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Abstract: US payroll employment data come from a survey and are subject to revisions. While 

revisions are generally small at the national level, they can be large enough at the state level to alter 

assessments of current economic conditions. Users must therefore exercise caution in interpreting 

state employment data until they are “benchmarked” against administrative data 5–16 months after 

the reference period. This paper develops a state-space model that predicts benchmarked state 

employment data in real time. The model has two distinct features: 1) an explicit model of the data 

revision process and 2) a dynamic factor model that incorporates real-time information from other 

state-level labor market indicators. We find that the model reduces the average size of benchmark 

revisions by about 11 percent. When we optimally average the model’s predictions with those of 

existing models, the model reduces the average size of the revisions by about 14 percent. 
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1 Introduction 

State nonfarm payroll employment is one of the most important indicators of regional 

economic activity in the United States. Produced as part of the Bureau of Labor Statistics’ (BLS) 

Current Employment Statistics (CES) program, it is a strong predictor of other coincident measures 

of economic activity (Crone and Clayton-Matthews (2005)). It is also a rare example of a state 

economic indicator with a reporting lag of less than one month. Many other state-level indicators 

take nearly two quarters to be released. For example, state gross domestic product, arguably the 

broadest measure of state economic activity, is released five months after the end of the reference 

quarter. 

To achieve such a quick turnaround, the BLS relies on a survey of nonfarm businesses 

establishments. As a result, the data are subject to revision. The first revision is released one month 

after the initial release and includes any missing or corrected responses. The second revision is 

released in March of the following year (or for fourth quarter data, in March of two years following) 

after the survey results have been “benchmarked” against administrative data sources that cover the 

universe of nonfarm workers. State-level revisions can be quite large. While the mean absolute 

revision to the national 12-month change in log employment was 0.002 for data benchmarked in 

2006 through 2019, the average mean absolute revision across the 50 states was 0.006. In those years, 

states’ mean absolute revisions were larger than the nation’s for every state except Pennsylvania, 

and the largest mean absolute revision was for North Dakota, at 0.01. Because revisions to the 

national data tend to be small, the BLS uses a “wedge back” procedure to adjust the data: only the 

March level is benchmarked against administrative data each year and the difference is evenly 
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spread across the prior 11 months. For state data, the level for every month is benchmarked against 

administrative data (for details on the BLS’s methods, see BLS (2011)). 

In some instances, benchmark revisions are large enough to swing an apparent net job loss in 

a state for the year to a sizeable net gain. To illustrate the potential magnitude of the state-level 

benchmark revisions, Figure 1 compares two data vintages of CES employment in Illinois covering 

January 2014 to December 2015. The blue line shows data from the January 2016 vintage, where the 

dashed portion of the line represents data that have not been benchmarked. The black line shows 

data from the March 2016 vintage, which includes newly benchmarked data through September 

2015. The newly benchmarked data indicate that rather than losing 3,000 workers from December 

2014 to December 2015, Illinois actually gained 51,000 workers. 

 

Figure 1. Current Employment Statistics (CES) data for Illinois before and after the March 2016 benchmark. 

The short-dashed lines represent survey-based data that are not yet benchmarked against administrative data. 

Source: St. Louis Fed archive of data from Haver Analytics. 

This paper develops and tests a state-space model that predicts benchmarked state 

employment data in real time. The model has two distinct features: 1) an explicit model of the data 
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revision process and 2) a dynamic factor model that incorporates real-time information from other 

state-level labor market indicators. We find that across all 50 US states, the model reduces the 

average size of the benchmark revisions by about 11 percent on a mean absolute error basis. That 

said, the model’s performance varies by state, and for some states does not improve on the initial 

release of the official CES data. For this reason, we employ a model averaging technique that allows 

us to optimally average our model’s predictions with those of the official CES data and an existing 

model developed by Berger and Philips (1993). We find that by averaging models we can reduce the 

average size of the revisions across states by about 14 percent. 

The literature has long recognized the challenge posed by data revisions for analyzing 

current economic conditions at the national and local levels. For example, Croushore and Stark 

(2001) created a real-time dataset of macroeconomic indicators for the US that allowed 

macroeconomists to examine how data revisions affect forecasts. Their research started an extensive 

literature that explores the reliability of initial releases of macroeconomic data. An example from this 

literature is Orphanides and van Norden (2002), which uses the Croushore and Stark (2001) dataset 

to examine the unreliability of output gap measures. While national data like the output gap are a 

major focus of the data revision literature because of their relevance for national fiscal and monetary 

policymakers, state and local economic indicators are also important because state and local 

policymakers rely on them to make decisions. For example, policymakers use the data to project tax 

revenues and outlays and to estimate the impact of economic development spending.  

In spite of the importance of state and local data and their typically larger revision sizes, 

research on revisions to state and local data is limited. That said, this paper builds on two earlier 

papers that address the topic and take approaches related to ours. Coomes (1992) uses a state-space 

framework similar to the one we develop to improve upon estimates of employment in Virginia and 
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the Louisville metropolitan area. And Berger and Philips (1993) develop a model for predicting CES 

benchmark revisions for Texas. We estimate the Berger and Philips (1993) model for all 50 states to 

serve as a comparison for the model in this paper, and like our model, it performs well for some but 

not all states. Because our models are different in some important ways, they play complementary 

roles in this paper’s model averaging exercise. We explain how the Berger and Philips (1993) “early 

benchmark” model is estimated in Section 7.1 of the appendix. 

The state-space framework we develop builds on the work of Coomes (1992) by explicitly 

modeling the BLS’s succession of data revisions, which take between 5 and 16 months to complete 

(depending on the calendar month) and involve four data releases. We outline this process in detail 

in section 2. Statistical agencies tend to treat the data revisions we model in this paper as an 

analytical problem that involves reconciling information across multiple sources. This is the 

approach of Berger and Philips (1993), who reconcile real-time administrative data with the official 

data to produce an “early benchmark” of CES employment. In section 3, we instead pose the 

revision process as a signal extraction problem where the “true” or “final” value is unobserved (see, 

for example, Aruoba (2008)) and must be filtered in real time from multiple noisy observations of 

CES state employment.  

Another unique feature of our state-space framework is that it includes a dynamic factor 

model that incorporates other state-level labor market indicators that are unrelated to the revision 

process but contain relevant information for state employment. This is a new approach to modeling 

the CES revision process, but is similar in spirit to approaches used for the real-time tracking of 

business conditions (see, for example, Aruoba, Diebold, and Scotti (2009)). It is also related to the 

literature on “nowcasting” (that is, forecasting the current period), as in Giannone, Reichlin, and 
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Small (2008), who nowcast real gross domestic product, Knotek II and Zaman (2014), who nowcast 

CPI inflation, and Monteforte and Moretti (2013), who nowcast Euro area inflation.  

While the models of Coomes (1992) and Berger and Philips (1993) made progress in 

predicting benchmarked state employment data, they were difficult to evaluate because of the 

limited availability of real-time data. In section 4, we test our model and the Berger and Philips 

(1993) early benchmark model using a real-time dataset of state CES employment with vintages that 

go back to 2005. We find that our model has smaller errors compared to the initial CES release for 36 

of 50 states and smaller errors compared to the early benchmark model for 31 of 50 states. Because 

our model is not always the best performer, we draw on the literature on forecast combinations (see, 

for example, Timmermann (2006)). In section 4.3, we show that when we optimally combine our 

model’s predictions with those from the early benchmark model and the initial official CES release, 

we can achieve better performance than that of any single model on its own. 

2 The CES Data Revision Process 

In order to achieve a quick turnaround in its release of payroll employment data, the BLS 

conducts a survey of business establishments and then revises its estimates as more comprehensive 

data become available. According to the BLS (2021), the CES survey covers around one-third of 

nonfarm workers and 697,000 establishments. About 40 percent of covered establishments have 

fewer than 20 employees. 

While the survey is very reliable for producing national statistics, estimates for state and 

local areas necessarily rely on smaller samples, which range from around 80,000 establishments in 

California to 2,100 establishments in Rhode Island. State-level industry subsamples are even smaller. 

In instances where samples are too small to publish reliable employment counts, the BLS utilizes a 
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small domain model that produces a weighted least squares estimate based on the CES survey, an 

ARIMA projection, and employment for that industry in adjacent states. The reported value is 

calculated as a weighted average of these three estimates, where the weights are based on forecast 

accuracy. Forty-three percent of state and local CES series are calculated in this way BLS (2021). All 

told, the BLS’s methods for producing state and local CES data means that they are subject to 

revisions due to sampling error as well as non-sampling error such as response bias, survey 

nonresponse, model misspecification, and methodological changes.  

State and local CES data go through two primary revisions. One month after the first 

“preliminary” release, the BLS produces a second “final” estimate, which includes additional data 

from establishments that did not submit survey responses in time for the preliminary release. Then, 

each March, the BLS releases “benchmarked” estimates for October of two years prior through 

September of the prior year.  

The benchmarked estimates are calculated from administrative data that comprise nearly the 

entire universe of nonfarm workers. The administrative data come from a number of sources, but 

the primary source is the unemployment insurance program, which covers about 97 percent of 

nonfarm workers. The remaining 3 percent come from a variety of other sources, but primarily from 

the Railroad Retirement Board and County Business Patterns (Bureau of Labor Statistics, 2011). Once 

the data are benchmarked, subsequent revisions are typically quite small. 

The BLS also releases data on the universe of workers who are covered by the 

unemployment insurance program (including some farm workers) through its Quarterly Census of 

Employment and Wages (QCEW) program. The data are monthly, but released on a quarterly basis 

5 to 7 months after the end of the reference period. Because the QCEW data are released quarterly 

and are the primary sources for the CES benchmark revisions, it is possible to use the QCEW data to 
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predict future benchmark revisions for the earliest portion of the non-benchmarked CES data. This is 

the approach of the Berger and Phillips (1993) early benchmark model. 

As an example of the CES data revision process, Figure 2 shows a timeline of CES releases 

associated with the data for April 2016. The first (preliminary) CES release of April 2016 CES 

employment was on May 20, 2016. On June 17, 2016, the BLS released its second (final) estimate of 

April employment (concurrent with the preliminary release of data for May 2016). In December 

2016, seven months after the first CES release of April employment, the QCEW data for April 2016 

were released. Finally, on March 13, 2017, the BLS released the benchmarked CES data for April 

2016. 

 

Figure 2. Revision timeline for state CES data for April 2016. 

3 A State-space Model of Benchmarked CES Data 

In this section, we outline our real-time data construction and our state-space model for 

benchmarking state employment data in real time, which builds on the models of Coomes (1992) 

and Berger and Phillips (1993). We estimate our model separately for each state because differences 

in state size, industry composition, and data collection methods (see section 2 for details) can lead to 
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large differences in model parameters. Our state-space model contains two sub-models. First, we 

model the CES data revision process. We call this sub-model the “revision model.” Second, we 

develop a dynamic factor model that incorporates additional real-time state-level labor market 

indicators that are separate from the CES data program. We call this sub-model the “factor model.”         

3.1 Real-time Data Construction 

Our real-time data come from a weekly archive of the Haver Analytics database maintained 

by the St. Louis Fed. 

To capture the real-time properties of the CES benchmarking process, we construct a number 

of vintage data series from the seasonally adjusted CES releases and the QCEW. First, we construct a 

vintage series of the first CES releases for each month, 𝐶𝐸𝑆1. The series includes, for example, the 

June 2014 observation released in July 2014, the July 2014 observation released in August 2014, and 

so on. We next construct a vintage series of second releases, 𝐶𝐸𝑆2, which are the CES releases after 

additional responses have been incorporated. The series includes, for example, the May 2014 

observation released in July 2014, the June 2014 observation released in August 2014, and so on. 

Finally, we construct a series of benchmarked values, 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ, which contains only the portion of 

the data from a given vintage that are benchmarked. The series includes, for example, observations 

through September 2013 from the July 2014 vintage. 

For the QCEW series, 𝑄𝐶𝐸𝑊, we match as closely as possible CES nonfarm payroll 

employment, which means we remove all employees in the agriculture, forestry, fishing, and 

hunting sector (NAICS 11) with the exception of those in the logging sector (NAICS 1133). QCEW 

data are subject to revision until the BLS finalizes them with the release of data for the first quarter 

of the following year. While we do not have real-time data for the QCEW, the BLS (2019) indicates 

that the revisions are typically minor. The BLS does not release seasonally adjusted QCEW data, so 
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we first convert finalized QCEW data into pseudo-real time vintages and then seasonally adjust the 

series using the Census Bureau’s X12 procedure. 

A key component of our model is that we incorporate other state employment indicators, 𝑌, 

in addition to those directly involved in the revision process. We use only indicators for which we 

have real-time data for all states. In practice, it may be desirable to include indicators in the model 

that are available only for some states or for which real-time data are not available. For consistency 

in testing our specification across states, we exclude such data and develop a model that can apply 

to all states and can be tested on real-time data. 

The additional series we include are a state’s initial claims for unemployment insurance 

(seasonally adjusted by us), national employment from the BLS’s Current Population Survey, 

national employment from the CES, and two measures we calculate ourselves that require some 

explanation. The first measure we calculate aims to capture any spatial correlation in employment 

changes across neighboring states. For example, employment changes in Indiana and Wisconsin 

may be correlated with employment changes in Illinois. For a given state, our spatial correlation 

measure is the weighted average of the change in CES employment across the other 49 states, where 

the weights are a neighboring state’s population in 2010 divided by the square of the Euclidian 

distance from a neighboring state’s population centroid to the given state’s population centroid. The 

second measure we calculate is an estimate of total state employment based on the combination of 

national CES industry-level data and a state’s share of national industry employment. For a given 

state and 3-digit NAICS industry, we multiply total national CES employment in that industry by 

the state’s share of national employment in that industry according to the QCEW. We sum across all 

industries to get our estimate of total state employment. 
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3.2 Forecasting CES State Employment  

We model revisions to CES state employment data on a state-by-state basis using the 

unobserved components framework described in this section. All series shown are in logs, with first 

differences denoted by the operator 𝛥. 

𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡 = 𝐸𝑡  

𝐶𝐸𝑆2𝑡 = 𝐸𝑡 +𝐵𝑡 

𝐶𝐸𝑆1𝑡 = 𝐸𝑡 +𝐵𝑡 + 𝑅𝑡 

𝑄𝐶𝐸𝑊𝑡 = 𝐸𝑡 +𝑊𝑡 

 

𝐵𝑡 = 𝜅 + 𝜌𝐵𝑡−1 + 𝜂𝑡 

𝑅𝑡 = 𝜔𝑡 

𝑊𝑡 = 𝛿 +∑𝜆𝑖𝑊𝑡−𝑖

𝑖

+ 𝜈𝑡 

Each latent state in our framework captures an element of the revision process or CES employment 

dynamics. Our target variable, 𝐸𝑡, represents benchmarked CES data, 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡, which are 

observed 5 to 16 months after the reference month. The difference between 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡 and the once-

revised second release 𝐶𝐸𝑆2𝑡 is the benchmark revision 𝐵𝑡 . 5 We assume that 𝐵𝑡 follows a first-order 

autoregressive process around a potentially nonzero conditional mean, 𝜅, imposing |𝜌| < 1 to ensure 

stationarity. This specification for 𝐵𝑡 is common for all states and allows us to flexibly model 

revisions to the average level and slope of 𝐶𝐸𝑆2𝑡. The difference between 𝐶𝐸𝑆2𝑡 and the initial 

release 𝐶𝐸𝑆1𝑡 is captured by 𝑅𝑡. We assume 𝑅𝑡 is an iid mean zero random variable, which is based 

on an examination of sample averages and autocorrelation functions for all 50 states. Finally, the 

                                                        
5 Note that for historical data beyond the most recent benchmark, this difference will reflect the initial and 

subsequent benchmark revisions. Because the size of subsequent benchmarks tend to be small (except 

when methodological changes occur), we do not model them as a separate source of error for these 

observations.  
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difference between 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡 and 𝑄𝐶𝐸𝑊𝑡 is a time-varying “wedge”, 𝑊𝑡, that we assume follows 

an AR(p) process around a conditional mean 𝛿 and state-specific lag order p.6  

To estimate 𝐸𝑡 using the relevant information contained in the additional state labor market 

indicators, 𝑌𝑡, we assume that a dynamic factor structure exists between them. 

𝛥𝐸𝑡 = 𝛼 + 𝑓𝑡 + 𝜁𝑡 

𝛥𝑌𝑡 = 𝛾 + 𝛤𝑓𝑡 + 𝜐𝑡 

𝑓𝑡 = 𝜃𝑓𝑡−1 + 𝜀𝑡 

𝜐𝑡 = 𝜓𝜐𝑡−1 + ϑ𝑡 

The scale and sign of the factor, 𝑓𝑡, are set by constraining the factor loading for 𝛥𝐸𝑡 to be 1 and 

restricting the sign of the element of the loading vector 𝛤 on unemployment insurance claims in 𝛥𝑌𝑡 

to be negative. We assume that the factor follows a stationary AR(1) process with |𝜃| < 1 and that 

the idiosyncratic errors of the factor model, 𝜐𝑡 , do as well (|𝜓| < 1). Together with the estimated 

dynamics of the revision process and the QCEW wedge, these dynamic processes allow us to 

forecast the benchmarked values of the state CES data beyond the last available 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡 

observation.   

3.3 State-space Model and Estimation  

With the further assumptions of iid normally distributed errors for the latent variables and 

observables, the model can be estimated by maximum likelihood methods with the Kalman filter as 

described in Durbin and Koopman (2012). The state-space representation of our model that we use 

                                                        
6 We choose p according to the Bayesian Information Criterion (BIC) for each individual state. Similar 

tests were also used to determine the lag order for other dynamic specifications. Note that the structure of 

the latent variables makes it possible to construct BIC statistics simply by taking differences of observed 

data series, i.e. 𝐵𝑡 = 𝐶𝐸𝑆2𝑡 − 𝐶𝐸𝑆𝑃𝑜𝑠𝑡𝑡, and estimating autoregressive specifications by OLS.  
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for estimation is shown below. Note that the autoregressive specification for 𝑊𝑡 is presented in 

companion form, as the exact number of lags used for estimation varies by state.7 

[
 
 
 
 
𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡
𝐶𝐸𝑆2𝑡
𝐶𝐸𝑆1𝑡
𝑄𝐶𝐸𝑊𝑡

𝛥𝑌𝑡+1 ]
 
 
 
 

=

[
 
 
 
 
0
0
0
0
𝛾]
 
 
 
 

+

[
 
 
 
 
1
1
1
1
0

0
0
0

0
1
1

0 0 0
0 0 0
1 0 0

0
𝛽

0
0

0
0

1 0
0 1]

 
 
 
 

[
 
 
 
 
 
𝐸𝑡
𝑓𝑡+1
𝐵𝑡
𝑅𝑡
𝑊𝑡

𝜐𝑡+1]
 
 
 
 
 

 

[
 
 
 
 
 
𝐸𝑡
𝑓𝑡+1
𝐵𝑡
𝑅𝑡
𝑊𝑡

𝜐𝑡+1]
 
 
 
 
 

=

[
 
 
 
 
𝛼
0
𝜅
0
𝛿
0]
 
 
 
 

+

[
 
 
 
 
 
1
0

1 0 0 0 0
𝜃 0 0 0 0

0
0
0
0

0
0
0
0

𝜌 0 0 0
0
0
0

0 0 0
0 𝜏 0
0 0 𝜓]

 
 
 
 
 

[
 
 
 
 
 
𝐸𝑡−1
𝑓𝑡
𝐵𝑡−1
𝑅𝑡−1
𝑊𝑡−1

𝜐𝑡 ]
 
 
 
 
 

+

[
 
 
 
 
 
𝜁𝑡
𝜀𝑡+1
𝜂𝑡
𝜔𝑡
𝜈𝑡
ϑ𝑡+1 ]

 
 
 
 
 

 

To provide some intuition for how the state-space model incorporates the observable data at 

our disposal into an estimate of 𝐸𝑡, we turn again to our example of the January 2016 CES 

employment vintage for Illinois. We first examine our model’s estimate of the Kalman smoothed 𝐸𝑡, 

which is shown in Figure 3 in red. Our primary target is the value for December 2015, which is first 

benchmarked in the BLS’s March 2017 vintage (black). We also show the BLS’s January 2016 vintage 

(blue). In this case, the state-space model provides an estimate that is much closer to the 

benchmarked data from the March 2017 vintage than the BLS’s January 2016 vintage is.  

How does the state-space model arrive at its estimate for Illinois’s December 2015 

employment value? We provide some intuition for this in Figure 4, where we decompose the state-

space model’s estimate for Illinois shown in Figure 3 into contributions from the observable data. 

The decomposition emphasizes the fact that our model is estimated in both levels and growth 

rates—the revision portion in levels and the factor model portion in growth rates.  

                                                        
7 This information is available from the authors upon request. We do not present results for lag orders 

beyond one for the factor and idiosyncratic errors because they tended to produce inferior forecasts.   
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Figure 3. Comparison of Illinois CES employment by vintage or model. The January 2016 vintage was the first 

release to include data for December 2015 and the March 2017 vintage was the first to include benchmarked 

data for December 2015. The state-space model estimates are based on data available as of January 2016. 

Sources: St. Louis Fed archive of data from Haver Analytics and authors’ calculations based on St. Louis Fed 

archive of data from Haver Analytics. 

We first consider panel A, which highlights how contributions from the observable data that 

go into the revision model evolve over time. The black bar on the far left is the value for September 

2014, which is the month where the benchmarked data end in the January 2016 vintage. The model 

initially puts substantial weight on the benchmarked data. However, because the benchmarked data 

are not available after September 2014, the model progressively puts more weight on the QCEW 

data. When the QCEW data are no longer available (July 2015), the model starts to rely more on the 

CES second release data and the factor model indicators.  

Note that the CES second release series ends in November 2015 (the second to last bar), so it 

is perhaps surprising that the CES first release does not contribute to the December 2015 estimate. 

This is because the model relies on the factor model data for its December 2015 estimate of 𝐸𝑡 and 
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relies on the CES first release solely for estimating 𝑅𝑡, the white noise error term that is the difference 

between the first and second CES releases. While the difference between the first and second 

releases is typically small, it is large enough that the model chooses to rely solely on the information 

in the factor model for its estimate of the change in employment from November to December. This 

result is true across all states and vintages. When we estimate the revision model by itself (that is, 

without the factor model), the CES first release does contribute to the estimate of 𝐸𝑡. In this case, it 

receives an especially large weight for vintages’ final observations since it is the only available data 

series. 

A. Full-length bars B. Shortened bars 

  

Figure 4. Contributions to 𝐸𝑡 for the Illinois January 2016 vintage. The figure depicts an estimate of log 

employment using data available as of January 2016. Benchmarked data are in black and were available 

through September 2014. The state-space model estimates of 𝐸𝑡 begin with October 2014. The revision model 

bars in panel B represent the consolidated contributions of the benchmarked CES, QCEW, and CES second 

release data shown in panel A. Sources: Authors’ calculations based on St. Louis Fed archive of data from 

Haver Analytics. 

Panel A of Figure 4 shows that the factor model makes contributions starting in October 

2014, but the contributions are barely visible because it enters the model in growth rates. That is, the 
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factor model is estimating the month-to-month change in bar height, but it is impossible to see 

month-to-month changes in panel A. In panel B, we cut off the bars at 8.67 and consolidate the 

contributions of the revision model to highlight how the factor model contributes to the estimate of 

𝐸𝑡. Panel B shows that the factor model plays an important role in estimating the month-to-month 

change in 𝐸𝑡 even in October 2014, and that its contribution grows over time. 

Another way to describe how the state-space model works is to examine the estimated 

unobserved components of the model. Figure 5 shows our Kalman smoothed estimate of 𝐸𝑡 for the 

Illinois January 2016 vintage along with 𝐵𝑡 (the benchmark revision), 𝑅𝑡 (the revision to the first CES 

release), 𝑊𝑡 (the wedge between the CES and the QCEW), 𝑓𝑡 (the factor) and 𝜁𝑡 (the idiosyncratic 

error term in the formula relating 𝑓𝑡 to 𝛥𝐸𝑡). The earlier, blue portions of the 𝐸𝑡, 𝐵𝑡, 𝑅𝑡, and 𝑊𝑡 lines 

are not estimated because benchmarked CES data are available and the model equates 𝐸𝑡 to the 

benchmarked data. This means that, for example, 𝐵𝑡 is simply 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡 − 𝐶𝐸𝑆2𝑡 (note that by this 

formulation, upward benchmark revisions to 𝐶𝐸𝑆2𝑡 result in a negative 𝐵𝑡). The red portion of the 

lines, then, is what the model estimates in the absence of 𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡 based on the observable data 

and the model’s parameters. 
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A. 𝐸𝑡 B. Revision Model—𝐵𝑡  

  

C. Revision Model—𝑅𝑡 D. Revision Model—𝑊𝑡 

  

E. Factor Model—𝑓𝑡 F. Factor Model—𝜁𝑡 

  

Figure 5. Unobserved components for the Illinois January 2016 vintage. Data for 𝐵𝑡, 𝑅𝑡, and 𝑊𝑡 reflect the 

opposite direction of revision. For example, a negative value for 𝐵𝑡 means that the CES data for that month 

were revised up. Source: Authors’ calculations based on St. Louis Fed archive of data from Haver Analytics. 
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It is easy to see the persistence in 𝐵𝑡 and 𝑊𝑡 and why 𝑅𝑡 is treated as white noise. Part of the 

persistence in 𝐵𝑡 is the fact that revisions tend to be in the same direction for a given benchmark 

period. That is, when a new set of benchmarked data are released each March, the revisions in that 

set are usually all in the same direction. The benchmark revisions also tend to be in the same 

direction from one benchmark period to the next, but this is not always the case. In contrast, the 

revisions between the first and second releases of the CES data are much less persistent and 

frequently are of different signs from month-to-month, although this not always the case. For 

example, while the time series of 𝑅𝑡 as a whole displays a very low autocorrelation coefficient for 

Illinois, during the Great Recession, consecutive revisions tended to be negative for many months. 

It is also important to note the different scales for each of the unobserved components. The 

scale of 𝐸𝑡 is of course much larger than that of 𝐵𝑡, 𝑅𝑡, 𝑊𝑡 , and 𝑓𝑡. The scale of 𝑊𝑡 indicates that the 

wedge between the CES and QCEW averages around 0.022 for Illinois. And while 𝑅𝑡 is usually 

smaller than 𝐵𝑡, it is often similar in size to ∆𝐸𝑡 (shown in panel E with 𝑓𝑡), which helps to explain 

why the model doesn’t use 𝐶𝐸𝑆1𝑡 to estimate 𝐸𝑡. Panel E also shows that 𝑓𝑡 is much smoother than 

∆𝐸𝑡, as it emphasizes the persistent common variation in state employment indicators at the expense 

of the idiosyncratic volatility in ∆𝐶𝐸𝑆𝐵𝑒𝑛𝑐ℎ𝑡, 𝜁𝑡. Unlike the idiosyncratic components of the factor 

model indicators, we treat 𝜁𝑡 as white noise, and its lack of persistence is confirmed for Illinois in 

panel F. 

4 Out-of-Sample Analysis 

To test the predictive ability of the state-space model, we perform an out-of-sample analysis 

of its end-of-sample prediction, or nowcast, for benchmarked CES employment for all 50 states 

spanning real-time data vintages from March 2005 through October 2018, with a sample period 
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extending back to January 1990.8 Our target for judging model performance is the 12-month change 

in log employment as reported in the first vintage in which a given month’s employment is 

benchmarked for the first time. We label this target ∆12𝐶𝐸𝑆𝐹𝑖𝑛𝑡, where ∆12 represents a 12-month 

change. For example, in the case of the December 2015 observation for Illinois that we discuss above, 

we compare the change in log employment from December 2014 to December 2015 as reported in 

the January 2016 vintage to that reported in the March 2017 vintage, as March 2017 is when the 

December 2015 observation is first benchmarked.9  

The 1-month growth rate is a more common target for testing model performance, but we 

prefer the 12-month growth rate because it allows us to draw comparisons with the early benchmark 

model of Berger and Phillips (1993). As explained in Section 7.1 of the appendix, the early 

benchmark model differs from the CES first release only for 4-month employment changes or 

longer, depending on the availability of QCEW data. In the end, as shown in Table 3 in Section 7.3 of 

the appendix, our results are qualitatively similar whether we assess the model’s performance in 

levels, 1-month growth rates, 3-month growth rates (as suggested by Phillips and Teng (2020)), or 

12-month growth rates. However, it is important to keep in mind that when using the 12-month 

growth rate, the number of months for which benchmarked data are available is not uniform across 

                                                        
8 Maximum likelihood estimation of our state-space model requires initial parameter values for each 

state, which we obtain from an autoregressive model of the expected interactions between the observed 

data and our model’s latent state variables for the first data vintage. Beginning with the second vintage, 

we use the parameter estimates from the previous vintage to initialize each of the subsequent 11 vintages 

in a benchmark period and then update these values every 12 vintages to account for the impact of 

annual revisions to the Current Population Survey data included in the factor model before starting the 

process over again for the subsequent benchmark. 
9 Alternatively, one could focus on the level of employment by comparing the December 2015 value 

reported in the January 2016 vintage to the one reported in the March 2017 vintage. However, such 

comparisons can include level shifts in the data that are the result of methodological changes, not 

sampling error, and affect all of the previous values in the series. 
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calendar month: When December data are released, the 15 most recent months are not 

benchmarked, but when January data are released, just the four most recent months are not 

benchmarked. Table 4 in Section 7.3 of the appendix shows how differences in the availability of 

benchmarked and QCEW data by calendar month affect our results. Performance gains are small in 

the beginning of the year when the number of non-benchmarked months is small and grow as the 

year progresses. Gains also tend to get a bump after new QCEW data are released: relevant releases 

are in June, September, and December, boosting gains for data covering May, August, and 

November.  

4.1 Model Performance across States and Over Time 

We assess the performance of the state-space model by comparing its predictions to 1) a 

naïve model that predicts no difference between the first CES release of employment and its 

benchmarked value and 2) the early benchmark model of Berger and Phillips (1993).  

The early benchmark model follows the BLS benchmark procedure, but rather than doing it 

annually as the BLS does, does it quarterly when new QCEW data are released. The model begins 

with the historical benchmarked portion of the CES series. When the benchmarked portion runs out, 

the series is extended by applying the month-to-month growth rates from a QCEW-based series that 

is constructed to reflect as closely as possible the nonfarm worker population (see Section 7.1 of the 

appendix for further discussion of the early benchmark method). Because the QCEW data typically 

provide a very good prediction of the benchmark revisions, the differences between the state-space 

model and the early benchmark model are typically small until the QCEW data are no longer 

available. The differences that do exist when the QCEW are available stem largely from the 

additional data included in the state-space model beyond the initial CES release. Thus, our model 



 

20 

 

and the early benchmark model can be viewed as complements, and our out-of-sample analysis is 

largely a test of how useful the additional data are once the QCEW data run out. 

Our performance metric is based on a comparison of mean absolute errors (MAEs). For each 

model and for each state, we calculate the MAE across the 𝑇 = 164 vintages in our sample. We then 

take the difference between the MAE of the state-space model and that of the other comparison 

models. Formally, our performance metric is: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑀𝐴𝐸𝑠 =
∑ |∆12𝐶𝐸𝑆𝐹𝑖𝑛𝑡 − ∆12𝐸𝑡|
𝑇
𝑡=1

𝑇
−
∑ |∆12𝐶𝐸𝑆𝐹𝑖𝑛𝑡 − ∆12𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝑡|
𝑇
𝑡=1

𝑇
. 

We show the distribution of the MAE metric across all 50 states in Figure 6, where panel A is 

the distribution for the comparison with the first CES release and panel B is the distribution for the 

comparison with the early benchmark model. By design, bars with negative x-axis values 

correspond to an improvement in MAE for the state-space model over the comparison models. With 

a mean of −0.00048 and median of −0.00062, panel A indicates that the state-space model succeeds on 

average in nowcasting state employment better than the first CES release for most states. The 

average MAE across states first CES release is 0.0056, which indicates that, on average, the state-

space model reduces the MAE of the first CES release by about 9 percent. However, in 14 states the 

difference in MAE is positive. In Section 4.2, we estimate a regression model of the difference in 

MAE that helps to explain why the state-space model does better for some states than for others. 

Panel B of Figure 6 shows how the state-space model performs compared to the early 

benchmark model. The distribution looks very similar to the one in panel A but is shifted to the 

right, reflecting the fact that the early benchmark model improves on average over the first CES 

release (though there are 10 states for which it doesn’t). The mean of this distribution is essentially 

zero (0.0000008) and the median is −0.00024. The state-space model performs better than the early 

benchmark model for 31 states, but worse for 19. It is important to note here that for six of the 10 
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states where the early benchmark model does worse than the first CES release, the state-space model 

does better. This fact makes a strong argument for combining the predictions of the state-space and 

early benchmark models, an approach we explore in Section 4.3. 

A. State-space Model Minus First CES Release B. State-space Model Minus Early Bench. Model 

  

Figure 6. Distribution across states of the difference in mean absolute error (MAE) between the state-space 

model and comparison models. Mean absolute error (MAE) calculations are for all 50 states and are based on 

the end-of-sample 12-month change in log employment changes for data vintages spanning from March 2005 

to October 2018. Bars with negative x-axis values represent an improvement in MAE for the state-space model 

over other predictors. To provide further context for the x-axis scales, the average MAE across states is 0.0056 

for the first CES release and 0.0051 for the early benchmark model. The mean of the distribution in panel A is 

−0.00048 and the median is −0.00062. The mean of the distribution in panel B is 0.0000008 and the median is 

−0.00024. Source: Authors’ calculations based on St. Louis Fed archive of data from Haver Analytics. 

4.2 Explaining Model Performance across States and Over Time 

The results shown in Figure 6 indicate our model can be valuable in predicting revisions of 

state employment data. However, its performance varies considerably across states. What can 

explain these differences? Using regression analysis, we find that four explanations can explain 

more than 60 percent of the variation. They are a state’s: 1) size, 2) employment volatility, 3) average 

benchmark revision size, and 4) tightness of link to national employment.  
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We construct variables to capture these explanations as follows. State size is average total 

employment over the sample period of March 2005 to October 2018. Employment volatility is the 

standard deviation of the 12-month change in log employment over the sample period. Average 

benchmark revision size is the MAE of the first CES release. And the tightness of link to national 

employment is the log of the share of months where the sign of 12-month growth in a state differs 

from that of the US. That is, it is the share of months where state growth is positive and US growth is 

negative or vice versa.  

To make it easy to compare coefficient magnitudes across our four variables, we standardize 

each variable to be mean zero, standard deviation one. We then estimate the following linear 

regression model on our cross-section of 50 U.S. states: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑀𝐴𝐸𝑠 = 𝛼 + 𝛽1𝑆𝑖𝑧𝑒𝑠 + 𝛽2𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑠 + 𝛽3𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑆𝑖𝑧𝑒𝑠 + 𝛽4𝑁𝑎𝑡𝑆𝑡𝐿𝑖𝑛𝑠 + 𝜀𝑠 . 

We estimate the regression using a robust regression algorithm that reduces the large weight 

outliers receive in standard OLS regression.10 

Figure 7 shows the estimation results in the form of partial regression plots. The x-axis for a 

given panel is the value of the respective independent variable conditional on all the other 

independent variables in the model, and the y-axis is the value of the difference in MAE conditional 

on all the other independent variables in the model.11 All four variables make an important 

contribution to explaining the performance of the state-space model relative to the CES first release 

and together explain more than 60 percent of the variation in the difference in MAE as measured by 

adjusted r-squared. 

 

                                                        
10 The robust regression algorithm is implemented by the Stata (2019) command rreg. 
11 Formally, the x-axis in each panel is the residual from a robust regression of the respective independent 

variable on all the other independent variables and the y-axis is the residual from a robust regression of 

the difference in MAE on all the other independent variables. 
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A. Average Total Employment B. Std. Dev. of 12-mo. Employment Change 

  

C. Average Revision Size D. Share of Mos. Sign of Growth Differs from US  

   

Figure 7. Robust partial regression plots from a model of state-space model performance. This figure shows 

partial regression results for four explanatory variables included in a regression model of the difference in MAE 

between the state-space model and the first CES release. The distribution of the difference in MAE across 

states is displayed in panel A of Figure 6. We estimate a robust regression to account for outliers. All 

explanatory variables are standardized to be mean zero, standard deviation one to make it easy to compare 

the coefficients’ magnitudes. See the text for details on how the four explanatory variables are calculated. 

Source: Authors’ calculations based on St. Louis Fed archive of data from Haver Analytics. 
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The signs of the coefficients in the regression are telling: the state-space model does well for 

bigger states, states with low employment volatility, states subject to large revisions, and states 

whose employment changes typically follow those of the US as a whole. These results generally 

make sense in light of the state-space model’s design. The national employment data typically 

receive a large loading in the factor model, so the state-space model expects CES data that conflict 

with the national data to be revised away. Figure 5 shows that the state-space model also smooths 

through the unrevised data, which means that it generally treats volatility in the CES data that is not 

persistent or common to other state-level labor market indicators as noise instead of signal. It is no 

surprise then that the state-space model does better for states that typically have lower employment 

volatility. There is nothing in the design of the model to suggest that it should do better for larger 

states or states subject to large revisions, but we view the result for states subject to large revisions as 

a positive one. 

It is also important to note that the four variables we use to explain the performance of the 

state-space model are correlated: larger and less volatile states have smaller revisions, as do states 

that closely follow the national economy. While this correlation structure is such that for many 

states, disadvantages for the state-space model along one dimension are balanced out by advantages 

along another, this is not the case for all states. For example, Figure 7 shows that the state-space 

model performs especially poorly for Michigan and Wyoming because their (conditional) 

employment is volatile, their (conditional) revisions tend to be small, and their (conditional) 

employment trends tend to differ from that of the US as a whole. For Maryland and Montana, the 

case is the opposite. 

Because of the mixed performance of the state-space model across states, we estimate two 

alternate versions of the model that seek to address some of the full model’s shortcomings. One 
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alternative acknowledges that a factor structure may not exist for some states and estimates only the 

revision portion of the model, with univariate dynamics for 𝛥𝐸𝑡.12 The other alternative omits the 

CPS data from the factor model because they underwent a noticeable methodological change in 

2010. For some states, this change significantly alters the correlation structure with other state-level 

employment indicators and causes the factor structure to deteriorate in a way that ultimately 

negatively affects nowcast performance.  

Table 1. Lowest Mean Absolute Error by Model 

   Share of states 

State-space Model 31 

  Full model 22 

  No CPS data 7 

  Revision model only 2 

Early Benchmark Model 15 

First CES Release 4 

Notes: This table shows the number of states with 

the lowest mean absolute error for each model of the 

12-month change in log employment in 

benchmarked state CES employment. Source: 

Authors’ calculations based on St. Louis Fed archive 

of data from Haver Analytics. 

Taking the performance of our alternative state-space models into account, Table 1 

summarizes the best performing model across states. The alternative state-space models perform 

best for only a small number of states. If we sum across the three variants of the state-space model, it 

jointly performs the best for 31 states. The early benchmark model performs best for 15 and there are 

4 states where simply sticking with the first CES release works best. 

                                                        
12 See the Section 7.2 of the appendix for further details on this specification.  
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To this point, we have focused on results across states where we aggregate over time. We 

now turn to how our results evolve across time where we aggregate over states. To do this, we focus 

on the median state’s MAE from the full state-space model and the early benchmark model relative 

to that of the first CES release, a measure which is robust to outlier concerns. Specifically, for the 

early benchmark model and ours, we calculate the ratio of the median state’s MAE in each vintage to 

that of the first CES release. Formally, the measure is given by: 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑆𝑡𝑎𝑡𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝐴𝐸𝑡 =
𝑀𝑒𝑑𝑖𝑎𝑛 𝑆𝑡𝑎𝑡𝑒 𝑀𝐴𝐸 𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑀𝑜𝑑𝑒𝑙𝑡
𝑀𝑒𝑑𝑖𝑎𝑛 𝑆𝑡𝑎𝑡𝑒 𝑀𝐴𝐸 𝑜𝑓 𝐹𝑖𝑟𝑠𝑡 𝐶𝐸𝑆 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑡

. 

By this formulation, a value of less than one indicates better performance for the state-space or early 

benchmark models relative to the first CES release, and a value of greater than one indicates worse 

performance. 

 

Figure 8. Median state’s relative mean absolute error by data vintage. This figure displays, for the state-space 

and early benchmark models, the median state’s mean absolute error relative to that of the first CES release. 

The data are for vintages from March 2005 to October 2018. We use medians rather than means to remove the 

influence of outliers. We smooth the series using a two-side 11-month moving average to highlight the general 

trends. Source: Authors’ calculations based on St. Louis Fed archive of data from Haver Analytics. 
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Figure 8 plots the median state’s relative mean absolute error for each vintage in our sample 

period. To highlight broad patterns over time, we smooth the series by taking two-side 11-month 

moving averages. Figure 8 shows that at times, like in the cross section of states, the state-space 

model does not perform better than the early benchmark model or first CES release. There is, 

however, a long period (2011–2016) where the state-space model either matches or outperforms 

both. 

All told, the results in this section make clear that the state-space model works well in a 

majority of states and much of the time, but not in all states or all of the time. The reasons for the 

variability in performance are to a large extent inherent to the model’s design. For some states, the 

state-space model’s design is a benefit, but for others it’s a cost. This is a strong argument for 

combining predictions of the state-space and early benchmark models, which we do next. 

4.3 Combining Models to Improve Performance 

Because no single model works best across states or time, we now show how averaging 

across the models at our disposal results in better nowcast performance than any individual model 

can provide. We estimate optimal model weights in real time using a least squares regression that 

restricts the coefficients on the models to be positive and sum to one. We include the first CES 

release, the early benchmark model, and all three versions of the state-space model in the regression. 

Formally, the regression used to calculate the averaging weights for each state is: 

∆12𝐶𝐸𝑆𝐹𝑖𝑛𝑡 = 𝛽1𝐶𝐸𝑆1̂𝑡 + 𝛽2𝐸�̂�𝑡 + 𝛽3𝑆𝑆𝐹𝑢𝑙𝑙̂
𝑡 + 𝛽4𝑆𝑆𝑁𝑜𝐻𝐻̂

𝑡 + 𝛽5𝑆𝑆𝑅𝑒𝑣𝑂𝑛𝑙𝑦̂
𝑡 + 𝜀𝑡 

𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 + 𝛽5 = 1 

{𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} ≥ 0. 13 

                                                        
13 This framework is similar to one found in Anonymous (2004).  
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To arrive at a single nowcast for each state, we estimate this regression on past model nowcasts and 

then take its predicted value for each state using current model nowcasts. In this way, our real-time 

model combination strategy assigns greater weight to models with superior past performance.  

We employ two approaches for calculating these weights in relation to a model’s historical 

performance. The recursive estimation method uses information on model performance from the 

entire prior history of each model’s performance. It assumes that we are learning about the true, 

constant best weights across models with each new benchmark revision. The rolling window 

estimation method uses information from the previous three years’ benchmarks. This approach 

assumes that the best model weights can vary over time. For example, if one model does better 

during recessions and another does better during expansions, using only the recent data might 

better capture this.  

Figure 9 shows the time series of real-time weights in each vintage averaged across the 50 

U.S. states for both the recursive and rolling estimation methods. Because the model averaging 

methods require an initial sample of nowcasts to compute model weights, the sample period runs 

from March 2008 through December 2018. The recursive weights shown in Figure 9 are quite stable 

throughout time, reflecting the small month-to-month differences in estimation samples, while the 

rolling weights vary much more over time. For both methods, the three state-space models in total 

receive at least 50 percent of the weight, with the early benchmark model accounting for the vast 

majority of the remaining weight. Interestingly, the rolling weights seem to suggest that the 

methodological change that occurred in 2010 for the CPS data negatively affected the performance of 

the full state-space model. By 2013, when this change has been fully incorporated into the rolling 

weights, the state-space model that omits the CPS data clearly dominates the model that includes 
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them. That said, it is difficult to disentangle the impact of the change to the CPS data from the 

possibility that some models may perform better during recessions and others during expansions. 

A. Average Recursive Weights B. Average 3-year Rolling Weights 

  

Figure 9. Average across states of recursive and rolling weights by benchmark year. This figure shows the 

weights obtained from a model averaging regression exercise. Recursive weights are based on the entire prior 

history of each model’s performance and rolling weights are based on each model’s performance over the 

previous three years’ benchmarks. The x-axis dates reflect data available with the release of new benchmarked 

data in March of a given year. For example, the 2019 bar is for benchmark data available as of March 2019. 

Source: Authors’ calculations based on St. Louis Fed archive of data from Haver Analytics. 

To summarize the performance of the model averaging and individual model results, we 

construct a metric based on their mean absolute error (MAE) relative to a naïve benchmark model. 

Our naive model (referred to below as Naïve) is the first CES release.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐺𝑎𝑖𝑛 𝑖𝑛 𝑀𝐴𝐸 =
1

50
∗ ∑100 ∗ (1 −

𝑀𝐴𝐸(𝑀𝑜𝑑𝑒𝑙)

𝑀𝐴𝐸(𝑁𝑎ï𝑣𝑒)
)

50

𝑖=1

 

Table 2 shows values of this metric, with stars indicating a statistically significant average percent 

gain based on a Diebold and Mariano (1995) test of equal forecast accuracy. To highlight differences 

in the performance of the model averaging methods over time, we consider the full sample period 
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and a separate sample period that excludes the period of the Great Recession and runs from March 

2013 through September 2018. 

Table 2. Average Percent Gain in Mean Absolute Error by Sample Period 

  2008–18 2013–18 

Model Average—3-year rolling window 13.5* 17.3* 

Model Average—Recursive 14.0* 16.0* 

State-space—Full model 10.7* 9.7* 

State-space—No CPS data 8.8* 9.2* 

State-space—Revision model only -4.2* 8.2* 

Model Average—Recursive, EB Only 8.6* 7.7* 

Early Benchmark Method 9.9* 7.6* 

Model Average—3-year rolling window, EB Only 8.4* 7.4* 

CES First Release 0.0 0.0 

Notes: EB means early benchmark. This table presents the average percent 

gain in mean absolute error of different nowcasting models of the post-

benchmark 12-month change in log employment relative to the initial release for 

two sample periods. See the text for a description of the models. We judge 

statistical significance from zero, *, at the 95 percent confidence level using the 

Diebold and Mariano (1995) test of equal forecast accuracy. We apply the test 

to our panel of 50 states with heteroskedastic and autocorrelation consistent 

standard errors calculated by clustering on state identifiers and Student’s t 

critical values. Source: Authors’ calculations based on St. Louis Fed archive of 

data from Haver Analytics. 

A few results from the full sample period (column 1) stand out. First, the rolling average and 

recursive methods perform the best across the 50 US states, reducing MAEs by a statistically 

significant 14 percent on average over the naïve benchmark. Second, both averaging methods are 

also a statistically significant improvement over any of the individual nowcast models that we 

consider. Third, the state-space models play an important role in the superior performance of the 

averaging methods. If the model averaging exercise only includes the first CES release and the early 

benchmark model (denoted EB Only in the table), we see a noticeable drop in performance—and this 
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is the case even though the revision-only state-space model performs worse than the first CES 

release. 

When we examine the results for the post-Great Recession sample period (column 2), we 

find that model averaging helps even more, with the recursive and rolling average methods 

reducing mean absolute errors by around 16 percent and 17 percent on average. This improvement 

is statistically significant over the first CES release and also when measured relative to any other 

individual model, including the model average that does not incorporate the state-space models. 

The improvement in performance of the rolling averaging method in the post-Great Recession 

sample is particularly pronounced. This result likely combines two elements: 1) its robustness to 

performance differences across models during recessions and expansions, and 2) its robustness to 

methodological changes in the data underlying the dynamic factor model like the change in the CPS 

data structure that occurred in 2010. Both elements make it an example of the robustness of forecast 

combination strategies to structural changes of the kind described in Clark and McCracken (2009).  

5 Conclusion  

This paper develops and tests in real time a state-space model of benchmarked US state 

nonfarm payroll employment that successfully reduces the uncertainty surrounding the initial 

estimates of employment growth in 36 of 50 states. When compared with the early benchmark 

model of Berger and Philips (1993), the model does better in 31 of 50 states. And when we optimally 

average our model’s predictions with those of the early benchmark model, the combination does 

better than the initial employment growth estimates in 47 of 50 states.  

The model we develop explicitly tracks the revision process of the CES data and estimates a 

single common factor for state employment growth that makes use of additional state-level labor 
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market indicators that are not directly related to the CES data or revision process. Much of the 

model’s strength comes from incorporating these additional indicators, suggesting that models of 

benchmarked state employment data have the potential for further improvement as higher quality 

real-time data become available. 

While much of the literature has focused on forecasting revisions to US national data, this 

paper contributes to the limited research on revisions to US state and local data. Models of US sub-

national data provide two key benefits. First, state and local data are generally subject to larger 

revisions than national data because of smaller sample sizes, so such models have the potential to be 

very useful. For the data we examine, the average 12-month growth rate revision is 0.6 percent, 

while it is only 0.2 percent for the national data. Second, while the data we use are collected 

following a consistent methodology, they contain a cross sectional dimension that is absent from the 

national data. This allows us to test the robustness of other models’ specifications and ours across a 

much larger and more varied data sample than what is available at the national level.  

We find that there is sizeable variation in how our model performs across states and that 

four characteristics can explain more than half of the variation in performance. They are a state’s 

size, employment volatility, average benchmark revision size, and strength of the relationship with 

national employment. That our model’s performance depends on a state’s employment volatility 

and the strength of its relationship with national employment are inherent to the model’s design. For 

some states, the design is a benefit and for others it is a cost. For this reason, researchers interested in 

producing benchmarked US state employment nowcasts for a particular state  may wish to adjust 

our general model to the specific characteristics of the state and to combine the results with those 

from the early benchmark model. It may also be possible to extend our framework to produce 

benchmarked industry employment nowcasts at the US or state level. Others currently employ the 
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early benchmark model to nowcast industry-level data (see, for example, data for Texas industries 

from the Federal Reserve Bank of Dallas (2021)). We leave this extension to future research. 
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7 Appendix 

7.1 Berger and Phillips (1993) Early Benchmark Model  

Formally, the model is: 

𝐸𝐵𝑡

{
 
 
 
 

 
 
 
 𝐶𝐸𝑆𝑡−1 ⋅∏(

𝑄𝐶𝐸𝑊𝑡

𝑄𝐶𝐸𝑊𝑡−1
)

𝑡

𝑡=𝑖

⋅∏(
𝐶𝐸𝑆𝑡
𝐶𝐸𝑆𝑡−1

)

𝑡

𝑡=𝑗

𝑖𝑓 0 ≤ 𝑡 < 𝑖

𝐶𝐸𝑆𝑖−1 ⋅∏(
𝑄𝐶𝐸𝑊𝑡

𝑄𝐶𝐸𝑊𝑡−1
)

𝑡

𝑡=𝑖

⋅∏(
𝐶𝐸𝑆𝑡
𝐶𝐸𝑆𝑡−1

)

𝑡

𝑡=𝑗

𝑖𝑓 𝑖 ≤ 𝑡 < 𝑗

𝐶𝐸𝑆𝑖−1 ⋅∏(
𝑄𝐶𝐸𝑊𝑡

𝑄𝐶𝐸𝑊𝑡−1
)

𝑗−1

𝑡=𝑖

⋅∏(
𝐶𝐸𝑆𝑡
𝐶𝐸𝑆𝑡−1

)

𝑡

𝑡=𝑗

𝑖𝑓 𝑗 ≤ 𝑡 < 𝑇

 

where 𝑖 is the first month after the benchmarked portion of the CES data run out and 𝑗 is the first 

month after the QCEW data run out. 

The model begins with the historical benchmarked portion of the CES series. The series is 

then extended by applying month-to-month growth rates from the available QCEW data. The 

QCEW includes some farm workers, which are removed from a state’s total employment count. 

Specifically, Berger and Phillips (1993) remove all employees in the agriculture, forestry, fishing, and 

hunting sector (NAICS 11) with the exception of those in the logging sector (NAICS 1133). This is the 

early benchmarked portion of the series. For months when the QCEW data are not yet available, the 

series is extended by applying the month-to-month growth rates from the non-benchmarked portion 

of the CES. It is important to note that the non-benchmarked data have different seasonal patterns 

than the benchmarked data (Berger and Phillips (1994)). The seasonally adjusted data released by 

the BLS account for this. 

Figure 10 shows an example of the early benchmark model for Illinois’s CES data through 

December 2015, which were initially released in January 2016. The blue series is the initial release, 

and the dashed portion of the series represents data that were not benchmarked using the QCEW as 
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of January 2016. The early benchmarked series is in red, and is benchmarked using growth rates 

from the QCEW starting in October 2015. As of January 2016, QCEW data were available through 

June 2015, so starting in July 2015, the early benchmark model relies on growth rates from the initial 

release (the blue line). For this reason, the blue and red series run parallel starting in July 2015. The 

black series is the March 2016 vintage of the Illinois CES data through December 2015, which is 

benchmarked using the QCEW through September 2015. It is clear that the early benchmarked series 

is closer to the March 2016 benchmarked series than the initial release is. It is also important to note 

that data for the already-benchmarked portion of the data (January through September 2014) 

changed from as part of the March 2016 benchmark. The BLS revises already benchmarked portions 

of the data, but (as is the case in Figure 10) the revisions are typically much smaller than the 

revisions from non-benchmarked to benchmarked data. 

 

Figure 10. Example of the Berger-Phillips early benchmarking model for Illinois. The dashed portions of the 

blue and black lines represent survey-based data that are not yet benchmarked against administrative data. 

Source: Authors’ calculations based on St. Louis Fed archive of data from Haver Analytics. 
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7.2 Revision-only State-space Model  

In section 4, we consider an alternative univariate dynamic specification for the growth rate 

of 𝐸𝑡  with state-specific AR(p) dynamics around a conditional mean α. 

𝛥𝐸𝑡 = 𝛼 +∑𝛽𝑖
𝑖

𝛥𝐸𝑡−1 + 𝜁𝑡 

The state-space representation of this revision only model is shown below in companion form. 

[
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The state-specific lag orders for both 𝛥𝐸𝑡 and 𝑊𝑡 are chosen based on minimum BIC values. 
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7.3 Results by Alternative Performance Measures 
 

Table 3. Average Percent Gain in Mean Absolute Error by Performance Measure 

  

12-Month 

Log Pct 

Chg 

3-Month 

Log Pct 

Chg 

1-Month 

Log Pct 

Chg 

Endpoint 

Level 

Model Average—Recursive 14.0 21.9 30.4 13.9 

Model Average—3-year rolling window 13.5 22.2 30.8 12.7 

State-space—Full model 10.7 21.5 26.0 11.9 

Early Benchmark Method 9.9 † † 10.3 

State-space—No household data 8.8 20.4 25.5 10.4 

Model Average—Recursive, EB Only 8.6 † † 8.6 

Model Average—3-year rolling window, EB Only 8.5 † † 8.3 

CES First Release 0.0 0.0 0.0 0.0 

State-space—Revision model only -4.2 9.0 26.9 -2.0 

Notes: EB means early benchmark. This table presents model performance results for the sample 

period March 2008 to January 2019 according to four measures: average percent gain in mean 

absolute error for a model's estimate of the 12-month change in log employment relative to the CES 

initial release; average percent gain in mean absolute error for a model's estimate of the 3-month 

change in log employment relative to the CES initial release; average percent gain in mean absolute 

error for a model's estimate of the 1-month change in log employment change relative to the CES 

initial release; and average percent gain in mean absolute error for a model's estimate of log 

employment at the endpoint relative to the CES initial release. †By construction, the EB model 

makes the same 3-month and 1-month change in log employment prediction as the initial release. 

See Section 7.1 for a full description of the EB model. Source: Authors’ calculations based on St. 

Louis Fed archive of data from Haver Analytics. 
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Table 4. Average Percent Gain in Mean Absolute Error for 12-month Log Change Estimate by Month 

 Overall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mod. Ave.—Recursive 13.5 4.9 2.6 1.3 0.6 11.5 14.6 17.1 26.7 24.1 17.0 25.1 16.0 

Mod. Ave.—3-year roll. window 12.9 5.1 0.4 1.1 -0.1 9.7 13.4 16.2 27.0 23.7 15.8 25.5 17.5 

State-space—Full model  10.1 2.6 -1.1 -2.9 -3.2 8.7 12.9 17.6 24.5 19.6 10.7 21.5 10.6 

Early Benchmark Method 9.4 0.0 0.0 0.0 0.0 8.9 8.3 9.1 25.4 22.4 14.9 16.7 6.6 

State-space—No household data  8.3 0.8 -2.9 -4.6 -4.9 6.5 10.7 15.5 22.8 18.2 9.1 19.9 8.5 

Mod. Ave.—Recursive, EB Only 8.0 0.0 0.0 0.0 0.0 8.7 7.1 8.5 17.6 16.5 11.4 15.5 10.8 

Mod. Ave.—3-yr roll. win., EB Only 7.9 0.0 0.0 0.0 0.0 8.8 7.1 8.3 18.0 16.7 11.0 14.7 10.5 

CES First Release 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

State-space—Revision model only -7.5 -31.5 -37.1 -42.2 -41.9 -9.4 -0.5 4.1 24.4 18.4 2.9 17.2 5.8 

Notes: EB means early benchmark. This table presents model performance results by data month for data 

covering October 2008 to October 2018. Data that were benchmarked in March 2014 (October 2012 to 

September 2013) are excluded because there are no data for September 2013 due to a government 

shutdown. Thus there are 450 observations for each month. The EB Only models do not improve on the 

CES first release for the months of January through April by construction. Additional QCEW data beyond 

what is already incorporated into the March benchmark are available from May through December. See 

Section 7.1 for a full description of the EB model. Source: Authors’ calculations based on St. Louis Fed 

archive of data from Haver Analytics. 

 

 


	Brave Walstrum wp udate.pdf
	Title Page
	Predicting Benchmarked US State Employment Data in Realtime
	1 Introduction
	2 The CES Data Revision Process
	3 A State Space Model of Benchmarked CES Data
	3.1 Realtime Data Construction
	3.2 Forecasting CES State Employment
	3.3 State Space Model and Estimation

	4 Out-of-Sample Analysis
	4.1 Model Performance across States and Over Time
	4.2 Explaining Model Performance across States and Over Time
	4.3 Combining Models to Improve Performance

	5 Conclusion
	6 References
	7 Appendix
	7.1 Berger and Phillips (1993) Early Benchmark Model
	7.2 Revision-only State Space Model
	7.3 Results by Alternative Performance Measures






