculative
grade (B), and lower-quality speculative grade (C). The sample period goes from 1985 to
2014. Source: Mergent database.

To document default rates among rated firms, we obtain the entire history of bankruptcy

filings starting from 1985 (also available through the Mergent database). Each month, after

we classify firms in the three rating categories, we identify those that filed for bankruptcy over

the next 12 months. We record the number of months that have elapsed between the month

of the classification and the bankruptcy time. Then we count bankruptcies that occurred

within the first, second, and third month of the classification (0-1, 1-2, and 2-3 months), the

second, third, and fourth quarters (3-6, 6-9, and 10-12 months), and the entire year (0-12

2



months). For ease of comparison across periods of different length, we annualize all count

variables.2 The results are in Table Table 1 of the paper; we discuss them in Section 2 of

the paper.

B Classifying firms based on CDS premia

In the previous section, we have classified firms based on credit ratings that are up to 12

months old. Such ratings might not fully reflect the information available to market partic-

ipants at the time of the classification. Hence, here we consider an alternative classification

of firms into the same three rating categories that is based on CDS data.

CDS contracts provide insurance in case of credit events that affect the value of a reference

entity (such as the bond issued by a company that files for bankruptcy). Therefore, CDS

premia reflect market participants’ assessment of default risk for the company that issues

the reference bond. The CDS market is generally liquid. Thus, CDS contract are a useful

source of real-time information about a company’s credit worthiness.

To translate CDS premia into a proxy for a company’s credit rating, we compare the cost

of insuring bonds issued by that company with that of insuring portfolios of investment-grade

and high-yield bonds (the CDX-IG and CDX-HY indices constructed by Markit Financial

Information Services). Each month from 2001 to 2014 we aggregate daily five-year CDS

premia from the Markit database into an average monthly CDS premium.3 Similarly, we

compute monthly averages of daily five-year CDX-IG and CDX-HY premia. If the CDS

premia on a firm’s bonds do not exceed the CDX-IG index by more than 100 basis points

(bps), then we classify that firm as investment grade (the IG category). We use the 100 bps

threshold to avoid excluding creditworthy companies whose CDS premia lie slightly above

the CDX-IG level, i.e., the average IG premium. In unreported results, we find the analysis

to be robust to the choice of the threshold value. In contrast, when CDS premia on a firm’s

bonds exceed the CDX-HY premium we classify that firm as lower-quality speculative grade

(the C category). Finally, if CDS premia lie in between the IG and C thresholds, then we

classify the company as higher-quality speculative grade (the B category).

2We multiply the count variables for the 0-1, 1-2, and 2-3 periods by 12, and those for the quarterly
periods by 4.

3Prior to analysis, we exclude CDS contracts written on bonds issued by Government and sovereign
entities.
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Figure B.2 shows the proportion of firms in each category based on CDS-implied rat-

ings. The trading of CDS contracts on IG companies is predominant throughout the sample

period, especially in the early 2000s when the CDS market was in its infancy and trading

concentrated in high-quality big names.4 Over time, the proportion of CDS contracts on IG

firms fluctuates around a downward trend, with drops in 2001-2002 and 2008-2009 at the

depth of two recessions, and peaks during the subsequent recovery periods.
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Figure B.2: Percentage of Firms by CDS-Implied Ratings The plots show the percent-
age of firms in each of the three rating categories (IG, B, and C) based on ratings implied
by CDS data. The sample period goes from 2001 to 2014. Source: Markit databases.

The proportion of CDS contracts on higher-quality speculative-grade firms generally in-

creases throughout the sample. Further, CDS trading in the B category exhibits peaks

during recessions and declines in the expansions that follow, a pattern that is the direct

opposite of the fluctuations in the proportion of IG CDS contracts. This is consistent with

both (1) a reshuffling in CDS trading across rating categories over the business cycle and (2)

an increase in CDS premia for IG firms during recessions combined with a decline in CDS

premia of B firms during expansions that shift firms from one rating category to the other.

4This is consistent with, e.g., Subrahmanyam, Tang, and Wang (2014).
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Finally, Figure B.2 shows that little high-yield trading takes place in the early years of

the CDS market. That changes over time, with a proportion of CDS contracts on low-grade

speculative firms steadily increasing over the sample period.

Similar to Section A, each month we identify firms that filed for bankruptcy within the

following 12 months. We then compute the average annualized default rates within the first,

second, and third month of the classification (0-1, 1-2, and 2-3 months), the second, third,

and fourth quarters (3-6, 6-9, and 10-12 months), and the entire year (0-12 months). The

results are in Table 1, Panel C in the paper; heteroskedasticity- and autocorrelation-robust

(Newey-West) standard errors are in parentheses. The main point of the table is to show

that at horizons from one to three months, IG default rates are virtually zero: the point

estimate for the annualized default rate is 0.01% and statistically insignificant.

When we restrict our attention to firms that held IG status for at least one of the 12

months preceding the default event, we find that the great majority of these companies

exhibit a considerable run-up in credit spreads for many months before they default. This

provides investors with a signal that the credit worthiness of such companies has deteriorated

below IG well before their bankruptcy. Figure B.3 shows the difference between the average

CDS premium on those firms and the CDX-IG index. This spread is very small 12 months

prior to bankruptcy and then increases in the ensuing months as the firms drop out of the

IG group and approach bankruptcy. This evidence suggests that an investment policy that

(1) holds bonds issued by firms in the IG category, and (2) unwinds these positions when the

firm loses IG status, faces virtually zero default risk. Hence, the jump-to-default premium

for this portfolio should be negligible.

C Robustness Checks

In the paper, we classify firms in the IG, B, and C rating categories over the period 1985–

2014 using the Mergent dataset. We then compute empirical default rates for companies

that have experienced bankruptcy within a year of the classification. Here we check the

robustness of our findings using data from the Moody’s Default and Recovery Database

(DRD). There are two advantages to this dataset. First, the database spans a longer sample

period starting from 1920. Second, Moody’s reports a default flag that captures not only

bankruptcies but also other credit events such as missed payments beyond the grace period

5
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Figure B.3: Average CDS Premium on Investment Grade Firms up to Bankruptcy.
Among the firms that went bankrupt from 2001 to 2014, we classify as investment grade those
that had CDS contracts trading at a premium no higher than 100 basis points of the CDX
Investment Grade Index for at least one of the 12 months preceding the bankruptcy time.
The plot shows the average CDS premium, in excess of the CDX Investment Grade Index,
on those investment grade firms in the 12 months leading up to their bankruptcy.

and debt restructuring that reduces the value of the bondholder claim.

While the Moody’s data go as far back as 1920, we find many early ratings to be stale. In

unreported results, we find that, for most IG defaults that occurred over 1920–1940, Moody’s

did not update the IG rating past the default event. Hence, we only use data starting from

1940.

First, we document the average rating of firms that experienced a delinquency, i.e., they

were issued a D rating, along their path to default. Figure C.4 shows results for the 1940–

2017 (top panel) and the 1985–2017 (bottom panel) sample periods over the ten-year window

leading to the default event. The results are nearly indistinguishable across the two periods

and consistent with the evidence in Figure 4 in the paper: ten years prior to delinquency,

the typical firm starts out with a BB+ rating, which progressively deteriorates as the firm

approaches its default time.5

5For ease of comparison with the results in Figure 4 in the paper, we map the letter designations for

6



Next, we compute empirical default rates using Moody’s DRD data, similar to the analysis

in Section 2 of the paper where we relied instead on individual bond ratings from the Mergent

database. The results for the 1940–2014 sample period are in Panel B of Table C.1. They

are similar to those reported in the paper over the shorter 1985–2014 window based on the

stricter bankruptcy classification flag. For completeness, panels C and D show results for

the 1985–2014 and 2001–2014 windows, which show results consistent with those in the main

text for the same two periods.

Moody’s ratings into those of Standard & Poor’s.
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Figure C.4: Average Moody’s Rating along the Default Path. The plots show the
average credit rating for defaulted firms as a function of time to default. The dashed lines
denote the 90% confidence bands. Sample periods: 1940-2017 (top panel) and 1985–2017
(bottom panel). Source: Moody’s Investment Services Default and Recovery Database.
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Table C.1: Empirical Defaults Rates. Each month, we classify firms as investment grade
(IG), higher-quality speculative grade (B), and lower-quality speculative-grade firms (C)
based on ratings issued by Moody’s Investors’ Services. The panels show average annualized
default rates computed over various periods for firms in each rating category that have
defaulted in the next 12 months. Heteroskedasticity- and autocorrelation-robust (Newey-
West) standard errors are in parentheses. Source: Moody’s Default and Recovery Database.

Annualized Default Rates
Rating

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

Panel A: 1920–2014

IG 0.09 0.10 0.11 0.13 0.16 0.18 0.14
( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.03) ( 0.03) ( 0.02 )

B 1.56 1.78 1.91 2.11 2.35 2.51 2.18
( 0.24) ( 0.25) ( 0.26) ( 0.28) ( 0.30) ( 0.32) ( 0.27 )

C 8.39 7.58 7.11 6.47 5.58 4.85 6.15
( 1.22) ( 1.11) ( 1.04) ( 0.89) ( 0.73) ( 0.62) ( 0.79 )

Panel B: 1940–2014

IG 0.03 0.04 0.04 0.07 0.08 0.10 0.07
( 0.01) ( 0.01) ( 0.01) ( 0.02) ( 0.02) ( 0.02) ( 0.02 )

B 1.16 1.45 1.61 1.88 2.20 2.41 1.97
( 0.20) ( 0.23) ( 0.25) ( 0.29) ( 0.33) ( 0.36) ( 0.29 )

C 10.33 9.25 8.66 7.81 6.60 5.73 7.39
( 1.62) ( 1.47) ( 1.37) ( 1.17) ( 0.94) ( 0.80) ( 1.02 )
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Table C.1, continued

Annualized Default Rates
Rating

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

Panel C: 1985–2014

IG 0.03 0.04 0.05 0.08 0.11 0.13 0.09
( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.03) ( 0.03) ( 0.02 )

B 1.30 1.68 1.90 2.24 2.65 2.92 2.36
( 0.23) ( 0.27) ( 0.29) ( 0.33) ( 0.38) ( 0.42) ( 0.33 )

C 14.36 12.85 12.00 10.76 9.11 7.88 10.20
( 1.83) ( 1.66) ( 1.55) ( 1.29) ( 0.99) ( 0.84) ( 1.05 )

Panel D: 2001–2014

IG 0.05 0.06 0.07 0.11 0.14 0.16 0.11
( 0.03) ( 0.03) ( 0.03) ( 0.03) ( 0.04) ( 0.04) ( 0.03 )

B 0.53 0.90 1.07 1.32 1.72 1.98 1.46
( 0.15) ( 0.23) ( 0.27) ( 0.33) ( 0.45) ( 0.50) ( 0.35 )

C 14.33 13.10 12.46 11.36 9.65 8.43 10.68
( 2.26) ( 2.04) ( 1.91) ( 1.58) ( 1.17) ( 0.99) ( 1.26 )
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D Proofs

Lemma 1 The density πQ
4
(yt|yt−L

, τ
b
> t), t ≥ τc + L is given by

πQ
4
(yt|yt−L

, τ
b
> t) =

πQ(yt , τb > t|y
t−L

, τ
b
> (t− L))

πQ
(
τ
b
> t| y

t−L
, τ

b
> (t− L)

) , (D.1)

where the numerator and denominator are

πQ(yt , τb > t|y
t−L

, τ
b
> (t− L)) =

1{yt>0} 1{y
t−L

>0}

[
1√

2πσ2L
exp

{(
−1

2σ2L

)[
yt − y

t−L
−mL

]2}
−e−

2y(t−L)m

σ2
1√

2πσ2L
exp

{(
−1

2σ2L

)[
yt + y

t−L
−mL

]2}]
(D.2)

πQ (τ
b
> t| y

t−L
, τ

b
> (t− L)

)
=

[
N

(
y
t−L

+mL
√
σ2L

)
−

e−
2y

t−L
m

σ2 N

(
−y

t−L
+mL

√
σ2L

)]
1{y

t−L
>0}, (D.3)

and N(·) denotes the cumulative standard normal distribution.

Proof. From Proposition 8.1, p. 11 in Harrison (1985) the density πQ(yt , τb > t|y
t−L

, τ
b
>

(t − L)) in the numerator of (D.1) is characterized by the “free solution” minus an “image

solution” whose initial location −y
t−L

is the same distance from the default boundary as is

the actual initial location, that is, y
t−L

. Hence, the numerator of (D.1) is given by

πQ(yt , τb > t|y
t−L

, τ
b
> (t− L)) =

1{yt>0} 1{y
t−L

>0} ×
[

1√
2πσ2L

exp

{(
−1

2σ2L

)[
yt − y

t−L
−mL

]2}
−e−

2y(t−L)m

σ2
1√

2πσ2L
exp

{(
−1

2σ2L

)[
yt + y

t−L
−mL

]2}]
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By integrating over yt we obtain the denominator of (D.1), that is,

πQ (τ
b
> t| y

t−L
, τ

b
> (t− L)

)
=[

N

(
y
t−L

+mL
√
σ2L

)
− e−

2y
t−L

m

σ2 N

(
−y

t−L
+mL

√
σ2L

)]
1{y

t−L
>0},

where N(·) denotes the cumulative standard normal density.

Lemma 2 The density πQ
3
(yt|τb > t, y

t−L
) , t ∈ (τc , τc + L) is given by

πQ
3
(yt |τb > t, y

t−L
) =

πQ
3
(yt , τb > t|y

t−L
)

πQ
3

(
τ
b
> t| y

t−L

) , (D.4)

where the numerator and denominator are

πQ
3
(yt , τb > t|y

t−L
) = 1{yt>0}

∫ ∞

0

dyτc√
2πσ2(t− τc)

×

[
e
−
(

1
2σ2(t−τc )

)
[yt−yτc−m(t−τc )]

2

− e−
2yτc

m

σ2 e
−
(

1
2σ2(t−τc )

)
[yt+yτc−m(t−τc )]

2
]

× 1√
2πσ2(τc − (t− L))

e
−
(

1
2σ2(τc−(t−L))

)
[yτc−y

t−L
−m(τc−(t−L))]

2

, (D.5)

πQ
3

(
τ
b
> t| y

t−L

)
=∫ ∞

0

dyτc√
2πσ2(τc − (t− L))

e
−
(

1
2σ2(τc−(t−L))

)
[yτc−y

t−L
−m(τc−(t−L))]

2

×

{
N

[
yτc +m(t− τc)√

σ2(t− τc)

]
− e−

2yτc m

σ2 N

[
−yτc +m(t− τc)√

σ2(t− τc)

]}
. (D.6)
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Proof.

πQ
3
(yt, τb > t | y

t−L
) =

∫ ∞

0

dyτc
π(yτc

, yt, τb > t | y
t−L

)

=

∫ ∞

0

dyτc
π(yt, τb > t | yτc

) π(yτc
| y

t−L
)

= 1{yt>0}

∫ ∞

0

dyτc√
2πσ2(t− τc)

×

[
e
−
(

1
2σ2(t−τc )

)
[yt−yτc−m(t−τc )]

2

− e−
2yτc

m

σ2 e
−
(

1
2σ2(t−τc )

)
[yt+yτc−m(t−τc )]

2
]

× 1√
2πσ2(τc − (t− L))

e
−
(

1
2σ2(τc−(t−L))

)
[yτc−y

t−L
−m(τc−(t−L))]

2

, (D.7)

where the lower integration limit is zero because τ
b
cannot be greater than t if yτc

< 0.

Also, the second line holds because, when conditioning on both (yτc
, y

t−L
), yτc is a sufficient

statistic.

By integrating the joint density (D.7) over yt ∈ (0,∞), we find

πQ
3
(τ

b
> t | y

t−L
) =

∫ ∞

0

dyτc√
2πσ2(τc − (t− L))

e
−
(

1
2σ2(τc−(t−L))

)
[yτc−y

t−L
−m(τc−(t−L))]

2

×

{
N

[
yτc +m(t− τc)√

σ2(t− τc)

]
− e−

2yτc
m

σ2 N

[
−yτc +m(t− τc)√

σ2(t− τc)

]}
. (D.8)
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Proof of Proposition 1

The value of a claim to coupons and maturing principal prior to default is given by

D4,1(1{τ
b
>t}, yt−L

, Ft) = EQ
t

[∫ ∞

t

dT e−r(T−t)(c+ ξ)F
T
1{τ

b
>T}

]
= 1

(τ
b
>t)

(c+ ξ)Ft d4,1(yt−L
), (D.9)

with

d4,1(yt−L
) =

∫ ∞

t

dT e−(r+ξ)(T−t) πQ (τ
b
> T |F4,t

)
. (D.10)

and F4,t denoting the information set in Regime 4, assuming default has not yet occurred,

that is,

F4,t =
{
y
t−L

, τ
b
> t
}
, t ≥ τc + L. (D.11)

In terms of the Dirac delta function δ(·), the value of debt’s claim to recovery conditional

upon default is given by

D4,2(1{τ
b
>t}, yt−L

, Ft) = EQ
t

[∫ ∞

t

dT e−r(T−t)(1− α)(1− θ)Vτ
b
δ(τ

b
− T )

]
= (1− α)(1− θ)v

b
Ft d4,2(yt−L

), (D.12)

with

d4,2(yt−L
) =

∫ ∞

t

dT e−(r+ξ)(T−t) πQ (τ
b
= T |F4,t

)
=

[
1− (r + ξ)d4,1(yt−L

)
]
. (D.13)

Equation (D.13) follows from integration-by-parts, and the fact that: πQ
(
τ
b
= T |F4,t

)
=

− ∂
∂T

πQ
(
τ
b
> T |F4,t

)
. As shown in equations (D.10) and (D.13), to price the bond, we need

the conditional probability πQ
(
τ
b
> T |F4,t

)
. To derive it, it is useful to start with the
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identity:

πQ (y
T
, τ

b
> T, yt|yt−L

, τ
b
> t
)
= πQ (y

T
, τ

b
> T |yt , τb > t) πQ

4

(
yt|yt−L

, τ
b
> t
)
, (D.14)

where πQ
4

(
yt |yt−L

, τ
b
> t
)
is given in Lemma 1. This relation holds because conditioning

upon both (yt , yt−L
) is equivalent to conditioning only upon yt due to y-dynamics being

Markov. The two terms on the RHS are:

πQ (y
T
, τ

b
> T |yt , τb > t) =

(
1

(y
T

>0)
1

(yt>0)√
2πσ2(T − t)

)[
e
−
[yT −yt−m(T−t)]

2

2σ2(T−t) − e−
2myt
σ2 e

−[yT +yt−m(T−t)]
2

2σ2(T−t)

]

πQ
4
(yt |yt−L

, τ
b
> t) =

πQ(yt , τb > t|y
t−L

, τ
b
> (t− L))

πQ
(
τ
b
> t| y

t−L
, τ

b
> (t− L)

) , (D.15)

where the numerator and denominator are

πQ(yt , τb > t|y
t−L

, τ
b
> (t− L))) =

=
1{yt>0} 1{y

t−L
>0}√

2πσ2L

[
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−mL]
2

2σ2L − e−
2y(t−L)m

σ2 e−
[yt+y

t−L
−mL]

2

2σ2L

]
πQ (τ

b
> t| y

t−L
, τ

b
> (t− L))

)
=

=

[
N

(
y
t−L

+mL
√
σ2L

)
− e−

2y
t−L

m

σ2 N

(
−y

t−L
+mL

√
σ2L

)]
1{y

t−L
>0}, (D.16)

and N(·) denotes the cumulative standard normal distribution. Integrating equation (D.14)
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over y
T
, we find

πQ (yt , τb > T |y
t−L

, τ
b
> t
)

≡
∫ ∞

−∞
dy

T
πQ (y

T
, τ

b
> T, yt |yt−L

, τ
b
> t
)

=

[∫ ∞

−∞
dy

T
πQ (y

T
, τ

b
> T |yt , τb > t)

]
πQ

4

(
yt|yt−L

, τ
b
> t
)

= 1
(yt>0)

[
N

(
yt +m(T − t)√

σ2(T − t)

)
− e−

2ytm

σ2 N

(
−yt +m(T − t)√

σ2(T − t)

)]
πQ

4

(
yt |yt−L

, τ
b
> t
)
.

(D.17)

Finally, by integrating equation (D.17) over yt , we obtain our desired result:

πQ (τ
b
> T |F4,t

)
≡

∫ ∞

−∞
dyt π

Q (yt , τb > T |F4,t

)
=

∫ ∞

0

dyt

[
N

(
yt +m(T − t)√

σ2(T − t)

)
− e−

2ytm

σ2 N

(
−yt +m(T − t)√

σ2(T − t)

)]
πQ

4

(
yt |F4,t

)
,

(D.18)

where F4,t is the information set defined in (D.11) and πQ
4

(
yt |F4,t

)
is given in equation (D.15).

Proof of Corollary 1

We define the risk-neutral default intensity as

λQ
4,d
(1{τ

b
>t}, yt−L

) = 1{τ
b
>t} lim

dt→0

(
1

dt

)
πQ (τ

b
< (t+ dt)|τ

b
> t, y

t−L

)
(D.19)

= 1{τ
b
>t} lim

dt→0

(
1

dt

)∫ ∞

0

dyt π
Q (τ

b
< (t+ dt), yt|τb > t, y

t−L

)
= 1{τ

b
>t} lim

dt→0

(
1

dt

)∫ ∞

0

dyt π
Q (τ

b
< (t+ dt)|τ

b
> t, yt)π

Q (yt|τb > t, y
t−L

)
.
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Note that only values of yt = ασ
√
dt contribute to the determination of the default intensity.

To see why this is the case, recall that, from a binomial model, dy = ±σ
√
dt. Therefore,

only if yt is a few standard deviations away from the boundary at time-t is it possible for

default to occur by (t+dt). Changing the integration variables yt = ασ
√
dt, dyt = dα σ

√
dt,

we find

πQ
(
τ
b
< (t+ dt)|τ

b
> t, yt = ασ

√
dt
)

=

=
[
1− πQ

(
τ
b
> (t+ dt)|τ

b
> t, yt = ασ

√
dt
)]

=

[
1−

{
N

(
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√
dt+mdt√
σ2 dt

)
− e−

2ασ
√
dtm

σ2 N

(
−ασ

√
dt+mdt√
σ2 dt

)}]

=
[
1−

{
N
(
α +

m

σ

√
dt
)
− e−

2ασ
√
dtm

σ2 N
(
−α +

m

σ

√
dt
)}]

dt→0
= 1− {N (α)−N (−α)}

= 2N (−α) . (D.20)

It might be surprising that this result is not of order O(dt), but this is because we are

conditioning upon values of yt = ασ
√
dt that are “very close” to the default boundary. From

equation (D.1), we have

π4(yt = ασ
√
dt|τ

b
> t, y

t−L
) =

π(yt = ασ
√
dt, τ

b
> t|y

t−L
, τ

b
> (t− L))

π
(
τ
b
> t| y

t−L
, τ

b
> (t− L)

) , (D.21)

17



Taylor expanding with respect to yt = ασ
√
dt, and using the fact that the density goes zero

at yt = 0, we get

π(yt = ασ
√
dt|τ

b
> t, y

t−L
) =

=
π(yt = 0, τ

b
> t|y

t−L
, τ

b
> (t− L)) + ασ

√
dt πy(yt = 0, τ

b
> t|y

t−L
, τ

b
> (t− L))

π
(
τ
b
> t| y

t−L
, τ

b
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)
=
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> t|y

t−L
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b
> (t− L))

π
(
τ
b
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t−L
, τ

b
> (t− L)

) . (D.22)

Combining these results, we find:

λQ
4,d
(1{τ

b
>t}, yt−L

) =

= lim
dt→0

(
1

dt

)∫ ∞

0

σ
√
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b
> t|y
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b
> (t− L))
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τ
b
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t−L
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b
> (t− L)

)
=
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b
> t|y
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b
> (t− L))

π
(
τ
b
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b
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) ) ∫ ∞

0
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(D.23)

Using integration by parts, can show that

∫ ∞

0

dα αN(−α) =
1

4
. (D.24)

Hence,

λQ
4,d
(1{τ

b
>t}, yt−L

) =

(
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2

)
∂

∂yt

(
π(yt , τb > t|y
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b
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)
∂
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∣∣∣∣
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, (D.25)
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which agrees with Duffie and Lando (2001). Expression (32) for the default intensity follows

by differentiation of the above expression.

Proof of Proposition 2

The time-τc value of a claim to coupon and principal payments (c + ξ)F
T
dT made during

the interval dT for times T ∈ (τc , τb) is given by

D3,1(1{τ
b
>τc}, Fτc

) = Eτc

[∫ ∞

τc

dT e−r(T−t)(c+ ξ)F
T
1{τ

b
>T}

]
= (c+ ξ)Fτc

1{τ
b
>τc} d3,1 , (D.26)

with

d3,1 =

∫ ∞

τc

dT e−(r+ξ)(T−τc ) πQ (τ
b
> T | F3,τc

)
. (D.27)

and F3,τc
denoting the information set at time τc assuming default has not yet occurred, that

is,

F3,τc
=
{
y
τc−L

, τ
b
> τc

}
=
{
y
τc−L

, yτc
> 0
}
. (D.28)

The time-τc value of a claim to recovery (1−α)(1− θ)Vτ
b
which pays out at the random

time τ
b
∈ (τc ,∞) is given by

D3,2(1{τ
b
>τc}, Fτc

) = Eτc

[∫ ∞

τc

dT e−r(T−t)(1− α)(1− θ)v
b
F

T
δτ

b
= T

]
= (1− α)(1− θ)v

b
Fτc

1{τ
b
>τc} d3,2 (D.29)
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with

d3,2 =

∫ ∞

τc

dT e−(r+ξ)(T−τc ) πQ (τ
b
= T | F3,τc

)
=

[
1− (r + ξ)d3,1

]
. (D.30)

Equation (D.30) follows from integration-by-parts, and the fact that: πQ
(
τ
b
= T |F3,τc

)
=

− ∂
∂T

πQ
(
τ
b
> T |F3,τc

)
. As shown in equations (D.27) and (D.30), to price the bond in this

regime, we need the conditional probability πQ
(
τ
b
> T |F3,τc

)
. To derive it, it is useful to

start with the identity:

πQ
(
yτc

, yτc
> 0 | y

τc−L

)
= πQ

3

(
yτc

| yτc
> 0, y

τc−L

)
πQ
(
yτc

> 0 | y
τc−L

)
= πQ

(
yτc

> 0 | yτc
, y

τc−L

)
πQ
(
yτc

| y
τc−L

)
. (D.31)

Combining the two previous equations, we find

πQ
3

(
yτc

| yτc
> 0, y

τc−L

)
=

π
(
yτc

> 0 | yτc
, y

τc−L

)
π
(
yτc

| y
τc−L

)
π
(
yτc

> 0 | y
τc−L

) (D.32)

=

 1{yτc >0}

N
(

y
τc−L

+mL
√
σ2L

)
 1√

2πσ2L
exp

[
−
(

1

2σ2L

)(
yτc

− y
τc−L

−mL
)2]

.

To determine the value of D3,1(1(τ
b
>τc )

, Fτc
) in equation (D.27), we need to identify the

probability πQ
(
τ
b
> T |yτc

> 0, y
τc−L

)
. Noting that the condition (yτc

> 0) is equivalent to
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(τ
b
> τc), we accomplish this by integrating over yτc

as follows:

πQ
(
τ
b
> T |yτc

> 0, y
τc−L

)
=

∫ ∞

−∞
dyτc

πQ
(
τ
b
> T, yτc

|yτc
> 0, y

τc−L

)
=

∫ ∞

−∞
dyτc

πQ (τ
b
> T |yτc

, τ
b
> τc

)
πQ

3

(
yτc

|yτc
> 0, y

τc−L

)
=

∫ ∞

0

dyτc
πQ

3

(
yτc

|yτc
> 0, y

τc−L

)
×

[
N

(
yτc

+m(T − τc)√
σ2(T − τc)

)
− e−

2yτc
m

σ2 N

(
−yτc

+m(T − τc)√
σ2(T − τc)

)]
, (D.33)

where the last equality follows from Proposition 8.1, p. 11 in Harrison (1985).

Proof of Proposition 3

Using the conditional probabilities defined in (46) and (47) we can write the value of debt

D2(Fτ−
c

) as:

D2(Fτ−
c

) = EQ
τ−
c

[
D3(1{τ

b
>τc}, Fτc

)1{yτc >0} + (1− α)(1− θ)Vτc
1{yτc <0}

]
= πQ

2

(
τ
b
> τc | F2,τ−

c

)
D3(1{τ

b
>τc}, Fτc

)

+(1− α)(1− θ)v
b
Fτc

∫ 0

−∞

dyτc√
2πσ2L

e
−( 1

2σ2L
)
[
yτc −(y

τc−L
+mL)

]2
eyτc

= N

(
log(Ψe−ξL/v

b
) +mL√

σ2L

)
D3(1{τ

b
>τc}, Fτc

) (D.34)

+(1− α)(1− θ)ΨFτc
e(m−ξ+σ2

2
)L N

(
− log(Ψe−ξL/v

b
)− (m+ σ2)L√

σ2L

)
,

where the debt value D3(yτc−L
,1{τ

b
>τc}, F , τc) is given in Proposition 2, and where the last

equality uses the densities in equations (46) and (47).
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Proof of Proposition 4

We conjecture that the regime-1 bond price is homogeneous degree-1 in its arguments, and

therefore can be specified as:

D1(V̂t , Ft) = Ft d
(
Ψt = (V̂t/Ft)

)
. (D.35)

After plugging the following partial derivatives

D
1,V̂

(V̂t , Ft) = d
Ψ

D
1,V̂ V̂

(V̂t , Ft) = (1/Ft)dΨΨ

D
1,F

(V̂t , Ft) = d−Ψd
Ψ
, (D.36)

into the PDE (58), we find that this scaling feature reduces the PDE to a nonlinear ODE:

0 = −(r + ξ)d+ (c+ ξ) +
σ2

2
Ψ2d

ΨΨ
+

Ψd
Ψ

[
(µ+ ξ)−

(
1

d

)(
β(Ψ−Ψ) + (1− θ)c+ ξ

)]
. (D.37)

By construction, the boundary condition at Ψt = Ψ is specified as:

d(Ψt = Ψ) =

(
D2

(
Fτc

)
Fτc

)
. (D.38)

In contrast, there is no exogenously imposed boundary as Ψt → ∞. Instead, it is a natural

boundary derived from the ODE in equation (D.37). Specifically, one can show that d(Ψ)

possesses a Taylor series expansion about Ψ = ∞ of the form:

d(Ψ) =
∞∑
j=0

d
j
Ψ−j. (D.39)
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The implication is that limΨt→∞ d(Ψt) approaches a constant, and therefore that:

lim
Ψt→∞

d
Ψ
(Ψt) = 0. (D.40)

Intuitively, this equation captures the fact that the bond price per unit face value goes to a

constant as Ψ → ∞.

Proof of Proposition 5

Recall from equation (63) that, for dates t ∈ (τc , τb), the value of equity conditional upon

the manager’s information set can be written as:

S(yt , Ft) = Ft1(yt>0)

{
(1− θ)v

b

(
eyt − e−ωyt

)
−
(
c(1− θ) + ξ

r + ξ

)(
1− e−ωyt

)}
t ≥ τc .

(D.41)

For these dates, creditors do not know yt , but only the lagged value y
t−L

, and the fact that

the process {ys} > 0 ∀s ∈ (τc , t), which for conciseness, we express as τ
b
> t. Thus, the

value of equity conditional upon the creditor’s information set is:

Ŝ(y
t−L

, Ft) =


∫ ∞

0

πQ
3
(yt | τb > t, y

t−L
)S(yt , Ft) dyt if τc ≤ t < τc + L (D.42a)∫ ∞

0

πQ
4
(yt |τb > t, y

t−L
)S(yt , Ft) dyt if t ≥ τc + L, (D.42b)

where πQ
3
(yt | τb > t, y

t−L
) is given by equation (D.4) in Lemma 2, and πQ

4
(yt | τb > t, y

t−L
) is

given in equation (D.1) in Lemma 1.

For times t < τc , creditor’s valuation of equity is given by the sum of risk-neutral expected

cash flows due to shareholders prior to date-τc , and the value of equity at dateτc :

Ŝ(V̂t , Ft) = EQ
t

[∫ τc

t

dT e−r(T−t)
[
(1− θ)(r − µ)V̂

t+L
+ β

(
V̂t −ΨF

T

)]
+ e−r(τc−t) Ŝτc

|Ft

]
,

(D.43)
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where Ŝτc
= Ŝ(y

τc−L
= log(Ψe−ξL/v

b
), Fτc

) can be determined from equation (D.41):

Ŝτc
=

∫ ∞

0

dyτc
π(yτc

|y
τc−L

= log(Ψe−ξL/v
b
)) S(yτc

, Fτc
)

= (1− θ)ΨFτc
eL(m−ξ+(σ2/2)) N

[
y
τc−L

+mL+ σ2L
√
σ2L

]
−
(
c(1− θ) + ξ

r + ξ

)
Fτc

N

[
y
τc−L

+mL
√
σ2L

]

+

[(
c(1− θ) + ξ

r + ξ

)
− (1− θ)v

b

]
Fτc

e
−ωy

τc−L eL((ω
2σ2/2)−ωm)N

[
y
τc−L

+mL− ωσ2L
√
σ2L

]
,

(D.44)

with y
τc−L

= log
(
Ψe−ξL/v

b

)
.

With the value of Ŝτc
obtained in equation (66), we can determine the outsiders’ valuation

of equity St for t < τc by solving the expectation in equation (65). Because e−rtŜ(V̂t , Ft) +

Et

[∫ t

0
dT e−rT

[
(1− θ)(r − µ)V̂

T+L
+ β

(
V̂

T
−ΨF

T

)]]
is a Q-martingale, the expectation in

equation (65) reduces to the following PDE:

0 = −rŜ + µV̂ Ŝ
V̂
+

σ2

2
V̂ 2Ŝ

V̂ V̂
+ (1− θ)(r − µ)V̂ emL + β

(
V̂ −ΨF

)
+Ŝ

F

[
−ξF +

(
F

D1(V̂ , F )

)[(
(1− θ)c+ ξ

)
F + β

(
V̂ −ΨF

)]]
. (D.45)

Proof of Proposition 6

Given the scaling feature of our framework, we look for a solution of the form:

Ŝ(V̂t , Ft) = Ft ŝ(Ψ = V̂t/Ft). (D.46)
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Using the relations

Ŝ
V̂
(V̂ , F ) = ŝ

Ψ
(Ψ)

Ŝ
V̂ V̂

(V̂ , F ) =

(
1

F

)
ŝ
ΨΨ

(Ψ)

Ŝ
F
(V̂ , F ) = ŝ(Ψ)−Ψŝ

Ψ
(Ψ), (D.47)

we find that the PDE in equation (67) simplifies to the ODE:

0 = −rŝ+ µΨŝ
Ψ
+

σ2

2
Ψ2ŝ

ΨΨ
+ (1− θ)(r − µ)ΨemL + β (Ψ−ΨF )

+ (ŝ(Ψ)−Ψŝ
Ψ
(Ψ))

[
−ξ +

(
1

d(Ψ)

)[(
(1− θ)c+ ξ

)
+ β (Ψ−Ψ)

]]
. (D.48)

By construction, the boundary condition at Ψt = Ψ is specified as:

ŝ(Ψ = Ψ) =
Ŝτc

Fτc

. (D.49)

In contrast, there is no exogenously imposed boundary as Ψt → ∞. Instead, it is a natural

boundary derived from the ODE in equation (D.48). Specifically, one can show that ŝ(Ψ)

possesses a Taylor series expansion about Ψ = ∞ of the form:

ŝ(Ψ) =
∞∑

j=−1

s
j
Ψ−j. (D.50)

The implication is that limΨt→∞ ŝ(Ψt) approaches a linear function:

lim
Ψt→∞

ŝ(Ψt) = s−1Ψ. (D.51)
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Plugging this conjecture into equation (D.48), we find that the constant equals:

s−1 = (1− θ)emL + β/(r − µ). (D.52)

Thus, we have

lim
Ψt→∞

ŝ
Ψ
(Ψt) = (1− θ)emL + β/(r − µ), (D.53)

which implies the boundary condition

lim
Ψt→∞

ŝ
ΨΨ

(Ψt) = 0. (D.54)
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E Bond prices in Regime 3 for times t ∈ (τc, τc + L)

For times t ∈ (τc , τc + L), we can express the value of debt as a sum of two components:

D3(1{τ
b
>t}, yt−L

, Ft) = D3,1(1{τ
b
>t}, yt−L

, Ft) +D3,2(1{τ
b
>t}, yt−L

, Ft). (E.1)

The first component is the present value at time-t of the claim to coupon and principal

payments (c+ ξ)F
T
dT made during the interval dT for times T ∈ (t,∞) if default has not

yet occurred (i.e., t < τ
b
):

D3,1(1{τ
b
>t}, yt−L

, Ft) = E
[∫ ∞

t

dT e−r(T−t)(c+ ξ)Fte
−ξ(T−t)1

(τ
b
>T )

]
= (c+ ξ)Ft 1{τ

b
>t} d3,1(yt−L

), (E.2)

where

d3,1(yt−L
) =

∫ ∞

t

dT e−(r+ξ)(T−t) πQ (τ
b
> T | τ

b
> t, y

t−L

)
. (E.3)

The second component is the present value at time-t of the claim to recovery (1−α)(1−θ)Vτ
b

if default occurs during the interval (T, T + dT ), for times T ∈ (t,∞), given by:

D3,2(1{τ
b
>t}, yt−L

, Ft) = E
[∫ ∞

t

dT e−r(T−t)(1− α)(1− θ)V
T
δ(τ

b
= T )

]
= (1− α)(1− θ)v

b
Ft 1{τ

b
>t} d3,2(yt−L

), (E.4)

where

d3,2(yt−L
) =

∫ ∞

t

dT e−(r+ξ)(T−t) πQ (τ
b
= T | τ

b
> t, y

t−L

)
= 1− (r + ξ)d3,1(yt−L

). (E.5)
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To price d3,1(yt−L
), we need to identify πQ

(
τ
b
> T | τ

b
> t, y

t−L

)
. To do so, we note:

πQ (τ
b
> T | τ

b
> t, y

t−L

)
=

∫ ∞

0

dyτc

∫ ∞

0

dyt π
Q (τ

b
> T, yτc

, yt | τb > t, y
t−L

)
=

∫ ∞

0

dyτc

∫ ∞

0

dyt π
Q [τ

b
> T | τ

b
> t, yt ] π

Q [yt | τb > t, yτc

]
πQ [yτc

| τ
b
> t, y

t−L

]
=

∫ ∞

0

dyt π
Q [τ

b
> T | τ

b
> t, yt ] π

Q
3

[
yt | τb > t, y

t−L

]
, (E.6)

where we have defined

πQ
3

[
yt | τb > t, y

t−L

]
=

∫ ∞

0

dyτc
πQ [yt | τb > t, yτc

]
πQ [yτc

| τ
b
> t, y

t−L

]
. (E.7)
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These densities can be determined using:

πQ [τ
b
> T | τ

b
> t, yt ] = 1{yt>0} ×[

N

(
yt +m(T − t)√

σ2(T − t)

)
− e−

2ytm

σ2 N

(
−yt +m(T − t)√

σ2(T − t)

)]

πQ [yt | τb > t, yτc

]
=

πQ
[
yt , τb > t | yτc

]
πQ
[
τ
b
> t | yτc

]
πQ [yt , τb > t | yτc

]
= 1{yt>0} 1{yτc >0} × 1√
2πσ2(t−τc )

exp
{(

−1
2σ2(t−τc )

) [
yt − yτc

−m(t− τc)
]2}

−e−
2yτc

m

σ2 1√
2πσ2(t−τc )

exp
{(

−1
2σ2(t−τc )

) [
yt + yτc

−m(t− τc)
]2}


πQ (τ

b
> t| yτc

)
= 1{yτc >0} ×[

N

(
yτc

+m(t− τc)√
σ2(t− τc)

)
− e−

2yτc
m

σ2 N

(
−yτc

+m(t− τc)√
σ2(t− τc)

)]

πQ [yτc
| τ

b
> t, y

t−L

]
=

πQ
[
τ
b
> t | yτc

]
πQ
[
yτc

| y
t−L

]∫∞
0

dyτc
πQ
[
τ
b
> t | yτc

]
πQ
[
yτc

| y
t−L

]
πQ [yτc

| y
t−L

]
=

√
1

2πσ2(τc − (t− L))
×

exp

{(
1

2σ2(τc − (t− L))

)[
yτc

− y
t−L

−m(τc − (t− L))
]2}

.
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As shown by Duffie and Lando (2001), the default intensity λQ
3,d
(t, y

t−L
) satisfies

λQ
3,d

(
t, y

t−L

)
=

σ2

2

∂

∂yt

πQ
3
(yt|τb > t, y

t−L
)

∣∣∣∣
yt=0

(E.8)

=


∫∞
0

dyτc
πQ
[
yτc

| y
t−L

] yτc√
2πσ2(t−τc )

3
e

(
−1

2σ2(t−τc )

)
[yτc +m(t−τc )]

2

∫∞
0

dyτc
πQ
[
τ
b
> t | yτc

]
πQ
[
yτc

| y
t−L

]
 .

For the special case t = (τc +L), this equation reduces to λQ
3,d

(
t, y

t−L

)
given in equation (32).

However, for other values of t, in contrast to the time-independent default intensity in

Regime 4, the default intensities in Regime 3 are time dependent.

30



<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /All

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Warning

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /LeaveColorUnchanged

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages false

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages false

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages false

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages false

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages false

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages false

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects true

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<



    /BGR <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

    /FRA <>

    /GRE <>



    /HRV <>

    /HUN <>

    /ITA <>

    /JPN <>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>

    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

    /RUS <>

    /SKY <>

    /SLV <>

    /SUO <>

    /SVE <>

    /TUR <>

    /UKR <>

    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /NoConversion

      /DestinationProfileName ()

      /DestinationProfileSelector /NA

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure true

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles true

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /NA

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /LeaveUntagged

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice





