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Abstract: This paper introduces a general method for computing equilibria with heteroge-

neous agents and aggregate shocks that is particularly suitable for economies with private infor-

mation. Instead of the cross-sectional distribution of agents across individual states, the method

uses as a state variable a vector of spline coefficients describing a long history of past individual

decision rules. Applying the computational method to a Mirrlees RBC economy with known ana-

lytical solution recovers the solution perfectly well. This test provides considerable confidence on

the accuracy of the method.

Keywords: Computational methods, heterogeneous agents, business cycles, private informa-

tion.

1 Introduction

This paper introduces a general method for computing recursive equilibria of economies with both

idiosyncratic and aggregate shocks. While the method is quite general and can be applied to

a large class of models in which individual decision rules can be well approximated by spline

*I thank participants at various seminars and conferences for useful comments. The views expressed here do

not necessarily reflect those of the Federal Reserve Bank of Chicago or the Federal Reserve System. Address:

Federal Reserve Bank of Chicago, Research Department, 230 South LaSalle Street, Chicago, IL 60604. E-mail:

mveracie@frbchi.org. Phone: (312) 322-5695.
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functions, it is particularly useful for computing equilibria of economies with private information.

Economies with private information are difficult to solve because promised values are contingent

on the realization of the aggregate shocks. This makes one of the endogenous state variables, the

distribution of agents across promised values, not only infinite dimensional but state-contingent.

Contrary to existing alternatives, the computational method described in this paper can handle

this case without difficulty. Additionally, it has three features that make it attractive as a general

computational method: 1) it keeps track of the full distribution of agents across individual states,

2) it can handle irregular shapes for this distribution, and 3) it incorporates the distribution’s

exact law of motion.

My basic strategy for the computational method is to parametrize individual decision rules

as spline approximations and to keep long histories of the spline coefficients as state variables.

Starting from the deterministic steady-state distribution, I use the history of decision rules implied

by the spline coefficients to obtain the current distribution of agents across individual states. I do

this by performing Monte Carlo simulations on a large panel of agents. All individual first-order

conditions and aggregate feasibility constraints are then linearized with respect to the history of

spline coefficients. The resulting linear model is then solved using standard methods. I show that

a simple transformation can be applied to this solution in order to handle the case of contingent

endogenous state variables.

After describing the computational method, I use it to solve the mechanism design problem of

a Mirrlees economy with aggregate shocks. The economy, which belongs to the class considered

in Veracierto (2019), is populated by agents that value consumption and leisure using logarithmic

utility functions and which are subject to idiosyncratic shocks to their value of leisure. These

shocks take only two possible values, are i.i.d. over time and across individuals, and are private

information. Output, which can be consumed or invested, is produced using capital and labor

as inputs to a Cobb-Douglas production function subject to aggregate productivity shocks. The

aggregate shocks follow a standard AR(1) process.

A social planner designs dynamic contracts for the agents in this Mirrlees real business cycle

(RBC) economy. Following the literature, a dynamic contract is given a standard recursive for-

mulation where a promised value to the agent describes its state. Given the current state, the

contract specifies current consumption, current hours worked, and next-period state-contingent

promised values as a function of the value of leisure reported by the agent. Since the model has a

2



large number of agents and the shocks to the value of leisure are idiosyncratic, the social planner

needs to keep track of the whole distribution of promised values across individuals as a state vari-

able. Given this distribution, the aggregate stock of capital, and the aggregate productivity level,

the social planner seeks to maximize the present discounted utility of agents subject to incentive

compatibility, promise keeping, and aggregate resource feasibility constraints.

Solving this mechanism design problem not only illustrates the applicability of the compu-

tational method to a problem that other methods cannot handle, but provides a strong test for

it. The reason is that in Veracierto (2019) I provide a sharp analytical characterization of the

solution to this mechanism design problem. In particular, I characterize the cyclical behavior of

the consumption and leisure allocation rules across promised values, as well as the optimal amount

of cross-sectional inequality in consumption and leisure over the business cycle. I also provide an

analytical characterization for the optimal cyclical behavior of all macroeconomic variables in the

economy. I find that the computational method passes this test extremely well: It recovers all

the analytical results exactly. Since nothing in the computational method exploits the functional

forms or structure of the Mirrlees RBC economy considered, this provides significant evidence

about its accuracy. This finding indicates that the method should prove useful in a variety of

other settings.

The paper is closely related to a vast literature on computational methods, but it has salient

differences.2 The seminal papers by Krusell et al. (1998) and Den Haan (1996) summarize the

cross-sectional distribution with a small set of moments. In contrast, the method in this paper

keeps track of the whole distribution. Den Haan (1997) and Algan et al. (2008) also keep track

of the whole distribution but parametrize the distribution with a flexible exponential polynomial

form, allowing them to solve the model using quadrature and projection techniques. For many

applications this may be an accurate and convenient approach, but for economies with odd-shaped

distributions, it may not be.3 The method in this paper is able to handle odd shapes for the cross-

2See Algan et al. (2014) for a survey of computational methods.

3For instance, Achdou et al. (2017) have shown that in the Krusell et al. (1998) model with discrete income

shocks (which has been widely used in the literature), the cross-sectional wealth distribution has spikes not only at

the borrowing constraint, but in the interior of the state space. These types of distributions are generally difficult

to describe with a flexible exponential form.
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sectional distribution as long as it is generated by smooth individual decision rules.

In addition to projection methods, the literature has explored perturbation methods, which

are essentially local approximation methods around a deterministic steady state. Early versions

include Campbell (1998), Dotsey et al. (1999), and Veracierto (2002) – the last two in the context

of (S,s) economies.4 Perhaps the most widely known perturbation method is Reiter (2009), which

is closely related to Campbell (1998).5 Instead of parametrizing the cross-sectional distribution as

a polynomial, Reiter (2009) keeps a finite histogram of the distribution as a state variable. While

the perturbation method allows him to greatly reduce the coarseness of the histogram, a limitation

of Reiter’s method is that the law of motion for the distribution needs to be approximated, and

this can be a highly non-linear mapping.6 Instead, my method here embodies the exact law of

motion for the distribution. Winberry (2018) introduces a very interesting perturbation method

which, similarly to Algan et al. (2008), parametrizes the distribution with a flexible exponential

polynomial form. The perturbation method allows him to carry a polynomial of large order as a

state variable (or, equivalently, a large number of moments), which greatly improves the description

of the distribution. However, his method also relies on an approximation for the law of motion of

the cross-sectional distribution. Another powerful method has been introduced by Boppart et al.

4The method in this paper is actually a generalization of the approach used in Veracierto (2002).

5The recent method in Ahn et al. (2018) is an adaptation of Reiter’s method to continuous time. Other

perturbation methods in the literature include Preston and Roca (2007) and Mertens and Judd (2018), both of

which perturb a deterministic steady state with no aggregate or idiosyncratic shocks. In contrast, the method in

this paper perturbs a deterministic steady state with no aggregate shocks but positive idiosyncratic uncertainty.

6For instance, consider the Krusell et al. (1998) model. As has already been mentioned, in this model there

is generally a mass of agents with the lowest idiosyncratic income level and zero assets (these agents are at the

borrowing constraint). Now consider the steady state assets level chosen by these agents when they transit to

a higher idiosyncratic income level. Suppose that this assets level falls within the first range of the histogram.

Whenever there is a positive aggregate productivity shock, this choice of assets will generally increase. If the

aggregate shock happens to be small enough that the modified assets level still falls within the first range of the

histogram, there will be no effects at all on the histogram. However, if the shock is large enough that the modified

assets level falls within the second range of the histogram, there will be a discrete reduction in the size of the first

bar of the histogram and a discrete increase in the size of the second bar. Thus, the histogram bars change quite

non-linearly with respect to the assets level chosen. This non-linearity problem can only be exacerbated when

reducing the coarseness of the histogram.
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(2018). This method requires computing transitionary dynamics after an unexpected aggregate

shock, starting from a given deterministic steady state. In many contexts this can readily be

done. However, in economies with private information it can’t. The reason is that since the

distribution of agents across individual states is state-contingent, when the shock hits the economy

the distribution shifts endogenously. As a consequence, there is no fixed starting point from which

to start the deterministic transitionary dynamics. In fact, not only Boppart et al. (2018) have

difficulties handling state-contingent distributions: none of the other papers cited above have

addressed this case. On the contrary, the method in this paper can handle state-contingent

distributions perfectly well.

The paper is organized as follows. Section 2 presents the computational method. Section 3

discusses its general applicability. Section 4 tests the method using a Mirrlees RBC economy with

known analytical solution. Finally, Section 5 concludes the paper. All proofs are provided in an

accompanying Technical Appendix.

2 The computational method

This section describes a general method for computing stationary equilibria of economies with

heterogeneous agents and aggregate shocks. Although the method will be applied later on to an

economy with asymmetric information, it is described here in general terms to make it applicable

to a wide variety of settings.

The basic framework is as follows. The economy is populated by individual decision makers

that solve maximization problems of the following form at every time period t:7

vht(a, x1, x2) = max
uh1,t+1,uh2t

{
Et

[∑
s

Rh(s, a, x1, x2, [uh1,t+1 (s, a′)]a′ , [uh2t (s, a′)]a′ , zt, pt, pt+1)ψs

]
+

Et

[∑
s

∑
a′

βh(a, a
′, zt, pt, pt+1)vh,t+1 (a′, x′1 (s, a′) , x′2 (s, a′))πh [a, a′, uh1,t+1 (s, a′) , u2ht (s, a′)]ψs

]}
(2.1)

7In what follows I use the convention that a variable is dated t if its value becomes known when the date-t

aggregate shocks realize. If the dating of a variable x is clear from the context, I avoid dating it explicitly and its

next period value will be denoted by x′. In particular, I avoid dating the arguments of individual value functions

and decision rules.
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subject to

x′1 (s, a′) = Gh1 (a, x1, x2, s, a
′, uh1,t+1 (s, a′)) , (2.2)

x′2 (s, a′) = Gh2 (a, x1, x2, s, a
′, uh2t (s, a′)) , (2.3)

0 ≤ Et

[
Ch

(
a, x1, x2, [uh1,t+1 (s, a′)]s,a′ , [uh2t (s, a′)]s,a′ , zt, pt, pt+1

)]
, (2.4)

where h is the permanent type of the individual (e.g., being a household or a firm), a is a vector of

individual states that take a finite number of values (e.g., persistent idiosyncratic shocks), zt is a

vector of aggregate shocks, x1 is a vector of individual state variables whose values are contingent on

the realizations of a and zt, x2 is a vector of individual state variables whose values are contingent

on the realization of a but independent of zt, s is a vector of i.i.d. idiosyncratic shocks with

distribution ψ, uh1,t+1 is a vector of (a′, zt+1)-contingent decision variables, uh2t is a vector of (a′)-

contingent decision variables, pt is a vector of equilibrium prices (whose stochastic process is taken

as given by the individual), Gh1 and Gh2 define the laws of motion for x1 and x2, respectively, Ch

is a vector valued function defining constraints on uh1,t+1 and uh2t, βh is a function that describes

the discounting of future payoffs (allowing for idiosyncratic and/or aggregate preference shocks,

as well as discounting using market prices), and πh describes the transition probabilities for a

(potentially affected by the individual’s decisions).8 While a and s take a finite number of values,

all other variables take real values.9 The solution to this sequence of maximization problems is a

stochastic process for vht, uh1,t+1, and uh2t, which are all functions over (a, x1, x2). The permanent

type h implicitly defines the space in which (a, x1, x2) lie.10. There is a finite number of different

permanent types in the economy.

The distribution of h-type agents across individual states (a, x1, x2) at the beginning of period

8While the dependence of uh1,t+1 or uh2t on a′ is not critical, the dependence of uh1,t+1 on zt+1 is what

distinguishes it from uh2t. Any decision variable that is not contingent on zt+1 is assumed to be included in uh2t.

The same assumptions apply to x1 and x2. The presence of individual state and decision variables that depend on

the realization of the aggregate shocks plays a crucial role in economies with private information.

9The reason I introduce the i.i.d. shocks s explicitly instead of subsuming them in the vector a is because of

the restrictions across realizations of s that equation (2.4) allows for. These cross-restrictions play a crucial role in

certain economies with private information (e.g. representing incentive compatibility constraints).

10I avoid introducing a subscript h for these variables in order to simplify notation. However, the context will

always make clear the permanent type h that they correspond to.
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t is described by a measure µht. The law of motion for µht is given by the following equation:

µh,t+1 ({a′} × X1 ×X2) = φh ({a′} × X1 ×X2) (2.5)

+
∑
s

(∫
B
πh [a, a′, uh1,t+1 (a, x1, x2, s, a

′) , uh2t (a, x1, x2, s, a
′)] dµht

)
ψs,

for every a′ and Borel sets X1 and X2, where

B = {(a, x1, x2) : Gh1 (a, x1, x2, s, a
′, uh1,t+1 (a, x1, x2, s, a

′)) ∈ X1

and Gh2 (a, x1, x2, s, a
′, uh2t (a, x1, x2, s, a

′)) ∈ X2} . (2.6)

The measure φh describes an exogenous endowment of new agents (e.g., to accommodate exogenous

entry of firms in a firm dynamics context or newborns in a households life cycle context), while

the second term describes the endogenous evolution of the distribution. Observe that since uh1,t+1

is contingent on the realization of zt+1, the same is generally true for µh,t+1. I assume that µh1,

φh, and πh are such that the total number of h-type agents µht is constant over time and equal to

Γh, independent of the stochastic process {uh1,t+1, uh2t}∞t=1.

In what follows, it will be useful to differentiate the h-type of agents that are infinitely lived

and for which the maximization problem (2.1)-(2.4) is independent of a and s. Henceforth, all

variables corresponding to such “representative” types of agents will be denoted with a subscript

r, while the h subscript will be reserved for heterogeneous types. An important characteristic of

representative types of agents is that the measure µrt describing their distribution across individual

states will have mass at a single point (xr1t, xr2,t−1). Therefore, it will be convenient to replace

µrt with that single point and replace the law of motion (2.5)-(2.6) with

xr1,t+1 = Gr1 (xr1,t, xr2,t−1, ur1,t+1 (xr1,t, xr2,t−1)) , (2.7)

xr2t = Gr2 (xr1t, xr2,t−1, ur2t (xr1,t, xr2,t−1)) . (2.8)

The stochastic process for pt, which is taken as given in the maximization problems (2.1)-(2.4),

is an equilibrium process if for every t,

Q

(
zt,

[∑
s

(∫
Mh(a, x1, x2, [uh2t (a, x1, x2, s, a

′)]a′)dµht

)
ψs

]
h

, [xr1t, xr2,t−1, ur2t (xr1t, xr2,t−1)]r

)
= 0,

(2.9)

where Q is a vector valued function (of the same dimensionality as pt) describing aggregate fea-

sibility and/or market clearing conditions, Mh is a vector valued function that determines which
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moments of µht are arguments of Q, and (xr1t, xr2,t−1, ur2t) are the states and decision functions

of the r-type of representative agents. Observe that the zt+1-contingent decision variables uh1,t+1

and ur1,t+1 do not enter Q.

The vector of aggregate shocks zt follows an AR(1) process zt+1 = Nzt+εt+1, where Et [εt+1] =

0.

The high dimensionality of the equilibrium objects makes computing stationary equilibria for

this type of setting a nontrivial task. My approach will be to replace these objects with a finite

set of numbers that approximate them arbitrarily well. Moreover, the finite representation will

be chosen in such a way that the law of motion corresponding to equations (2.5)-(2.6) will be

a linear mapping. All first-order conditions and aggregate feasibility constraints will then be

linearized with respect to the variables in the finite representation (at their deterministic steady

state values), delivering a linear rational expectations model that can be solved using almost

standard methods.11 Since under the chosen finite representation the law of motion corresponding

to equations (2.5)-(2.6) is already linear, this method has the advantage that the linearization

does not introduce any further approximation errors to it: The method not only keeps track of

the distributions µht arbitrarily well over all of their supports, but also uses their exact laws of

motion. Since the method performs a linearization at the deterministic steady state equilibrium

values of all variables, it requires computing these values as a first step.

2.1 Computing the deterministic steady state

While computing a deterministic steady state for this type of model is standard, this section

describes in detail a specific algorithm that serves to introduce objects and notation that will be

needed later on. Throughout the section, I assume that a deterministic steady state equilibrium

exists.

In order to compute a steady state, I start by making zt identical to zero and fixing the price

vector at some value p. For each r-type of representative agent, the vector of time invariant

state and decision variables (x1r, x2r, u1r, u2r) can then be directly obtained from the first-order

conditions of the corresponding maximization problem.

I find it convenient to solve the maximization problems given by equations (2.1)-(2.4) using

11The “almost” qualifier will be clarified later on.
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spline approximations and value function iterations.12 To start, I restrict each component of the

vector of endogenous individual state variables (x1, x2) for each h-type agent to lie in a closed

interval and define a set of grid points in it that includes the extremes.13 The Cartesian product

of all these sets of grid points defines a finite set of grid points for (x1, x2), which is described

by a vector (x̄1j, x̄2j)
Jh
j=1. Given the value function vh from the previous iteration, which is used

to evaluate (x′1, x
′
2) (possibly outside the grid points), the maximization problem in equations

(2.1)-(2.4) is solved for only at the grid points (x̄1j, x̄2j)
Jh
j=1. Once, the vectors of new values

v̄h = [vh (a, x̄1j, x̄2j)]a,j, ūh1 = [uh1 (a, x̄1j, x̄2j, s, a
′)]a,j,s,a′ , and ūh2 = [uh2 (a, x̄1j, x̄2j, s, a

′)]a,j,s,a′ are

obtained, I extend their values to the full domain of (x1, x2) using splines. These value function

iterations continue until v̄h converges. Observe that the solution obtained depends on the price

vector p, which has been fixed.

For heterogenous agents, the steady state version of equations (2.5)-(2.6) describes the recursion

that the time invariant distribution µh has to satisfy. This equation corresponds to the case of a

continuum of agents. However, I find it convenient to perform the recursion in the case of a large

but finite number of agents. In particular, consider a large but finite number Ih of h-type agents

and endow them with some individual states (a, x1, x2). Using the functions uh1 and uh2 already

obtained, I simulate the evolution of the individual states of these Ih agents for a large number of

periods T . To be precise, if an h-type agent i has the individual state (a, x1, x2) at the beginning

of the current period, then the individual state (a′, x′1, x
′
2) at the beginning of the following period

is randomly determined as follows:

(i) with probability πh [a, a′, uh1 (a, x1, x2, s, a
′) , uh2 (a, x1, x2, s, a

′)]ψs, it is given by (2.10)

[a′, Gh1 (a, x1, x2, s, a
′, uh1 (a, x1, x2, s, a

′)) , Gh2 (a, x1, x2, s, a
′, uh2 (a, x1, x2, s, a

′))] ,

(ii) with probability 1−
∑
s,a′

π [a, a′, uh1 (a, x1, x2, s, a
′) , uh2 (a, x1, x2, s, a

′)]ψs it is determined by φh.

Observe that the transition in (ii) takes place when the individual dies and is replaced by a

12For representative agents with state contingent state variables x1r, it will be important to follow the procedure

described in this paragraph as well since the steady state objects described here will be needed later on.

13When restricting each of these variables to lie in a closed interval, one should modify the steady state maxi-

mization problem (2.1)-(2.4) to incorporate the corresponding constraints on x′1 and x′2. The use of splines is what

requires each component of (x1, x2) to lie in a closed interval.
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newborn whose initial state is unrelated to the state of the predecessor.

Simulating the Ih agents and their descendants for T periods using the law of motion in (2.10),

I obtain a realized distribution (ai, xi1, x
i
2)
Ih
i=1 of individual states across the Ih agents. Doing this

for every h-type, the aggregate feasibility conditions can then be computed as

Q

(
0,

[∑
s

(
Γh

1

Ih

Ih∑
i=1

Mh(a
i, xi1, x

i
2,
[
uh2

(
ai, xi1, x

i
2, s, a

′)]
a′

)

)
ψs

]
h

, [xr1, xr2, ur2]r

)
= 0. (2.11)

Observe that by the law of large numbers, equation (2.11) will become an arbitrarily good ap-

proximation of equation (2.9) as all Ih and T tend to infinity.

If equation (2.11) is not satisfied, the price vector p must be changed until it is. This represents

a standard root finding problem.

2.2 Computing the stationary stochastic solution

As I already mentioned, computing the stationary stochastic solution requires linearizing the

first-order conditions to the maximization problems given by equations (2.1)-(2.4), the laws of

motion (2.5)-(2.6), the laws of motion (2.7)-(2.8), and the aggregate feasibility conditions given

by equation (2.9) with respect to a convenient set of variables.

In order to illustrate some of the issues involved in the linearization of the first-order conditions,

I will use equation (2.1) as an example since it represents the most complex type.14 The first issue

is the existence of a continuum of equations (2.1), since (x1, x2) take a continuum of values. I solve

this “curse of dimensionality” by considering the equation only at the grid points (x̄1j, x̄2j)
Jh
j=1 that

were used in the computation of the deterministic steady state. Another issue is that each of this

finite number of equations depends on the infinite dimensional object vh,t+1, since it is a function

of (x′1, x
′
2), and I need to evaluate these variables outside the grid points. In this case, I solve

the “curse of dimensionality” by considering that vh,t+1 is a spline approximation and, therefore,

14Equation (2.1) enters the set of first order conditions if the transition probabilities πh depend on uh1,t+1 or

uh2t. In this case, the level of vht enters the first order conditions and the definitional equation (2.1) must be

included. If πh does not depend on uh1,t+1 or uh2t, only the derivatives of vht enter the first order conditions.

However, the issues discussed here in the context of equation (2.1) apply to other first-order conditions, including

the definitional equation for the derivatives of vht. For reasons I will explain in Section 2.3, it is important to

write first order conditions using the derivatives of the value function and not as second order stochastic difference

equations.
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is completely determined by the vector v̄h,t+1 = [vh,t+1 (a, x̄1j, x̄2j)]a,j, i.e., by the value of the

function at the grid points. Consequently, after substituting equations (2.2)-(2.3) into equation

(2.1) and linearizing at the corresponding steady state values, I am left with the following finite

set of equations:

0 = Et {Lvh (v̄h,t, ūh1,t+1, ūh2t, zt, pt, pt+1, v̄h,t+1)} , (2.12)

where ūh1,t+1 = [uh1,t+1 (a, x̄1j, x̄2j, s, a
′)]a,j,s,a′ , ūh2t = [uh2t (a, x̄1j, x̄2j, s, a

′)]a,j,s,a′ and Lvh is a vector

valued linear function with the same dimensionality as v̄ht.

Particular attention should be given to the first-order conditions corresponding to grid points

(a, x̄1j, x̄2j) for which the deterministic steady state choice of some component of x′1 (s, a′) or

x′2 (s, a′) hits one of the extremes imposed by the use of spline approximations. At these grid points,

the maximization problem (2.1)-(2.4) should be modified by imposing the constraint that the

corresponding component of equation (2.2) or (2.3) must evaluate to the corresponding extreme.

The first-order conditions used at these grid points should be those of the modified problem. A

consequence of this is that if the optimal choice of some component of x′1 (s, a′) or x′2 (s, a′) hits

an extreme in the steady state solution, it will always hit it in the stochastic solution. This

will certainly distort the stochastic decision rules close to the extremes, so in practice one should

choose these extremes far enough that the invariant distribution µh puts little mass close to them

(minimizing the relevance of these distortions).

Linearizing the aggregate feasibility conditions described by equation (2.9) presents more com-

plicated issues because of their dependence on the integrals
[∫
Mhdµht

]
h
. To make progress, these

integrals must be represented with a convenient finite set of variables. To do this, I follow a

strategy that is closely related to the one used in Section 2.1 for computing statistics under the

invariant distributions. In particular, for each heterogenous type of agent h, consider the same

large but finite number of agents Ih used in that section and endow them with the same realized

distribution of individual states (ai, xi1, x
i
2)
Ih
i=1 that was obtained when computing the steady state.

Now, assume that these agents populated the economy N time periods ago and consider the his-

tory {uh1,t+1−n, uh2,t−n}Nn=1 of decision rules that were realized during the last N periods (where t

is considered to be the current period). Since these decision rules are spline approximations, this

history can be represented by the finite list of values {ūh1,t+1−n, ūh2,t−n}Nn=1. Using this history of

decision rules, I can simulate the evolution of individual states for the Ih agents and their descen-
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dants during the last N time periods to update the distribution of individual states from the initial

(ai, xi1, x
i
2)
Ih
i=1 to a current distribution

(
ait, x

i
1t, x

i
2,t−1

)Ih
i=1

. In particular, I can initialize the distribu-

tion of individual states at the beginning of period t−N as
(
ait−N , x

i
1,t−N , x

i
2,t−N−1

)
= (ai, xi1, x

i
2),

for i = 1, ..., Ih. Given a distribution of individual states
[(
ait−n, x

i
1,t−n, x

i
2,t−n−1

)]Ih
i=1

at period

t− n, the individual state
(
ait−n+1, x

i
1,t−n+1, x

i
2,t−n

)
of each agent i at period t− n+ 1 is randomly

determined as follows:

(i) with probability πh
[
ait−n, a

′, uih1,t+1−n (s, a′) , uih2,t−n (s, a′)
]
ψs, it is given by

(
a′, Gi

h1,t+1−n (s, a′) ,

Gi
h2,t−n (s, a′)

)
, where

(
uih1,t+1−n (s, a′) , uih2,t−n (s, a′) , Gi

h1,t+1−n (s, a′) , Gi
h2,t−n (a′)

)
are the

values of (uh1,t+1−n, uh2,t−n, Gh1, Gh2) evaluated at
(
ait−n, a

′, xi1,t−n, x
i
2,t−n−1, s, a

′) ,

(ii) with probability 1−
∑
s,a′

πh
[
ait−n, a

′, uih1,t+1−n (s, a′) , uih2,t−n (s, a′)
]
ψs, it is determined by φh.

Proceeding recursively for n = N,N − 1, ..., 1, I obtain a realized distribution
(
ait, x

i
1t, x

i
2,t−1

)Ih
i=1

at

the beginning of period t. This distribution can be used to compute statistics under the distribution

µht. In particular, having followed the above procedure for each h-type of heterogeneous agents,

I can rewrite equation (2.9) as

0 = Q

(
zt,

[∑
s

(
Γh

1

Ih

Ih∑
i=1

Mh(a
i
t, x

i
1t, x

i
2,t−1,

[
uh2t

(
ait, x

i
1t, x

i
2,t−1, s, a

′)]
a′

)

)
ψs

]
h

,

, [xr1t, xr2,t−1, ur2t (xr1t, xr2,t−1)]r
)

(2.13)

Since uh2t and ur2t are spline approximations, they can also be summarized by their values at the

grid points ūh2t and ūr2t.
15 As a consequence, equation (2.13) can be linearized at the deterministic

steady state values to get the following finite set of equations:

0 = LQ
(
zt,
[
{ūh1,t+1−n}Nn=1 , {ūh2,t−n}Nn=0

]
h
, [xr1t, xr2,t−1, ūr2t]r

)
(2.14)

where LQ is a vector valued linear function.16

15For simplicity, I assume here that all representative agents have state-contingent states x1r. However, for

representative agents with no state-contingent states, instead of writing equation (2.13) in terms of their decision

rules ur2t, it is often more convenient to write it directly in terms of the values of their type-2 decision variables

at date t. Consequently, for this type of representative agents, ūr2t in equations (2.14) and (2.18) is not a vector

of spline coefficients but a vector of values for type-2 decision variables.

16Taking numerical derivatives of equation (2.13) with respect to each spline coefficient in the list
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My approach of representing the distribution µht with a finite history of values greatly simplifies

the description of the law of motion in equations (2.5)-(2.6). In fact, updating the distribution

µht is merely reduced to updating those histories. In particular, the date-(t + 1) histories can

be obtained from the date-t histories and the current values ūh1,t+1 and ūh2t using the following

equations:

ūh1,(t+1)−n = ūh1,t−(n−1) (2.15)

ūh2,(t+1)−n = ūh2,t−(n−1), (2.16)

for n = 1, ..., N . Observe that the law of motion described by equations (2.15)-(2.16) is already

linear, so no further linearization is needed. Also observe that the variables that are N periods

old in the date-t history are dropped from the date-(t + 1) history. Thus, the law of motion

described by these equations introduces a truncation. However, introducing a life cycle structure

to the h-type of heterogenous agents will make the consequences of this truncation negligible. The

reason is that the truncation only affects agents surviving for N consecutive periods and, given

sufficiently small survival probabilities and/or a sufficiently large N , there will be very few of these

agents. Apart from this negligible truncation, there are no further approximations errors in the

representation of the law of motion given by equations (2.5)-(2.6) – a crucial benefit of using the

computational method described in this paper.

Since all ur1t,t+1 and ur2t are also spline approximations they are summarized by their values

at the grid points ūr1t,t+1 and ūr2t. The laws of motion (2.7)-(2.8) can then be linearized to obtain

0 = LGr1 (xr1,t+1, xr1t, xr2,t−1, ūr1t,t+1) , (2.17)

0 = LGr2 (xr2t, xr1t, xr2,t−1, ūr2t) , (2.18)

where LGr1 and LGr2 are vector valued linear functions of the same dimensionality as xr1,t+1 and

xr2t, respectively.

[
{ūh1,t+1−n}Nn=1 , {ūh2,t−n}

N
n=0

]
h

requires simulating Ih agents over N periods. Thus, obtaining the linear function

LQ requires performing a large number of Monte Carlo simulations. Moreover, minimizing sampling errors requires

a large value for Ih (in practice I work with panels of about 10 million individuals). While this seems a daunting

task, it is easily parallelizable. Thus, using massively parallel computer systems (such as GPU accelerators) can

play an important role in reducing computing times and keeping the task manageable.
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Once all equations have been linearized, I am left with a stochastic linear rational expectations

model with a non-standard feature – namely, that some of the decision variables during the current

period and some of the endogenous states during the next period are contingent on the realization

of the aggregate shocks during the next period. Fortunately, this difficulty can be handled easily.

The reason is that the stochastic state-contingent solution that I seek can be easily constructed

from the solution to the deterministic version of the model, and this version has a standard

structure that can be solved using well known methods. In what follows, I describe the linear

stochastic model in detail and show how to perform this transformation.

2.3 Solving the linearized model

Define the following vectors:

x1
t =

[[
{∆ūh1,t+1−n}Nn=1

]
h
, [∆xr1t]r

]
, (2.19)

x2
t−1 =

[[
{∆ūh2,t−n}Nn=1

]
h
, [∆xr2,t−1]r

]
, (2.20)

y1
t+1 =

[
[∆ūh1,t+1]h , [∆ūr1,t+1]r

]
, (2.21)

y2
t =

[[
∆v̄ht,∆

(
∂v̄ht
∂x

)
,∆q̄ht,∆ūh2t

]
h

,

[
∆v̄rt,∆

(
∂v̄rt
∂x

)
,∆q̄rt,∆ūr2t

]
r

,∆pt

]
, (2.22)

where ∆ represents deviations from steady state values. ∂v̄ht/∂x and q̄ht are the derivatives of

vht and the Lagrange multipliers of constraints (2.4), respectively, evaluated at the grid points

of the h-type of heterogeneous agents. ∂v̄rt/∂x and q̄rt are similar objects but for the r-type of

representative agents. The linearized model can then be written as

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt, (2.23)

0 = A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1, (2.24)

0 = A32x
2
t +B31x

1
t +B32x

2
t−1 + C32y

2
t , (2.25)

0 = H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt, (2.26)

0 = Et
{
F52x

2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 ,

+K52y
2
t + L5zt+1 +M5zt

}
(2.27)

zt+1 = Nzt + εt+1, (2.28)

where (2.23) represents the aggregate feasibility constraints (equation 2.14), (2.24) is the law of

motion for x1
t (equations 2.15 and 2.17), (2.25) is the law of motion for x2

t−1 (equations 2.16 and
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2.18), (2.26) is the first-order conditions for uh1,t+1 and ur1,t+1 evaluated at the grid points (which

must hold almost surely), and (2.27) represents the constraints (2.4), the first-order conditions for

uh2t and ur2t, the definitions of v̄ht and v̄rt (e.g., equation 2.12), and the envelope conditions for

∂v̄ht/∂x and ∂v̄rt/∂x, all evaluated at the grid points (these equations must all hold in expecta-

tion).17 I seek a recursive solution to equations (2.23)-(2.28) of the following form:

x1
t+1 = Ω11x

1
t + Ω12x

2
t−1 + Ψ1zt + Θ1zt+1, (2.29)

x2
t = Ω21x

1
t + Ω22x

2
t−1 + Ψ2zt, (2.30)

y1
t+1 = Φ11x

1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1, (2.31)

y2
t = Φ21x

1
t + Φ22x

2
t−1 + Γ2zt. (2.32)

My strategy will be to construct it from the recursive solution to the deterministic version of

equations (2.23)-(2.28), in which εt+1 is set to zero and the expectations operator is dropped.18

This deterministic version has identical structure as the system analyzed in Uhlig (1999) and can

be solved using identical methods.19 Its solution has the following form:

x1
t+1 = P11x

1
t + P12x

2
t−1 +Q1zt, (2.33)

x2
t = P21x

1
t + P22x

2
t−1 +Q2zt, (2.34)

y1
t+1 = R11x

1
t +R12x

2
t−1 + S1zt, (2.35)

y2
t = R21x

1
t +R22x

2
t−1 + S2zt. (2.36)

Proposition 1 Let (2.33)-(2.36) be the solution to the deterministic version of equations (2.23)-

(2.28). Define Ω11 = P11, Ω12 = P12, Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ11 = R11, Φ12 = R12,

17Actually, only the constraints in (2.4) that hold with equality are included in the system of equations. Also,

only the Lagrange multipliers of these constraints are included in q̄ht and q̄rt in equation 2.22.

18For this strategy to work it is important to write the first order conditions for the heterogeneous agents in

equations (2.26)-(2.27) using the derivatives of the value functions and not as second order difference equations.

For representative agents with no state contingent state variables it is often more convenient to write their first

order conditions as second order difference equations. It is only for this reason that x2t , x2t+1 and zt+1 are included

in equation (2.27).

19In fact, I use the same notation as Uhlig (1999), page 38, to facilitate comparisons. The only difference is that

the variables here written as x1t and y1t+1 are there written as x1t−1 and y1t . However, in a deterministic context this

difference is immaterial (it can be considered a simple notational issue).
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Φ21 = R21, Φ22 = R22, Γ2 = S2, and

Θ1 = ΥA−1
21 C21K

−1
41 J42S2, (2.37)

Ψ1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
, (2.38)

Λ1 = −K−1
41 J42R21Θ1 −K−1

41 J42S2, (2.39)

Γ1 = −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4, (2.40)

where

Υ =
[
I − A−1

21 C21K
−1
41 J42R21

]−1
(2.41)

Then, (2.29)-(2.32) solves the stochastic system (2.23)-(2.28).

Proof. The solution is verified using algebraic manipulations and the law of iterated expecta-

tions.20

3 General applicability

The computational method just described is applicable to a wide variety of models, but these

models must satisfy certain conditions. A key feature of the computational method is that it uses

a finite history of past decision rules to describe the current cross-sectional distributions of agents

across individual states. For this strategy to work, the model considered should incorporate

a significant life-cycle structure for the non-representative types of agents. In particular, their

expected (or deterministic) lifetimes should be sufficiently short relative to the model time period.

Otherwise, one may have to use prohibitively long histories of past decision rules in order to

characterize the cross-sectional amount of heterogeneity accurately.

Another feature of the computational method is that it uses spline approximations to describe

decision rules. This approach can accommodate a large class of decision rules but could become

quite costly in certain cases. If the decision rules have ranges with sharp non-linearities, describing

them accurately may require adding many grid points at those ranges. This could increase the

computational costs significantly, since introducing more spline coefficients increases the number

of aggregate state variables in the system (the computational method must keep track of the

history of the additional coefficients). Another reason for the added complexity is that calculating

20See Technical Appendix 6 for a complete proof.
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numerical derivatives accurately at narrowly separated grid points requires having a good definition

of the invariant distribution over the subranges that they define.21 Since the invariant distribution

is obtained by performing Monte Carlo simulations, this may require working with a huge panel

of agents. For these reasons, it is important to inspect the invariant distribution and decision

rules at the deterministic steady state of the model and evaluate if the invariant distribution puts

enough mass on ranges of non-linearities to justify the added complexity.

The spline decision rules will also only approximately describe the critical values at which a

constraint becomes binding. Moreover, the computational method assumes that if a constraint

binds (does not bind) at a given grid point in the deterministic steady state, that it will always

bind (not bind) in the stochastic solution.22 While this assumption is likely to hold at most grid

points, it may not hold at grid points that are sufficiently close to true critical values. In many

cases these approximation errors will have unimportant consequences for the aggregate dynamics

of the model. For example, if the invariant distribution puts little mass around the computed

critical values, it will be largely irrelevant what happens in those ranges. Even if the invariant

distribution puts significant mass around those critical values, the consequences of missing the

associated constraints by small amounts are likely to be unimportant if the decision rules are

sufficiently smooth. Problems may arise when the invariant distribution puts considerable mass

close to the critical values and the decision rules are sharply non-linear around them. In these

cases, the computational method may fail to capture the aggregate dynamics of the model correctly.

Certain (S,s) economies fall in this category.

This does not mean that every (S,s) model is outside the scope of the computational method

described in this paper. Many (S,s) models incorporate natural drifts that move agents away from

the (S,s) thresholds, making the invariant distribution put zero mass around them. For example,

these drifts could be generated by an exogenous depreciation rate of capital in an investment

irreversibilities model (e.g. Veracierto (2002)), an exogenous quit rate of workers in a firm dynamics

21Recall the linearization of equation (2.13).

22 In particular, for each grid point (a, x̄1j , x̄2j) in the maximization problem described in (2.1), if some component

of equation (2.4) holds with equality (strict inequality) at the deterministic steady state, the linearization performed

in the construction of equation (2.12) implicitly imposes that this same component always holds with equality (strict

inequality) at the stochastic solution.
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model with either firing costs or matching frictions (e.g. Veracierto (2008a), Veracierto (2016)), or

an endogenous arrival rate of agents in an islands model with undirected search (e.g. Veracierto

(2008b)). In such models, the computational method described here could be applied perfectly

well. In fact, this method is a generalization of the one used in the papers just mentioned. Instead

of using spline approximations, the (S,s) adjustments in those papers allowed me to completely

describe the decision rules with a finite number of (S,s) thresholds. Also, the drifts already

mentioned made agents transit the (S,s) ranges of inaction in finite time and produced invariant

distributions with finite support. As a consequence of this, I was able to describe the aggregate

state of the economy using a finite history of (S,s) thresholds (or, equivalently, the finite support of

the cross-sectional distribution). The computational method introduced in this paper generalizes

that same approach to economies with general decision rules and cross-sectional distributions of

agents with infinite support.

The rest of the paper illustrates the computational method using a model that has this more

general structure. In particular, it illustrates the method using a Mirrlees RBC economy.23 There

are two main reasons for this choice of model. The first reason is that the computational method

can easily handle state-contingent distributions whereas other methods in the literature cannot.

This difference calls for illustrating the computational method using a model with private informa-

tion. The second reason is that in Veracierto (2019) I provide a sharp analytical characterization

of the solution to the Mirrlees RBC economy considered here. Comparing the properties of the

numerical solution to the theoretical results found in that paper provides an ideal test case for

evaluating the accuracy of the method. It turns out that, while the computational method does

not exploit the structure of the Mirrlees economy in any way, it recovers those analytical results

exactly.

23A natural alternative would have been to use the Krusell et al. (1998) model, since it has been widely used

in the literature. While the invariant distribution of that model generally puts positive mass at zero assets, the

critical asset values at which agents start accumulating zero next-period assets have no mass in them. Moreover,

the decision rules are quite smooth around those critical values (and approximately linear away from them.) Thus,

the computational method could be perfectly applied (once the model is modified to incorporate some type of life

cycle structure).
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4 A Mirrlees RBC economy with known solution

The economy is populated by a unit measure of agents subject to stochastic lifetimes. Whenever

an agent dies they are immediately replaced by a newborn, leaving the aggregate population level

constant over time.24 The preferences of an individual born at date T are given by

ET

{
∞∑
t=T

βt−Tσt−T [ln (ct) + αt ln (1− ht)]

}
, (4.1)

where σ is the survival probability, 0 < β < 1 is the discount factor, and αt ∈ {αL, αH} is the

idiosyncratic value of leisure (where αL < αH). Realizations of αt are assumed to be i.i.d. both

across individuals and across time. The probability that αt = αs is given by ψs. A key assumption

is that αt is private information of the individual.

Output, which can be consumed or invested, is produced with the following production func-

tion:

Yt = eztKγ
t−1H

1−γ
t , (4.2)

where 0 < γ < 1, Yt is output, zt is aggregate productivity, Kt−1 is capital, and Ht is hours worked.

The aggregate productivity level zt follows a standard AR(1) process given by:

zt+1 = ρzt + εt+1, (4.3)

where 0 < ρ < 1, and εt+1 is normally distributed with mean zero and standard deviation σε.

Capital is accumulated using a standard linear technology given by

Kt = (1− δ)Kt−1 + It, (4.4)

where It is gross investment and 0 < δ < 1.

4.1 The mechanism design problem

In what follows, I will describe the mechanism design problem for this economy. To do this, it

will be convenient to distinguish between two types of agents: young and old. A young agent is

one that has been born at the beginning of the current period. An old agent is one that has been

24As in Phelan (1994), the stochastic lifetime guarantees that there will be a stationary distribution of agents

across individual states.
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born in some previous period. The social planner must decide recursive plans for both types of

agents. The state of a recursive plan is the value (i.e., discounted expected utility) that the agent

is entitled to at the beginning of the period. Given this promised value, the recursive plan specifies

the current utility of consumption, the current utility of leisure, and next-period promised values

as functions of the value of leisure currently reported by the agent. The social planner is fully

committed to the recursive plans they choose and agents have no outside opportunities available.

A key difference between the young and the old is in terms of promised values. Since during the

previous period the social planner has already decided on some recursive plan for a currently old

agent, the planner is restricted to delivering the corresponding promised value during the current

period. In contrast, the social planner is free to deliver any value to a currently young agent since

this is the first period they are alive. Reflecting this difference, I will specify the individual state

of an old agent to be their promised value v and their current value of leisure s (henceforth, I

will refer to the value of leisure αs by its subindex s ∈ {L,H}). At date t, their current utility

of consumption, utility of leisure, and next-period promised value are denoted by uost (v), nost (v)

and wos,t+1 (v), respectively, where wos,t+1 (v) is a random variable contingent on the realization

of zt+1. In turn, the individual state of a young agent is solely given by their current value of

leisure s. At date t, the agent’s current utility of consumption, utility of leisure, and next-period

promised value are denoted by uyst, nyst and wys,t+1 respectively, where wys,t+1 is also contingent

on the realization of zt+1.

The social planner seeks to maximize the weighted sum of the welfare levels of the current

and future generations of young agents, subject to individual incentive compatibility and promise

keeping constraints, as well as aggregate feasibility constraints.25 Veracierto (2019) describes this

economy-wide planning problem in detail. However, in order to map the mechanism design prob-

lem into the structure described in Section 2, it will be convenient to decompose that planning

problem into a sequence of sub-planning problems. In each period, there are two sub-planning

problems: one sub-planning problem concerned with providing insurance and incentives to indi-

viduals, and another sub-planning problem concerned with making production and investment

decisions. In these sub-planning problems, the joint stochastic process for the shadow price of

25The welfare levels of the current old agents are predetermined by their promised values at the beginning of the

period.
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labor (in terms of the consumption good), qt, and the shadow price of the consumption good

(in utiles), λt, are taken as given. The solutions to these sequences of sub-planning problems

correspond to those of the economy-wide planning problem if certain side conditions are satisfied.

The sub-planning problems for individuals differ depending on whether the individual is young

or old. For every date t, the sub-planning problem for old individuals is as follows:

Pot (v) = max
∑
s

ψs

{
qth(nost)− c (uost) + θσEt

[
λt+1

λt
Po,t+1 (wos,t+1)

]}
(4.5)

subject to

uoLt + αLnoLt + βσEt [woL,t+1] ≥ uoHt + αLnoHt + βσEt [woH,t+1] , (4.6)

v =
∑
s

{uost + αsnost + βσEt [wos,t+1]}ψs, (4.7)

where h (n) are the hours worked implied by the utility of leisure n (i.e. h (n) = 1− en), and c (u)

is the consumption level implied by the utility of consumption u (i.e. c (u) = eu). Observe that

the current “social profits” in equation (4.5) are given by the social value of the hours worked

by the old agent, net of the consumption goods that are transferred to them. Also observe that

the sub-planner discounts the future social profits of the old individual using the social discount

factor θ, the survival probability σ, and the stochastic social discount factor λt+1/λt. The social

discount rate θ is the Pareto weight of the next-period generation of young agents relative to

the Pareto weight of the current generation of young agents.26 Equation (4.6) is the binding

incentive compatibility constraint. It states that the expected value to the individual of truthfully

reporting the low value of leisure L must be at least as large as the expected value to the individual

of misreporting the high value of leisure H. Equation (4.7) is the promise-keeping constraint. It

states that the social sub-planner must deliver the expected value v that was promised at the

beginning of the period.

For every date t, the sub-planning problem for young individuals is as follows:

Pyt = max
∑
s

ψs

{
uyst + αsnyst + βσEt [wys,t+1]

λt
+ qth(nyst)− c (uyst) + θσEt

[
λt+1

λt
Po,t+1 (wys,t+1)

]}
(4.8)

subject to

uyLt + αLnyLt + βσEt [wyL,t+1] ≥ uyHt + αLnyHt + βσEt [wyH,t+1] . (4.9)

26I assume that βσ < θ < 1.
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Observe that in this case the social surplus is given by the expected lifetime utility level of the

young agent (in current consumption units), plus the expected social value of the hours worked

by the agent, net of the expected consumption goods transferred to them. Since, conditional on

surviving the young agent becomes old after one period, the function used to evaluate next-period

continuation values is Po,t+1.

For every date t, the sub-planning problem for production decisions is

Ppt (K) = max

{
eztKγH1−γ

t − qtHt − It + θEt

[
λt+1

λt
Pp,t+1 ((1− δ)K + It)

]}
. (4.10)

Observe that the social surplus generated by this planning problem is given by output net of the

value of the labor input and the value of investment.

The economy-wide distribution of old agents across promised values v at the beginning of

period t is given by a measure µt, while the number of young agents is constant over time and

given by 1−σ. Given the stochastic sequence of decision rules [uost, nost, wos,t+1, uyst, nyst, wys,t+1]s

that solve the corresponding sub-planning problems for individuals, the law of motion for µt is

given as follows:

µt+1 (B) = σ
∑
s

∫
{v: wos,t+1(v)∈B}

ψsdµt + (1− σ)σ
∑

s: wys,t+1∈B

ψs, (4.11)

for every Borel set B. Equation (4.11) states that the number of old agents that have a promised

value in the Borel set B at the beginning of the following period is given by the sum of two terms.

The first term sums all currently old agents that receive a next-period promised value in the set

B and do not die. The second term does the same for all currently young agents.

The economy-wide stock of capital at the beginning of period t is equal to Kt−1. Given the

stochastic sequence of decision rules [Ht, It] that solve the sub-planning production problems, Kt

follows a stochastic process given by

Kt = (1− δ)Kt−1 + It (Kt−1) . (4.12)

The side conditions that the stochastic shadow prices {qt, λt}∞t=1 need to satisfy at every date

t are the following:

(1− σ)
∑
s

c (uyst)ψs +

∫ ∑
s

c (uost (v))ψsdµt + It (Kt−1) = eztKγ
t−1Ht (Kt−1)1−γ , (4.13)
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and

Ht (Kt−1) = (1− σ)
∑
s

h (nyst)ψs +

∫ ∑
s

h (nost (v))ψsdµt. (4.14)

Equation (4.13) describes the aggregate feasibility constraint for the consumption good. It states

that the total consumption of young and old agents, plus aggregate investment cannot exceed

aggregate output. Equation (4.14) is the aggregate labor feasibility constraint. It states that the

input of hours into the production function cannot exceed the total hours worked by young and

old agents.

4.2 Applying the general computational method

In this section I show that the mechanism design problem described above has the general structure

described in Section 2. As a consequence, the deterministic steady state optimal allocation can

be computed as in Section 2.1 and the stationary stochastic optimal allocation can be computed

as in Section 2.2

There are two permanent types h of agents in this economy: production sub-planners and

individuals sub-planners. The production sub-planner has a “representative” type so I denote it

with subscript r. The h subscript is reserved for individuals sub-planners.

There are no zt-contingent states x1rt for production sub-planners (observe that the notation

for aggregate shocks zt coincides with the general setting). However, it does have a non-contingent

state: the stock of capital. Thus, x2r,t−1 ≡ Kt−1. The vector of decision functions u2rt is given

by (Ht, It). The function Gr2 in equation (2.8) is then given by equation (4.12). The counterpart

for the maximization problem given by equations (2.1)-(2.4) is equation (4.10), with vrt ≡ Ppt,

x2 ≡ K, there is no a, x1 or s, pt = (qt, λt), and

Rr ≡ eztKγH1−γ
t − qtHt − It

βr ≡ θ
λt+1

λt
Gr2 ≡ (1− δ)K + It.

Observe that there is no equation (2.2) or (2.4).

For individuals sub-planners there are two values for a: y (young) and o (old). There is no

uncontingent state x2, and the zt-contingent state is the promised value, i.e. x1 ≡ v. Observe

that πh(y, y) = 0, πh(y, o) = σ, πh(o, o) = σ and πh(o, y) = 0 (these transition probabilities are
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independent of individual decisions). The idiosyncratic shock s corresponds to the index of the

idiosyncratic value of leisure αs (the notation for the probabilities ψs coincides in both contexts).

When the sub-planner is deciding over an old individual (i.e. a = o), the maximization problem

in equations (2.1)-(2.4) is described by equations (4.5)-(4.7). Thus, vht ≡ Pot, the zt+1-decision

variables [uh1,t+1 (s, a′)]a′ are given by wos,t+1 and the uncontingent decision variables [uh2t (s, a′)]a′

are given by (uost, nost). Also,

Rh ≡ qth(nost)− c (uost) ,

βh ≡ θ
λt+1

λt
,

Gh1 = wos,t+1,

and Ch in equation (2.4) is given by equations (4.6)-(4.7). There is no Gh2.

When the sub-planner is deciding over a young individual (i.e. a = y), the maximization

problem in equations (2.1)-(2.4) is described by equations (4.8)-(4.9). Thus, vht ≡ Pyt, the zt+1-

decision variables [uh1,t+1 (s, a′)]a′ are given by wys,t+1 and the uncontingent decision variables

[uh2t (s, a′)]a′ are given by (uyst, nyst). Also,

Rh ≡
uyst + αsnyst + βσwys,t+1

λt
+ qth(nyst)− c (uyst) ,

βh ≡ θ
λt+1

λt
,

Gh1 (a, s) = wys,t+1,

and Ch in equation (2.4) is given by equation (4.9). There is no Gh2.

The distribution µht of h-type agents across individual states (a, x1, x2) at the beginning of

period t is described by the measure µt when a = o and by the total number of young agents 1−σ

when a = y (since the decision rules of young agents do not depend on promised values, there

is no need to specify an explicit measure across promised values for young agents). The law of

motion in equation (2.5) for a′ = o is then given by equation (4.11), with φh ({a′} × X1) = 0.

Finally, the vector valued function Q in equation (2.9) is given by equations (4.13) and (4.14).

The moments in Mh that enter the first component of Q are c (uyst) and c (uost (v)), and the

moments that enter the second component of Q are h (nyst) and h (nost (v)).27

27While this section has shown how to map the Mirrlees RBC economy to the general structure of Section 2,
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4.3 Testing the computational method

Having shown how to map the Mirrlees RBC economy into the general structure of Section 2, I use

it to test the accuracy of the computational method. The reason, as has already been mentioned,

is that in Veracierto (2019) I establish key features of the stationary solution analytically. In

particular, I demonstrate that under the logarithmic preferences assumed here that the following

properties hold:

Property 1: uyst, nyst, and wys,t+1 fluctuate over the business cycle by amounts that are

independent of the reported type s,

Property 2: each of the allocation rules uost (v), nost (v), and wos,t+1 (v) are strictly increasing

linear functions that are parallel across reported types,

Property 3: uost (v), nost (v), and wos,t+1 (v) shift over the business cycle while keeping their

slopes constant, and the shifts are independent of the reported type s,

Property 4: the cross-sectional distributions of promised values v, of log-consumption uost,

and of log-leisure nost, shift horizontally over the business cycle while maintaining their shapes,

Property 5: aggregate consumption Ct, aggregate hours worked Ht, and aggregate capital Kt

are exactly the same as in the stationary solution to the following representative agent planning

problem:

V (zt, Kt−1) = max {u (Ct) + ᾱn (1−Ht) + θEt [V (zt+1, Kt)]} (4.15)

subject to

Ct +Kt − (1− δ)Kt−1 ≤ eztKγ
t−1H

1−γ
t , (4.16)

where ᾱ = αLψL + αHψH . I refer the reader to Veracierto (2019) for the economics behind these

results, as well as for results corresponding to other preferences. What I am interested here is to

show that the computational method recovers the above properties exactly. In order to do this I

must first parametrize the model.

Following the RBC literature, I select a labor share 1− γ of 0.64, a depreciation rate δ of 0.10,

a private discount factor β of 0.96, a persistence of aggregate productivity ρ of 0.95, and a variance

the reader interested in implementing this method to other models may want to review Technical Appendix 7.

This appendix is rich in concrete implementation details, such as listing each of the first order conditions and their

arguments, and classifying each first order condition into one of the five types given by equations (2.23)-(2.27).

The appendix also shows how the general linearized model (2.23)-(2.28) simplifies in this particular application.
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of the innovations to aggregate productivity σ2
ε equal to 4 × 0.0072, all corresponding to a time

period of one year. The social discount factor θ is chosen to be the same as the private discount

factor β. The values of leisure αL and αH are chosen to satisfy two criteria: That aggregate hours

worked H equal 0.31 (a standard target in the RBC literature) and that the hours worked by

old agents with the high value of leisure and the highest possible promised value noH (vmax) be

a small but positive number. The rationale for this second criterion is that I want to maximize

the relevance of the information frictions while keeping an internal solution for hours worked.

The resulting values for αL and αH are 1.643 and 2.177, respectively. I treat both values of the

idiosyncratic shock symmetrically and chose ψL = ψH = 0.50. In terms of the life-cycle structure,

I choose σ = 0.975 to generate an expected lifespan of 40 years.

While the above parameters are structural, there are a number of computational parameters

to be determined. The number of grid points in the spline approximations J , the total number of

agents simulated I, the length of the simulations for computing the invariant distribution T , and

the length of the histories kept as state variables when computing the business cycles N are all

chosen to be as large as possible, while keeping the computational task manageable and results

being robust to non-trivial changes in their values. Their chosen values are 20, 223, 1000, and

273, respectively.28 It turns out that under these computational parameters, the linearized system

described in Section 2.3 has about 12, 000 variables (a large system indeed).

Finally, the lower and upper bounds for the range of possible promised values vmin and vmax

were chosen so that the fraction of agents in the intervals [v1, v2] and [vJ−1, vJ ] are each less than

0.01%. Thus, truncating the range of possible values at vmin and vmax should not play an important

role in the results. The chosen values for vmin and vmax are −35.0 and −16.3, respectively.

Before turning to the business cycle results, I illustrate different features of the model at its

deterministic steady state. Figure 1 shows the invariant distribution of promised values across the

J − 1 intervals [vj, vj+1]J−1
j=1 , defined by the grid points of the spline approximations. We see that

the invariant distribution puts very little mass at extreme values. In consequence, in what follows

I will report allocation rules only between the 6th and 16th grid points. The reason is not only

28Given the value selected for the survival probability σ, less than 0.1% of individuals survive more than N

periods. Thus, the truncation imposed by keeping track of a finite history of decision rules introduces a very small

approximation error.
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that there are too few agents at the tails of the distribution for them to matter, but also that

being close to the artificial bounds vmin and vmax greatly distorts the shape of the allocation rules.

Figure 2.A reports utilities of consumption for old agents uoL (v) and uoH (v) across promised

values v, at the deterministic steady state. We see that both uoL and uoH are strictly increasing in

the promised value v, are linear, and are parallel to each other. Figure 2.B shows the same for the

utilities of leisure noL (v) and noH (v), and Figure 2.C for the next-period promised values woL (v)

and woH (v). Since these figures could be tricking the naked eye, Figure 2.D, depicts the vertical

differences across reported types uoH (v)−uoL (v), noH (v)−noL (v) and woH (v)−woL (v). We see

that the different pairs of functions are indeed parallel to each other. Thus, Figure 2 verifies that

Property 2 holds at the deterministic steady state.

The discussion of business cycle dynamics that follows is centered around the analysis of

the impulse responses of different variables to a one standard deviation increase in aggregate

productivity. Figure 3.A shows the impulse responses of the utility of consumption of young

agents uyL and uyH . We see that the two impulse responses overlap perfectly, thus satisfying

Property 1. Figure 3.B shows the impulse response of the utility of consumption of old agents

with a low value of leisure uoL (v), at each of the eleven grid points (vj)
16
j=6. While the figure shows

eleven impulse responses, only one of them is actually seen because they overlap perfectly. This

means that, in response to the aggregate productivity shock, the linear function uoL depicted in

Figure 2.A shifts vertically over time while keeping its slope constant. Figure 3.C, which does

the same for uoH , is identical to Figure 3.B. Thus, not only uoH shifts over time keeping its slope

constant, but its increments are the same as those of uoL. We have thus verified that uoLt and

uoHt satisfy Property 3. Figure 4 is analogous to Figure 3, except that it depicts the behavior of

the utilities of leisure nyst and [nost (vj)]
16
j=6. Figure 5 is also analogous to Figure 3 but depicts

the behavior of the promised values wys,t+1 and [wos,t+1 (vj)]
16
j=6. A quick inspection verifies that

Figures 4 and 5 have the same characteristics as Figure 3. Thus, Properties 1 and 3 are fully

satisfied.

Figure 6 shows the impulse responses of the cross sectional standard deviations of promised val-

ues, log-consumption and log-leisure. We see that in response to a positive aggregate productivity

shock, all these standard deviations remain flat. Thus, Property 4 is satisfied.

Finally, Figure 7.A shows the impulse responses of aggregate output Yt, aggregate consumption

Ct, aggregate investment It, aggregate hours worked Ht and aggregate capital Kt−1 for the Mirrlees
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RBC economy. Figure 7.B reports the impulse responses for the same variables but for the

representative agent economy planning problem (4.15)-(4.16). We see that Figures 7.A and 7.B

are the same. Figure 7.C verifies this by reporting the differences between the Mirrlees economy

and the representative agent economy, for each of the macro variables considered. Thus, Property

5 is perfectly satisfied.

We have thus verified that the general computational method, when applied to the Mirrlees

RBC economy with logarithmic preferences, reproduces all the analytical properties found in

Veracierto (2019). Since nothing in the computational method exploits the functional forms or

structure of the economy considered, this provides significant evidence about its accuracy. This

finding indicates that the computational method introduced in this paper should prove useful in

a variety of other settings.

5 Conclusions

In this paper I introduced a general method for computing equilibria of economies with heteroge-

neous agents and aggregate shocks. Its basic strategy is to parametrize individual decision rules as

spline approximations and to keep long histories of the spline coefficients as state variables. The

resulting representation of the model is then linearized at the deterministic steady-state. Three

important features make this approach attractive as a general computational method: 1) it keeps

track of the full distribution of agents across individual states, 2) it can handle irregular shapes

for this distribution, and 3) it incorporates the distribution’s exact law of motion. In addition, the

computational method is able to handle cases in which the cross-sectional distribution of agents is

state-contingent. This last property makes the method particularly useful for computing aggregate

fluctuations of economies with private information.

The computational method was then illustrated using a Mirrlees RBC economy with known

analytical solution. Contrasting the numerical solution to the theoretical solution allowed me to

test the accuracy of the computational method. The method passed the test with flying colors: it

reproduced all the theoretical properties of the solution perfectly well. This finding suggests that

the computational method should prove useful in a variety of other applications.

While the features of the computational method mentioned above are extremely attractive,

I would like to conclude the paper with two caveats. The first one is that, since linearizing the
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model with respect to each of the elements in the history of spline coefficients requires perform-

ing a massive number of Monte Carlo simulations, the method turns out to be rather slow.29

This should not be a problem when calibrating the deterministic steady-state of a model, since

the computational method needs to be applied only once (after all parameter values have been

determined). However, it makes it impractical for estimating a model using formal econometric

methods. The second caveat is that the computational complexity grows exponentially with the

number of endogenous individual state variables. The reason is that as the spline approximations

are defined over state spaces of increasing dimensionality, the number of spline coefficients in the

system grow accordingly. As a result, models with two endogenous individual state variables could

only be handled if the decision rules are sufficiently smooth to be described with a relatively small

number of grid points. Models with two endogenous state variables and significant non-linearities,

or with more than two endogenous individual state variables are currently outside the scope of

the method.
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Figure 1: Invariant distribution of promised values
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Figure 2: Steady state allocation rules
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Figure 3: Impulse responses for consumption utilities
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Figure 4: Impulse responses for leisure utilities
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Figure 5: Impulse responses for promised values
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Figure 6: Cross-sectional heterogeneity
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Figure 7: Macro variables
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6 Proof of Proposition 1

The deterministic version of equations (2.23)-(2.28) is given by:

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt, (6.1)

0 = A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1, (6.2)

0 = A32x
2
t +B31x

1
t +B32x

2
t−1 + C32y

2
t , (6.3)

0 = H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt, (6.4)

0 = F52x
2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt,(6.5)

zt+1 = Nzt. (6.6)

The following Lemmas is used in the proof of Proposition 1.

Lemma 2 : Suppose that equations (2.33)-(2.36) are the recursive solution to equations (6.1)-

(6.6). Then,

P11 = −A−1
21 B21 − A−1

21 C21R11 (6.7)

P12 = −A−1
21 B22 − A−1

21 C21R12 (6.8)

Q1 = −A−1
21 C21S1 (6.9)

R11 = −K−1
41 H41 −K−1

41 J42R21P11 −K−1
41 J42R22P21 −K−1

41 K42R21 (6.10)

R12 = −K−1
41 H42 −K−1

41 J42R21P12 −K−1
41 J42R22P22 −K−1

41 K42R22 (6.11)

S1 = −K−1
41 J42R21Q1 −K−1

41 J42R22Q2 −K−1
41 J42S2N −K−1

41 K42S2 −K−1
41 M4 (6.12)

Also,

0 = [F52P21P11 + F52P22P21 +G52P21 +H51 + J52R21P11 + J52R22P21 +K51R11 +K52R21]x1
t

+ [F52P21P12 + F52P22P22 +G52P22 +H52 + J52R21P12 + J52R22P22 +K51R12 +K52R22]x2
t−1

+ [F52P21Q1 + F52P22Q2 + F52Q2N +G52Q2 + J52R21Q1 + J52R22Q2

+ J52S2N +K51S1 +K52S2 + L5N +M5] zt (6.13)

i



Proof: From equation (6.2) we have that

x1
t+1 = −A−1

21 B21x
1
t − A−1

21 B22x
2
t−1 − A−1

21 C21y
1
t+1 (6.14)

= −A−1
21 B21x

1
t − A−1

21 B22x
2
t−1 − A−1

21 C21

[
R11x

1
t +R12x

2
t−1 + S1zt

]
= −A−1

21 B21x
1
t − A−1

21 B22x
2
t−1 − A−1

21 C21R11x
1
t − A−1

21 C21R12x
2
t−1 − A−1

21 C21S1zt

=
[
−A−1

21 B21 − A−1
21 C21R11

]
x1
t +

[
−A−1

21 B22 − A−1
21 C21R12

]
x2
t−1 +

[
−A−1

21 C21S1

]
zt

where the second equality uses equation (2.35). Equating coefficients with equation (2.33) gives

equations (6.7)-(6.9).

From equation (6.4) we have that

y1
t+1 = −K−1

41 H41x
1
t −K−1

41 H42x
2
t−1 −K−1

41 J42y
2
t+1 −K−1

41 K42y
2
t −K−1

41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42

[
R21x

1
t+1 +R22x

2
t + S2zt+1

]
−K−1

41 K42

[
R21x

1
t +R22x

2
t−1 + S2zt

]
−K−1

41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42R21x
1
t+1 −K−1

41 J42R22x
2
t −K−1

41 J42S2Nzt

−K−1
41 K42R21x

1
t −K−1

41 K42R22x
2
t−1 −K−1

41 K42S2zt −K−1
41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
−K−1

41 J42R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
−K−1

41 J42S2Nzt

−K−1
41 K42R21x

1
t −K−1

41 K42R22x
2
t−1 −K−1

41 K42S2zt −K−1
41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42R21P11x
1
t −K−1

41 J42R21P12x
2
t−1 −K−1

41 J42R21Q1zt

−K−1
41 J42R22P21x

1
t −K−1

41 J42R22P22x
2
t−1 −K−1

41 J42R22Q2zt −K−1
41 J42S2Nzt

−K−1
41 K42R21x

1
t −K−1

41 K42R22x
2
t−1 −K−1

41 K42S2zt −K−1
41 M4zt

=
[
−K−1

41 H41 −K−1
41 J42R21P11 −K−1

41 J42R22P21 −K−1
41 K42R21

]
x1
t

+
[
−K−1

41 H42 −K−1
41 J42R21P12 −K−1

41 J42R22P22 −K−1
41 K42R22

]
x2
t−1

+
[
−K−1

41 J42R21Q1 −K−1
41 J42R22Q2 −K−1

41 J42S2N −K−1
41 K42S2 −K−1

41 M4

]
zt

where the second equality uses equation (2.36), the third equality uses equation (6.6), and the

fourth equality uses equations (2.33) and (2.34). Equating coefficients with equation (2.35) gives

equations (6.10)-(6.12).

ii



Finally, from equations (2.36), (2.33), (2.34), and (6.6) we have

y2
t+1 = R21x

1
t+1 +R22x

2
t + S2zt+1 (6.15)

= R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ S2Nzt

= R21P11x
1
t +R21P12x

2
t−1 +R21Q1zt +R22P21x

1
t +R22P22x

2
t−1 +R22Q2zt + S2Nzt

= [R21P11 +R22P21]x1
t + [R21P12 +R22P22]x2

t−1 + [R21Q1 +R22Q2 + S2N ] zt

From equations (6.5), (6.15), (2.33), (2.34), (2.35) and (2.36) we then have

0 = F52x
2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

= F52x
2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52

[
R21x

1
t+1 +R22x

2
t + S2zt+1

]
+K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

= F52

[
P21x

1
t+1 + P22x

2
t +Q2zt+1

]
+G52

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+H51x

1
t +H52x

2
t−1

+J52R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ J52R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+J52S2Nzt +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

= F52P21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ F52P22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ F52Q2Nzt

+G52P21x
1
t +G52P22x

2
t−1 +G52Q2zt +H51x

1
t +H52x

2
t−1 + J52 [R21P11 +R22P21]x1

t

+J52 [R21P12 +R22P22]x2
t−1 + J52 [R21Q1 +R22Q2 + S2N ] zt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5zt+1 +M5zt

= F52P21P11x
1
t + F52P21P12x

2
t−1 + F52P21Q1zt + F52P22P21x

1
t + F52P22P22x

2
t−1 + F52P22Q2zt

+F52Q2Nzt +G52P21x
1
t +G52P22x

2
t−1 +G52Q2zt +H51x

1
t +H52x

2
t−1 + J52 [R21P11 +R22P21]x1

t

+J52 [R21P12 +R22P22]x2
t−1 + J52 [R21Q1 +R22Q2 + S2N ] zt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5zt+1 +M5zt

= [F52P21P11 + F52P22P21 +G52P21 +H51 + J52R21P11 + J52R22P21 +K51R11 +K52R21]x1
t

+ [F52P21P12 + F52P22P22 +G52P22 +H52 + J52R21P12 + J52R22P22 +K51R12 +K52R22]x2
t−1

+ [F52P21Q1 + F52P22Q2 + F52Q2N +G52Q2 + J52R21Q1 + J52R22Q2

+ J52S2N +K51S1 +K52S2 + L5N +M5] zt

Thus, equation (6.13) is satisfied.

Proof of Proposition 1: By assumption, equations (6.1) and (6.3) are satisfied by equations

iii



(2.34) and (2.36). Since Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ21 = R21, Φ22 = R22, Γ2 = S2, equations

(2.23) and (2.25) are then satisfied by equations (2.30) and (2.32).

Observe that equation (2.24) evaluates as follows:

A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1 (6.16)

= A21

[
Ω11x

1
t + Ω12x

2
t−1 + Ψ1zt + Θ1zt+1

]
+B21x

1
t +B22x

2
t−1

+C21

[
Φ11x

1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1

]
= A21P11x

1
t + A21P12x

2
t−1 + A21Ψ1zt + A21Θ1zt+1 +B21x

1
t +B22x

2
t−1

+C21R11x
1
t + C21R12x

2
t−1 + C21Γ1zt + C21Λ1zt+1

= [A21P11 +B21 + C21R11]x1
t + [A21P12 +B22 + C21R12]x2

t−1

+ [A21Ψ1 + C21Γ1] zt + [A21Θ1 + C21Λ1] [Nzt + εt+1]

= [A21P11 +B21 + C21R11]x1
t + [A21P12 +B22 + C21R12]x2

t−1

+ [A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N ] zt + [A21Θ1 + C21Λ1] εt+1

= [−B21 − C21R11 +B21 + C21R11]x1
t + [−B22 − C21R12 +B22 + C21R12]x2

t−1

+ [A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N ] zt + [A21Θ1 + C21Λ1] εt+1

= [A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N ] zt + [A21Θ1 + C21Λ1] εt+1

where the first equality uses equations (2.29) and (2.31), the second equality uses the fact that

Ω11 = P11, Ω12, Φ11 = R11, Φ12 = R12, Φ21 = R21, Φ22 = R22, and Γ2 = S2, the third equality uses

equation (2.28), and the fifth equality uses equations (6.7) and (6.8).

Observe that

A21Θ1 + C21Λ1 = A21Θ1 − C21K
−1
41 J42R21Θ1 − C21K

−1
41 J42S2 (6.17)

= A21

[
I − A−1

21 C21K
−1
41 J42R21

]
Θ1 − C21K

−1
41 J42S2

= A21

[
I − A−1

21 C21K
−1
41 J42R21

] [
I − A−1

21 C21K
−1
41 J42R21

]−1
A−1

21 C21K
−1
41 J42S2

−C21K
−1
41 J42S2

= A21A
−1
21 C21K

−1
41 J42S2 − C21K

−1
41 J42S2

= C21K
−1
41 J42S2 − C21K

−1
41 J42S2

= 0

where the first equality uses equation (2.39), and the third equality uses equations (2.37) and

iv



(2.41).

Also observe that

A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N (6.18)

= A21Ψ1 + C21Γ1

= A21Ψ1 − C21K
−1
41 J42R21Ψ1 − C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= A21

[
I − A−1

21 C21K
−1
41 J42R21

]
Ψ1 − C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= A21

[
I − A−1

21 C21K
−1
41 J42R21

]
Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
−C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= A21

[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
−C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= C21K
−1
41 J42R22Q2 + C21K

−1
41 K42S2 + C21K

−1
41 M4 − C21K

−1
41 J42R22Q2

−C21K
−1
41 K42S2 − C21K

−1
41 M4

= 0

where the first equality uses equation (6.17), the second equality uses equation (2.40), the fourth

equality uses equation (2.38) and the fifth equality uses equation (2.41).

From equations (6.16), (6.17) and (6.18) it follows that equation (2.24) is satisfied.
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Observe that equation (2.26) evaluates as follows:

H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt (6.19)

= H41x
1
t +H42x

2
t−1 + J42

[
Φ21x

1
t+1 + Φ22x

2
t + Γ2zt+1

]
+K41

[
Φ11x

1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1

]
+K42

[
Φ21x

1
t + Φ22x

2
t−1 + Γ2zt

]
+M4zt

= H41x
1
t +H42x

2
t−1 + J42R21x

1
t+1 + J42R22x

2
t + J42S2zt+1 +K41R11x

1
t +K41R12x

2
t−1

+K41Γ1zt +K41Λ1zt+1 +K42R21x
1
t +K42R22x

2
t−1 +K42S2zt +M4zt

= H41x
1
t +H42x

2
t−1 + J42R21

[
Ω11x

1
t + Ω12x

2
t−1 + Ψ1zt + Θ1zt+1

]
+J42R22

[
Ω21x

1
t + Ω22x

2
t−1 + Ψ2zt

]
+ J42S2zt+1 +K41R11x

1
t +K41R12x

2
t−1 +K41Γ1zt

+K41Λ1zt+1 +K42R21x
1
t +K42R22x

2
t−1 +K42S2zt +M4zt

= H41x
1
t +H42x

2
t−1 + J42R21P11x

1
t + J42R21P12x

2
t−1 + J42R21Ψ1zt + J42R21Θ1zt+1

+J42R22P21x
1
t + J42R22P22x

2
t−1 + J42R22Q2zt + J42S2zt+1 +K41R11x

1
t +K41R12x

2
t−1

+K41Γ1zt +K41Λ1zt+1 +K42R21x
1
t +K42R22x

2
t−1 +K42S2zt +M4zt

= [H41 + J42R21P11 + J42R22P21 +K41R11 +K42R21]x1
t

+ [H42 + J42R21P12 + J42R22P22 +K41R12 +K42R22]x2
t−1

+ [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

= [H41 + J42R21P11 + J42R22P21 +

K41

(
−K−1

41 H41 −K−1
41 J42R21P11 −K−1

41 J42R22P21 −K−1
41 K42R21

)
+K42R21]x1

t

+[H42 + J42R21P12 + J42R22P22

+K41

(
−K−1

41 H42 −K−1
41 J42R21P12 −K−1

41 J42R22P22 −K−1
41 K42R22

)
+K42R22]x2

t−1

+ [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

= [H41 + J42R21P11 + J42R22P21 −H41 − J42R21P11 − J42R22P21 −K42R21 +K42R21]x1
t

+ [H42 + J42R21P12 + J42R22P22 −H42 − J42R21P12 − J42R22P22 −K42R22 +K42R22]x2
t−1

+ [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

= [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

where the first equality uses equations (2.32) and (2.31), the second equality uses the fact that

Φ11 = R11, Φ12 = R12, Φ21 = R21, Φ22 = R22, and Γ2 = S2, the third equality uses equations (2.29)

and (2.30), the fourth equality uses the fact that Ω11 = P11, Ω12 = P12, Ω21 = P21, Ω22 = P22,

vi



Ψ2 = Q2, where the sixth equality uses equations (6.10) and (6.11),

Observe that

J42R21Θ1 + J42S2 +K41Λ1 = J42R21Θ1 + J42S2 − J42R21Θ1 − J42S2 (6.20)

= 0

where the first equality uses equation (2.39).

Also observe that

J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4 (6.21)

= J42R21Ψ1 + J42R22Q2 − J42R21Ψ1 − J42R22Q2 −K42S2 −M4 +K42S2 +M4

= 0

where the first equality uses equation (2.40).

From equations (6.19), (6.20) and (6.21) it follows that equation (2.26) is satisfied.

It remains to show that equation (2.27) holds.

Applying conditional expectations to equations (2.29)-(2.32) and using the fact that Ω11 = P11,

Ω12 = P12, Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ11 = R11, Φ12 = R12, Φ21 = R21, Φ22 = R22, Γ2 = S2,

we have

Et
(
x1
t+1

)
= P11x

1
t + P12x

2
t−1 + [Ψ1 + Θ1N ] zt, (6.22)

Et
(
x2
t

)
= P21x

1
t + P22x

2
t−1 +Q2zt, (6.23)

Et
(
y1
t+1

)
= R11x

1
t +R12x

2
t−1 + [Γ1 + Λ1N ] zt, (6.24)

Et
(
y2
t

)
= R21x

1
t +R22x

2
t−1 + S2zt. (6.25)

From equations (6.9) and (6.12) we have that

Q1 = −A−1
21 C21S1

= A−1
21 C21K

−1
41 J42R21Q1 + A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 J42S2N

+A−1
21 C21K

−1
41 K42S2 + A−1

21 C21K
−1
41 M4

Hence,[
I − A−1

21 C21K
−1
41 J42R21

]
Q1 = A−1

21 C21K
−1
41 J42R22Q2

+A−1
21 C21K

−1
41 J42S2N + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4
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Using equations (2.41), (2.38) and (2.37) we then get that

Q1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 J42S2N + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
= Υ

[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
+ ΥA−1

21 C21K
−1
41 J42S2N

= Ψ1 + Θ1N (6.26)

Also, using equations (2.40), (2.39), (6.26) and (6.12) we have that

Γ1 + Λ1N (6.27)

= −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4 −K−1
41 J42R21Θ1N −K−1

41 J42S2N

= −K−1
41 J42R21 [Ψ1 + Θ1N ]−K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4 −K−1
41 J42S2N

= S1

Using equations (6.26) and (6.27) we can then write equations (6.22)-(6.25) as follows:

Et
(
x1
t+1

)
= P11x

1
t + P12x

2
t−1 +Q1zt, (6.28)

Et
(
x2
t

)
= P21x

1
t + P22x

2
t−1 +Q2zt, (6.29)

Et
(
y1
t+1

)
= R11x

1
t +R12x

2
t−1 + S1zt, (6.30)

Et
(
y2
t

)
= R21x

1
t +R22x

2
t−1 + S2zt. (6.31)

From equation (6.31) we have

Et+1

(
y2
t+1

)
= R21x

1
t+1 +R22x

2
t + S2zt+1

Using the Law of Iterated expectations and equations (6.28) and (6.29) we then get

Et
(
y2
t+1

)
= R21Et

(
x1
t+1

)
+R22Et

(
x2
t

)
+ S2Et (zt+1) (6.32)

= R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ S2Nzt

Also, from equation (6.29) we have

Et+1

(
x2
t+1

)
= P21x

1
t+1 + P22x

2
t +Q2zt+1

Using the Law of Iterated expectations and equations (6.28) and (6.29) we then get

Et
(
x2
t+1

)
= P21Et

(
x1
t+1

)
+ P22Et

(
x2
t

)
+Q2Et (zt+1) (6.33)

= P21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+P22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+Q2Nzt
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Observe that equation (2.27) evaluates as follows

F52Et
(
x2
t+1

)
+G52Et

(
x2
t

)
+H51x

1
t +H52x

2
t−1 + J52Et

(
y2
t+1

)
+K51Et

(
y1
t+1

)
+K52Et

(
y2
t

)
+L5Nzt +M5zt

= F52P21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ F52P22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ F52Q2Nzt

+G52

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+H51x

1
t +H52x

2
t−1 + J52R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+J52R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ J52S2Nzt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5Nzt +M5zt

= F52P21P11x
1
t + F52P21P12x

2
t−1 + F52P21Q1zt + F52P22P21x

1
t + F52P22P22x

2
t−1 + F52P22Q2zt

+F52Q2Nzt +G52

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+H51x

1
t +H52x

2
t−1

+J52R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ J52R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ J52S2Nzt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5Nzt +M5zt

= [F52P21P11 + F52P22P21 +G52P21 +H51 + J52R21P11 + J52R22P21 +K51R11 +K52R21]x1
t

+ [F52P21P12 + F52P22P22 +G52P22 +H52 + J52R21P12 + J52R22P22 +K51R12 +K52R22]x2
t−1

+ [F52P21Q1 + F52P22Q2 + F52Q2N +G52Q2 + J52R21Q1 + J52R22Q2

+ J52S2N +K51S1 +K52S2 + L5N +M5] zt

= 0

where the first equality uses equations (6.33), (6.32), (6.30) and (6.31), and the third equality uses

equation (6.13). Thus equation (2.27) is satisfied
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7 Mirrlees economy: Linearization

This appendix first lists each of the first order conditions for the Mirrlees RBC economy, describes

the arguments involved in each first order condition, and states the total number of each first order

condition. The appendix then classifies each of the variables involved into the vectors defined by

equations (2.19)-(2.22), classifies each first order condition into one of the five types given by

equations (2.23)-(2.27), and provides the total number of equations of each type as well as the

total number of variables. Finally, the appendix shows how the general linearized model (2.23)-

(2.28) simplifies in the Mirrlees RBC economy, as well as the corresponding transformation given

by equations (2.37)-(2.41).

Similarly to equations (2.19)-(2.22), J denotes the total number of grid points used in the spline

approximations. However, given that promised values must lie in a closed interval, the functions

woLt (v) and woLt (v) may hit the limits of those intervals when v is close to those limits. In what

follows, I denote by J1 the lowest grid point for which woLt (v̄j) is larger than the low limit and J2

the largest grid point for which woLt (v̄j) is smaller than the high limit. Similarly, I denote by J3

the lowest grid point for which woHt (v̄j) is larger than the low limit and J4 the largest grid point

for which woHt (v̄j) is smaller than the high limit.

7.1 First order conditions

1) Equation

0 = ψL − λt [(1− ϕ)uyLt + 1]
1

1−ϕ−1 ψL + λtξyt

becomes

0 = LuyL (4uyL,t,4 ln ξyt,4 lnλt)

Number of equations: 1

2) Equation

0 = ψH − λt [(1− ϕ)uyHt + 1]
1

1−ϕ−1 ψH − λtξyt

becomes

0 = LuyH (4uyH,t,4 ln ξyt,4 lnλt)

Number of equations: 1

x



3) Equation

0 = αLψL − λtqt [(1− π)nyLt + 1]
1

1−π−1 ψL + λtαLξyt

becomes

0 = LnyL (4nyL,t,4 ln ξyt,4 lnλt,4 ln qt)

Number of equations: 1

4) Equation

0 = αHψH − λtqt [(1− π)nyHt + 1]
1

1−π−1 ψH − λtαLξyt

becomes

0 = LnyH (4nyH,t,4 ln ξyt,4 lnλt,4 ln qt)

Number of equations: 1

5) Equation

0 = βσψL + λtβσξyt − θλt+1σψLηt+1 (wyL,t+1)

becomes

0 = LwyL

(
4 ln ξyt,4 lnλt,4 lnλt+1, [4 ln ηt+1 (v̄j)]

J
j=1 ,4wyL,t+1

)
Number of equations: 1

6) Equation

0 = βσψH − λtβσξyt − θλt+1σψHηt+1 (wyH,t+1)

becomes

0 = LwyH

(
4 ln ξyt,4 lnλt,4 lnλt+1, [4 ln ηt+1 (v̄j)]

J
j=1 ,4wyH,t+1

)
Number of equations: 1

7) Equation

0 = − [(1− ϕ)uoLt (v) + 1]
1

1−ϕ−1 ψL + ξot (v) + ηt (v)ψL

becomes

0 = LuoL(v̄i) (4uoL,t (v̄i) ,4 ln ξot (v̄i) ,4 ln ηt (v̄i))

for i = 1, ..., J .

Number of equations: J

8) Equation

0 = − [(1− ϕ)uoHt (v) + 1]
1

1−ϕ−1 ψH − ξot (v) + ηt (v)ψH

xi



becomes

0 = LuoH(v̄i) (4uoH,t (v̄i) ,4 ln ξot (v̄i) ,4 ln ηt (v̄i))

for i = 1, ..., J .

Number of equations: J

9) Equation

0 = −qt [(1− π)noLt (v) + 1]
1

1−π−1 ψL + αLξot (v) + ηt (v)αLψL

becomes

0 = LnoL(v̄i) (4noL,t (v̄i) ,4 ln ξot (v̄i) ,4 ln ηt (v̄i) ,4 ln qt)

for i = 1, ..., J .

Number of equations: J

10) Equation

0 = −qt [(1− π)noHt (v) + 1]
1

1−π−1 ψH − αLξot (v) + ηt (v)αHψH

becomes

0 = LnoH(v̄i) (4noH,t (v̄i) ,4 ln ξot (v̄i) ,4 ln ηt (v̄i) ,4 ln qt)

for i = 1, ..., J .

Number of equations: J

11) Equation

0 = λtβσξot (v) + λtηt (v) βσψL − θλt+1σψLηt+1 [woL,t+1 (v)]

becomes

0 = LwoL(v̄i)

(
4 ln ξot (v̄i) ,4 lnλt,4 ln ηt (v̄i) ,4 lnλt+1, [4 ln ηt+1 (v̄j)]

J
j=1 ,4woL,t+1 (v̄i)

)
for i = J1, ..., J2.

Number of equations: J2 − J1 + 1

12) Equation

0 = −λtβσξot (v) + λtηt (v) βσψH − θλt+1σψHηt+1 [woH,t+1 (v)]
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becomes

0 = LwoH(v̄i)

(
4 ln ξot (v̄i) ,4 lnλt,4 ln ηt (v̄i) ,4 lnλt+1, [4 ln ηt+1 (v̄j)]

J
j=1 ,4woH,t+1 (v̄i)

)
for i = J3, ..., J4.

Number of equations: J4 − J3 + 1

13) Equation

0 = uyLt + αLnyLt + βσEt [wyL,t+1]− {uyHt + αLnyHt + βσEt [wyH,t+1]}

becomes

0 = Et [LICy (4uyL,t,4nyL,t,4wyL,t+1,4uyH,t,4nyH,t,4wyH,t+1)]

Number of equations: 1

14) Equation

0 = uoLt (v) + αLnoLt (v) + βσEt [woL,t+1 (v)]− {uoHt (v) + αLnoHt (v) + βσEt [woH,t+1 (v)]}

becomes

0 = Et
[
LICo(v̄i) (4uoL,t (v̄i) ,4noL,t (v̄i) ,4woL,t+1 (v̄i) ,4uoH,t (v̄i) ,4noH,t (v̄i) ,4woH,t+1 (v̄i))

]
for i = 1, ..., J .

Number of equations: J

15) Equation

0 = v − {uoLt (v) + αLnoLt (v) + βσEt [woL,t+1 (v)]}ψL

− {uoHt (v) + αHnoHt (v) + βσEt [woH,t+1 (v)]}ψH

becomes

0 = Et
[
LPKo(v̄i) (4uoL,t (v̄i) ,4noL,t (v̄i) ,4woL,t+1 (v̄i) ,4uoH,t (v̄i) ,4noH,t (v̄i) ,4woH,t+1 (v̄i))

]
Number of equations: J

16) Equation

0 = qt − eztKγ
t−1 (1− γ)H−γt

becomes

0 = Lq (4 ln qt,4 lnKt−1,4 lnHt,4zt)

xiii



Number of equations: 1

17) Equation

0 = −λt + θEt
{
λt+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
becomes

0 = Et [Lλ (4 lnλt,4 lnKt,4 lnλt+1,4 lnHt+1,4zt+1)]

Number of equations: 1

18) Equation

0 = (1− σ) [(1− ϕ)uyLt + 1]
1

1−ϕ ψL + (1− σ) [(1− ϕ)uyHt + 1]
1

1−ϕ ψH

+

∫
[(1− α)uoLt (v) + 1]

1
1−α ψLdµt +

∫
[(1− α)uoHt (v) + 1]

1
1−α ψHdµt

+ It − eztKγ
t−1H

1−γ
t

becomes

0 = LY

(
4uyL,t,4uyH,t, [4uoL,t (v̄j)]

J
j=1 , [4uoH,t (v̄j)]

J
j=1 ,4 ln It,4 lnKt−1,

4 lnHt,4zt,
{
4wyL,t−n,4wyH,t−n, [4woL,t−n (v̄j)]

J2
j=J1

, [4woH,t−n (v̄j)]
J4
i=J3

}N
n=0

)
Observe that this linear approximation must be done numerically using Monte Carlo simula-

tions.

Number of equations: 1

19) Equation

0 = (1− σ)
{

1− [(1− π)nyLt + 1]
1

1−π

}
ψL + (1− σ)

{
1− [(1− π)nyHt + 1]

1
1−π

}
ψH

+

∫ {
1− [(1− π)noLt (v) + 1]

1
1−π

}
ψLdµt +

∫ {
1− [(1− π)noHt (v) + 1]

1
1−π

}
ψHdµt −Ht

becomes

0 = LH

(
4nyL,t,4nyH,t, [4noL,t (v̄j)]

J
j=1 , [4noH,t (v̄j)]

J
j=1 ,4 lnHt,{

4wyL,t−j,4wyH,t−n, [4woL,t−n (v̄j)]
J2
j=J1

, [4woH,t−n (v̄j)]
J4
j=J3

}N
n=0

)
Observe that this linear approximation also must be done numerically, using Monte Carlo

simulations.

Number of equations: 1
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20) Equation

0 = Kt − (1− δ)Kt−1 − It

becomes

LI (4 lnKt,4 lnKt−1,4 ln It)

Number of equations: 1

21) Equation[
4wyL,t+1−n,4wyH,t+1−n, [4woL,t+1−n (v̄j)]

J2
j=J1

, [4woH,t+1−n (v̄j)]
J4
j=J3

]N
n=0

= 4wyL,t+1,4wyH,t+1, [4woL,t+1 (v̄j)]
J2
j=J1

, [4woH,t+1 (v̄j)]
J4
j=J3

,[
4wyL,t−n,4wyH,t−n, [4woL,t−n (v̄j)]

J2
j=J1

, [4woH,t−n (v̄j)]
J4
j=J3

]N−1

n=0

becomes

0 = Lµ

 4wyL,t+1,4wyH,t+1, [4woL,t+1 (v̄j)]
J2
j=J1

, [4woH,t+1 (v̄j)]
J4
j=J3

,[
4wyL,t−n,4wyH,t−n, [4woL,t−n (v̄j)]

J2
j=J1

, [4woH,t−n (v̄j)]
J4
j=J3

]N−1

n=0


Number of equations: (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

7.2 Classification of variables and equations

Classify the variables as follows:

x1
t =

{
4wyL,t−n,4wyH,t−n, [4woL,t−n (v̄j)]

J2
j=J1

, [4woH,t−n (v̄j)]
J4
j=J3

}N
n=0

(7.1)

x2
t−1 = {4 lnKt−1} (7.2)

y1
t+1 =

{
4wyL,t+1,4wyH,t+1, [4woL,t+1 (v̄j)]

J2
j=J1

, [4woH,t+1 (v̄j)]
J4
j=J3

}
(7.3)

y2
t =

{
4uyL,t,4uyH,t4 nyL,t,4nyH,t4 ln ξyt,4 lnλt,4 ln qt, [4 ln ηt (v̄j)]

J
j=1 , (7.4)

[4uoL,t (v̄j)]
J
j=1 , [4uoH,t (v̄j)]

J
j=1 , [4noL,t (v̄j)]

J
j=1 , [4noH,t (v̄j)]

J
j=1 ,

[4 ln ξot (v̄j)]
J
j=1 ,4 lnHt,4It

}
The following Table classifies the different equations into five types. Types 1-5 correspond to

equations (2.23)-(2.27), respectively.
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Equation # Equation name # of equations Type (1,2,3,4 or 5)

1 LuyL 1 5

2 LuyH 1 5

3 LnyL 1 5

4 LnyH 1 5

5 LwyL 1 4

6 LwyH 1 4

7 LuoL(v̄i) J 5

8 LuoH(v̄i) J 5

9 LnoL(v̄i) J 5

10 LnoH(v̄i) J 5

11 LwoL(v̄i) J2 − J1 + 1 4

12 LwoH(v̄i) J4 − J3 + 1 4

13 LICy 1 5

14 LICo(v̄i) J 5

15 LPKo(v̄i) J 5

16 Lq 1 5

17 Lλ 1 5

18 LY 1 1

19 LH 1 1

20 LI 1 3

21 Lµ (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)] 2

Total number of equations:

12 + 6J + (J2 − J1 + 1) + (J4 − J3 + 1) + (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

Total number of Type 1 equations: 2

Total number of Type 2 equations: (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

Total number of Type 3 equations: 1

Total number of Type 4 equations: 2 + (J2 − J1 + 1) + (J4 − J3 + 1)

Total number of Type 5 equations: 7 + 6J
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The following is the dimensionality of the different variables:

dim
(
x1
t−1

)
= (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

dim
(
x2
t−1

)
= 1

dim
(
y1
t

)
= 2 + (J2 − J1 + 1) + (J4 − J3 + 1)

dim
(
y2

1

)
= 9 + 6J

dim (zt) = 1

Total number of endogenous variables: (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]+12+(J2 − J1 + 1)+

(J4 − J3 + 1) + 6J (same as number of equations).

7.3 Simplified linear system

Under the classifications of the previous section, the linearized model given by equations (2.23)-

(2.28) simplifies to the following:

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt

0 = A21x
1
t+1 +B21x

1
t + C21y

1
t+1

0 = A32x
2
t +B32x

2
t−1 + C32y

2
t

0 = J42y
2
t+1 +K41y

1
t+1 +K42y

2
t

0 = Et
{
G52x

2
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

}
and the transformation given by equations (2.37)-(2.41) simplifies to:

Θ1 = ΥA−1
21 C21K

−1
41 J42S2, (7.5)

Ψ1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2

]
, (7.6)

Λ1 = −K−1
41 J42R21Θ1 −K−1

41 J42S2, (7.7)

Γ1 = −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2, (7.8)

where

Υ =
[
I − A−1

21 C21K
−1
41 J42R21

]−1
(7.9)
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