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1 Organization

Section 2 of this appendix presents additional results for the reduced form results (corresponding
to Section 2 of the paper). Section 3 discusses extrapolation (summarized in section 4.3 of the
paper). Section 4 presents additional results for the structural model of adaptation (corresponding
to Sections 3 and 4 of the paper).

2 Reduced-form Results

2.1 Summary Statistics and Average Sensitivity of Income to Temperature

Table 1 presents summary statistics for our data. Figure 1 depicts the coefficient estimates βk of
equation (1) in the text of the paper, restated here for convenience:

∆ log Yi,t = αi + δt +
K

∑
k=1

βkBink,i,t + ε i,t. (1)

The central bin (12◦C-15◦C) is omitted, providing a reference by which the impact of temperature
deviations are evaluated. The bars indicate 95% confidence intervals, constructed using double-
clustered standard errors (by county and NOAA region-year). The x-axis spans the set of temperature
bins, and the y-axis measures the estimated percentage change (log change) in per capita personal
income in response to an additional day in a given temperature bin. The first column of table 2
prints out these same parameter estimates.1

∗Federal Reserve Bank of Chicago; 230 S. LaSalle Street, Chicago IL 60604. Email: francois.gourio@chi.frb.org.
†Columbia University, Law School. 435 W 116th St, New York, NY 10027. Email: Charles.Fries@columbia.edu
1Our estimates are quite close to those of the paper by Deryugina and Hsiang (2014), even though our specification

is slightly different (in first difference rather than in level with a lagged dependent variable). Hence, we confirm their
results. Our standard errors are somewhat larger because we double cluster by county and NOAA region-year rather
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Table 3 presents some variants on this basic regression: column 2 is a weighted regression;
the estimated effects are smaller in this case. Column 3 removes the time fixed effects, leading to
larger standard errors but similar point estimates than the baseline. Column 4 shows the results if
we use the change in bin (i.e., bin minus bin of last year) to measure the temperature shock. This
leads to similar results. Columns (5) and (6) include a lag, i.e. estimate the following equation:

∆ log Yi,t = αi + δt +
K

∑
k=1

βkBink,i,t +
K

∑
k=1

γkBink,i,t−1 + ε i,t, (2)

The coefficients γk are plotted in figure 2. As can be seen, the point estimates on the lagged bins
(γk) are close to the opposite of the estimates on the current bins (βk), suggesting that the effect
of the bad weather is largely made up over the following year (but there does not appear to be
an overshoot). Finally, column 7 shows that the results are largely unchanged if we also include
controls for precipitation.

2.2 Heterogeneity in Sensitivity to Temperature

In the interest of clarity and brevity, the main body of the paper uses a single approach to document
the heterogeneity in sensitivity to temperature, namely the interaction model (equation (2) of the
paper). In this section we provide additional evidence to support our claim that there is a large
heterogeneity, and that the major factor driving this heterogeneity is climate. We also provide
more robustness analysis on the interaction models.

The first additional piece of evidence comes from simple sample splits. Columns 2 through
6 of table 2 report the estimates from equation 1 for five subsamples, defined as the quintiles of
long-run average temperature (the simple average of daily temperature over our entire sample).
The coefficients on the top two bins (days falling in the 27◦C - 30◦C and 30◦C+ range) decrease
markedly in absolute value as we go from first quintile to the fifth quintile. The same pattern holds
when we define the quintiles based on the average number of hot days rather than the average
temperature; this is shown in table 4. (This is the evidence we use to estimate the model.)

The second additional piece of evidence in favor of heterogeneity, is based on estimating a
sensitivity to hot days for each county separately from a pure time-series regression. Specifically,
we estimate:

∆ log Yi,t = αi + βi HDi,t + ε i,t, (3)

and in figure 3 we plot the estimated βi against the average annual number of hot days in the
county (in log). Of course, each coefficient βi is estimated using a single time series regression
with 36 points at most, and hence they are fairly noisy, especially when we don’t have many hot
days (the left side of the graph). But the association is remarkably strong overall. The same pattern
holds if we use “very hot days” (i.e., 30◦C+) instead of “hot days” (27◦C+); see figure 4.

than by county and year.
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Mean Std.Dev. Min p5 Median p95 Max Count

Days in Range
-15◦C or less 4.16 8.53 0.00 0.00 0.00 23.00 80.22 65537
-15◦C,-12◦C 3.45 4.94 0.00 0.00 1.00 14.00 36.00 65537
-12◦C,-9◦C 5.53 6.55 0.00 0.00 3.00 19.00 43.00 65537
-9◦C,-6◦C 8.62 8.53 0.00 0.00 6.98 24.00 59.00 65537
-6◦C,-3◦C 13.07 10.72 0.00 0.00 12.03 31.00 63.00 65537
-3◦C,0◦C 18.36 12.68 0.00 0.00 19.00 39.00 84.00 65537
0◦C,3◦C 25.26 13.91 0.00 1.00 26.00 48.00 104.00 65537
3◦C,6◦C 29.11 12.89 0.00 6.00 29.00 50.00 112.00 65537
6◦C,9◦C 31.02 11.81 0.00 15.00 30.00 50.00 117.00 65537
9◦C,12◦C 32.45 10.86 0.00 19.00 31.00 50.00 134.00 65537
12◦C,15◦C 32.63 10.95 0.00 19.95 31.00 49.00 216.41 65537
15◦C,18◦C 36.06 10.12 0.00 22.94 35.00 52.00 160.56 65537
18◦C,21◦C 38.00 11.07 0.00 21.06 38.00 55.15 134.00 65537
21◦C,24◦C 35.96 15.75 0.00 5.00 37.00 59.84 126.00 65537
24◦C,27◦C 30.48 24.32 0.00 0.00 28.00 73.00 153.00 65537
27◦C,30◦C 17.34 24.14 0.00 0.00 5.98 69.81 170.00 65537
30◦C or more 3.49 10.30 0.00 0.00 0.00 20.00 131.00 65537
In Log Differences
Personal Income P.C. 5.57 5.64 -100.83 -2.01 5.15 13.98 88.43 65537
Wages and Salaries 5.90 6.05 -103.25 -2.41 5.51 15.13 189.18 65537
Proprietor Income 5.06 26.56 -540.26 -31.24 5.45 40.26 541.10 65383
In Thousands
Population 138.99 388.09 2.00 6.00 37.00 609.00 10170.00 65537

Table 1: Summary statistics for the series used in our analysis. Source: Bureau of Economic
Analysis (B.E.A.) and U.S.-HCN.
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Figure 1: Estimated coefficients βk from equation 1 and 95% confidence intervals (double-clustered
by county and NOAA region-year).
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Figure 2: Estimated coefficients γk from equation 2 (i.e. lagged effects of temperature) and 95%
confidence intervals (double-clustered by county and NOAA region-year).
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Baseline Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
-15◦C or less 0.030 0.020 0.043 0.029 -0.157 -0.337

(0.028) (0.035) (0.032) (0.050) (0.144) (0.549)
-15◦C,-12◦C -0.010 -0.079∗∗ 0.022 0.038 0.128 -0.531

(0.021) (0.029) (0.032) (0.041) (0.074) (0.271)
-12◦C,-9◦C -0.010 -0.061∗ 0.006 0.014 0.026 0.331

(0.014) (0.027) (0.022) (0.025) (0.060) (0.184)
-9◦C,-6◦C -0.012 -0.029 -0.020 -0.020 -0.002 0.104

(0.012) (0.020) (0.019) (0.023) (0.031) (0.104)
-6◦C,-3◦C -0.012 -0.045∗ -0.016 0.003 -0.048 -0.057

(0.010) (0.020) (0.016) (0.018) (0.030) (0.059)
-3◦C,0◦C -0.006 -0.054∗∗ -0.006 0.003 0.014 -0.052∗

(0.009) (0.018) (0.015) (0.015) (0.020) (0.026)
0◦C,3◦C -0.006 -0.025 -0.008 -0.018 0.019 -0.002

(0.008) (0.021) (0.013) (0.013) (0.018) (0.017)
3◦C,6◦C -0.003 -0.008 0.008 -0.016 0.008 0.003

(0.008) (0.019) (0.015) (0.012) (0.015) (0.013)
6◦C,9◦C 0.003 -0.008 0.013 0.006 -0.010 0.001

(0.007) (0.018) (0.016) (0.013) (0.012) (0.013)
9◦C,12◦C 0.008 -0.004 0.004 0.005 0.017 0.004

(0.006) (0.018) (0.014) (0.011) (0.012) (0.010)
15◦C,18◦C 0.002 -0.001 0.030∗ -0.002 -0.005 -0.003

(0.007) (0.016) (0.014) (0.011) (0.013) (0.011)
18◦C,21◦C -0.003 -0.044∗ 0.000 0.011 0.011 0.011

(0.007) (0.018) (0.014) (0.012) (0.014) (0.011)
21◦C,24◦C -0.012 -0.025 -0.023 -0.027∗ 0.005 0.004

(0.008) (0.020) (0.013) (0.012) (0.013) (0.009)
24◦C,27◦C -0.024∗∗ -0.071∗ 0.028 -0.005 0.001 0.011

(0.009) (0.029) (0.019) (0.012) (0.014) (0.010)
27◦C,30◦C -0.041∗∗∗ -0.210∗ -0.115∗∗ -0.043∗ -0.019 -0.000

(0.010) (0.093) (0.038) (0.021) (0.015) (0.010)
30◦C or more -0.036∗∗∗ -0.271 -0.492∗∗∗ -0.252∗∗∗ 0.001 0.011

(0.011) (0.223) (0.140) (0.044) (0.019) (0.011)
Observations 65537 13133 13104 13122 13106 13072
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Coefficients and standard errors for the baseline regression (equation 1) and sub-sample
analysis by quintile of counties sorted on long-run average temperature (coldest (1) to hottest (5)).
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Baseline Pop Wt No Time FE ∆ Bins W Lags W Lags W Prcp.
-15◦C or less 0.030 0.008 0.106∗∗ -0.016 0.032 0.013 0.030

(0.028) (0.015) (0.040) (0.044) (0.030) (0.039) (0.028)
-15◦C,-12◦C -0.010 -0.011 0.037 -0.016 -0.013 -0.013 -0.010

(0.021) (0.014) (0.035) (0.025) (0.021) (0.024) (0.021)
-12◦C,-9◦C -0.010 0.001 0.021 -0.013 -0.008 -0.013 -0.009

(0.014) (0.011) (0.025) (0.019) (0.015) (0.017) (0.014)
-9◦C,-6◦C -0.012 -0.006 -0.016 -0.010 -0.005 -0.009 -0.011

(0.012) (0.009) (0.021) (0.015) (0.012) (0.014) (0.012)
-6◦C,-3◦C -0.012 -0.014 -0.009 -0.014 -0.006 -0.009 -0.012

(0.010) (0.008) (0.019) (0.014) (0.011) (0.012) (0.010)
-3◦C,0◦C -0.006 -0.003 -0.002 -0.012 -0.008 -0.001 -0.006

(0.009) (0.008) (0.018) (0.014) (0.010) (0.011) (0.009)
0◦C,3◦C -0.006 -0.006 0.001 -0.009 -0.005 -0.003 -0.007

(0.008) (0.006) (0.017) (0.012) (0.009) (0.009) (0.008)
3◦C,6◦C -0.003 -0.005 -0.012 -0.002 -0.002 -0.014 -0.003

(0.008) (0.005) (0.015) (0.011) (0.008) (0.009) (0.008)
6◦C,9◦C 0.003 -0.011∗ -0.003 0.003 0.001 -0.014∗ 0.002

(0.007) (0.005) (0.013) (0.009) (0.007) (0.007) (0.007)
9◦C,12◦C 0.008 0.000 0.015 0.007 0.007 -0.002 0.007

(0.006) (0.008) (0.010) (0.007) (0.007) (0.006) (0.006)
15◦C,18◦C 0.002 -0.008 0.011 0.003 0.001 -0.006 0.003

(0.007) (0.005) (0.011) (0.008) (0.007) (0.007) (0.007)
18◦C,21◦C -0.003 -0.006 -0.003 0.001 -0.007 0.003 -0.003

(0.007) (0.005) (0.013) (0.009) (0.007) (0.007) (0.007)
21◦C,24◦C -0.012 -0.012∗ -0.002 -0.004 -0.014 0.006 -0.012

(0.008) (0.006) (0.013) (0.009) (0.008) (0.008) (0.008)
24◦C,27◦C -0.024∗∗ -0.014∗∗ -0.007 -0.022∗ -0.028∗∗ 0.018∗ -0.024∗∗

(0.009) (0.005) (0.017) (0.010) (0.010) (0.009) (0.009)
27◦C,30◦C -0.041∗∗∗ -0.011 -0.052∗∗ -0.036∗∗ -0.047∗∗∗ 0.012 -0.042∗∗∗

(0.010) (0.007) (0.018) (0.014) (0.011) (0.010) (0.010)
30◦C or more -0.036∗∗∗ -0.004 -0.045 -0.044 -0.044∗∗∗ 0.043∗∗∗ -0.038∗∗∗

(0.011) (0.009) (0.023) (0.023) (0.012) (0.012) (0.011)
Observations 65537 65537 65537 57812 57812 57812 64493
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Coefficients and standard errors for the baseline equation 1 (column 1), and some variants:
weighted regression (column 2), no time effects (column 3), bins in first-difference (column 4),
regression including lags (columns 5-6, corresponding to equation 2), and including precipitation
controls (column 7).
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Baseline Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
-15◦C or less 0.030 0.020 0.043 0.029 -0.157 -0.337

(0.028) (0.035) (0.032) (0.050) (0.144) (0.549)
-15◦C,-12◦C -0.010 -0.079∗∗ 0.022 0.038 0.128 -0.531

(0.021) (0.029) (0.032) (0.041) (0.074) (0.271)
-12◦C,-9◦C -0.010 -0.061∗ 0.006 0.014 0.026 0.331

(0.014) (0.027) (0.022) (0.025) (0.060) (0.184)
-9◦C,-6◦C -0.012 -0.029 -0.020 -0.020 -0.002 0.104

(0.012) (0.020) (0.019) (0.023) (0.031) (0.104)
-6◦C,-3◦C -0.012 -0.045∗ -0.016 0.003 -0.048 -0.057

(0.010) (0.020) (0.016) (0.018) (0.030) (0.059)
-3◦C,0◦C -0.006 -0.054∗∗ -0.006 0.003 0.014 -0.052∗

(0.009) (0.018) (0.015) (0.015) (0.020) (0.026)
0◦C,3◦C -0.006 -0.025 -0.008 -0.018 0.019 -0.002

(0.008) (0.021) (0.013) (0.013) (0.018) (0.017)
3◦C,6◦C -0.003 -0.008 0.008 -0.016 0.008 0.003

(0.008) (0.019) (0.015) (0.012) (0.015) (0.013)
6◦C,9◦C 0.003 -0.008 0.013 0.006 -0.010 0.001

(0.007) (0.018) (0.016) (0.013) (0.012) (0.013)
9◦C,12◦C 0.008 -0.004 0.004 0.005 0.017 0.004

(0.006) (0.018) (0.014) (0.011) (0.012) (0.010)
15◦C,18◦C 0.002 -0.001 0.030∗ -0.002 -0.005 -0.003

(0.007) (0.016) (0.014) (0.011) (0.013) (0.011)
18◦C,21◦C -0.003 -0.044∗ 0.000 0.011 0.011 0.011

(0.007) (0.018) (0.014) (0.012) (0.014) (0.011)
21◦C,24◦C -0.012 -0.025 -0.023 -0.027∗ 0.005 0.004

(0.008) (0.020) (0.013) (0.012) (0.013) (0.009)
24◦C,27◦C -0.024∗∗ -0.071∗ 0.028 -0.005 0.001 0.011

(0.009) (0.029) (0.019) (0.012) (0.014) (0.010)
27◦C,30◦C -0.041∗∗∗ -0.210∗ -0.115∗∗ -0.043∗ -0.019 -0.000

(0.010) (0.093) (0.038) (0.021) (0.015) (0.010)
30◦C or more -0.036∗∗∗ -0.271 -0.492∗∗∗ -0.252∗∗∗ 0.001 0.011

(0.011) (0.223) (0.140) (0.044) (0.019) (0.011)
Observations 65537 13133 13104 13122 13106 13072
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Coefficients and standard errors for the baseline regression (equation 1) and sub-sample
analysis by quintile of counties sorted on average number of hot days per year (smallest (1) to
largest (5)).
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Figure 3: This figure plots the county-specific slope coefficient from equation 3 estimated using
hot days (27◦C+) against the log of the average number of hot days in the county. Binscatter with
20 bins.
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Figure 4: This figure plots the county-specific slope coefficient from equation 3 estimated using
very hot days (30◦C+) against the log of the average number of very hot days in the county.
Binscatter with 20 bins.
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We now turn to the interaction models. These models take the form of equation (2) of the
paper, restated here for convenience:

∆ log Yi,t = αi + δt +
K

∑
k=1

(
L

∑
l=0

βklxil

)
Bink,i,t + ε i,t. (4)

First, table 5 presents the coefficient estimates and standard errors for the model estimated in
section 2 of the paper, which results are displayed only graphically in the main body of the paper
(in figure 1 of the paper). The main takeaway from this table is that the coefficients on average
temperature are significant, in particular the quadratic term, and these coefficients are stable as we
add additional covariates. Moreover, the other covariates appear less important statistically (and
economically as shown in figure 1 of the paper), and once they are put together (e.g. in column
F), the coefficient size of the additional covariates falls, and their statistical significance shrinks:
climate variable tend to “drive out” the non-climate variables.

Second, table 6 shows the results if we focus on “very hot days” (i.e. 30◦C+) rather than merely
“hot days” (i.e. 27◦C+).2 The results are quite similar and possibly even stronger: the coefficients
on the quadratic in long-run temperature are stable across specifications, and tend to drive out the
effect of population. Figure 5 provides the depiction of marginal effects similar to figure 1 in the
paper, for this specification.

Third, in table 7 and figure 6 we change the definition of climate variable, and, rather than
using the long-run average of daily temperature, we use the (log) average number of very hot
days per year. The results are again quite similar. (Here, given the log specification, there is no
need for a quadratic or cubic specification.)

2That is, we change the definition of hot days (the top bin) that is interacted with the climate variables and/or the
other covariates.
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Figure 5: Marginal effect of a day above 30◦C on annual income, as a function of the county’s
average temperature (panels A-F) or some other characteristic (panels G-I).

Note: The figure depicts the estimated marginal effect of an additional day in the 30◦C plus bin, for different
models of equation 4, together with plus and minus two standard error bands (double-clustered by county
and by NOAA region-year). Panels A-F plot the marginal effect as a function of average temperature, while
panels G-I plot it as a function of some other county characteristics. In each case, the x-axis ranges from
the 5th percentile to the 95th percentile of the distribution of the variable. Panel A: interaction is linear
in average temperature; panel B: quadratic in average temperature; Panel C: cubic in average temperature
(S.E. omitted for readability); Panel D: quadratic in average temperature, plus average income (relative
to national); Panel E: quadratic in average temperature, plus average farming share; Panel F: quadratic
in average temperature, plus average population (in log, relative to national), average income (relative to
national), and average farming share; Panel G: quadratic in average population (in log, relative to national)
; Panel H: quadratic in average income (relative to national); Panel I: quadratic in average farming share.
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Figure 6: Marginal effect of a day above 30◦C on annual income, as a function of the county’s
average temperature (panels A-F) or some other characteristic (panels G-I).

Note: The figure depicts the estimated marginal effect of an additional day in the 30◦C plus bin, for different
models of equation 4, together with plus and minus two standard error bands (double-clustered by county
and by NOAA region-year). Panels A, J, K and L depict the marginal effect as a function of the (log) average
annual number of very hot days in the county, while panels G-I plot it as a function of some other county
characteristic. Panel A: interaction is linear in log average number of very hot days; Panel J: same as A, plus
average income (relative to national); Panel K: same as A, plus average farming share; Panel L: same as
A, plus average population (in log, relative to national), average income (relative to national), and average
farming share; Panel G: quadratic in average population (in log, relative to national) ; Panel H: quadratic in
average income (relative to national); Panel I: quadratic in average farming share.
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3 Extrapolation

We first discuss the intensive margin of adaptation, before discussing the extensive margin. The
intensive margin refers to the fact that days hotter than what we observe today may occur after
climate change, requiring us to extrapolate our results to estimate the losses. The extensive margin
refers to the fact that the number of hot days per year may become larger than the number
observed in any county today. This is relevant for the adaptation choice since adaptation is chosen
based on the expected costs of hot days - their frequency and intensity. When the number of
hot days goes above anything currently observed, we are relying on some extrapolation of the
adaptation technology.

3.1 Intensive Margin

To evaluate the concern that our estimated cost of hot days is reliable for very hot temperature,
we estimated our model using a slightly altered version of our baseline regression where, we both
extend the range of bins into the right tail of the temperature distribution (previously top coded
at 30◦C+ now top coded at 34◦C+) and narrow the range of bins for more precise identification
within this extended range (previously bins of width 3◦C, now bins of width 2◦C). Figure 7 depicts
the coefficients and 95% confidence intervals. (For the range of temperature below 24◦C (not
shown) the specification is the same as our baseline model and the coefficients are very similar.)
The green dots show the full sample results. The scarcity of very high temperature means that
standard errors become wider, but there is no acceleration of the decline of income for very high
temperature. Indeed, on the contrary the green dots suggest a slowdown. Further data exploration
reveals that these results are affected by some outliers - resource-extracting counties that had some
years with very high income growth due to high commodity prices, despite high temperature. In
orange, we report the results when we exclude counties with a large mining industry share. In that
case again, standard errors are wide, but the point estimates agree with the linear specification of
costs used in the paper - i.e., each degree above 26◦C reduces output further linearly.
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Figure 7: Intensive Margin Regression

3.2 Extensive Margin

To evaluate the concern about extrapolation at the extensive margin, figure 8 reports the distribution
of hot days across counties in the current climate and after climate change (using the RCP 6.0
scenario).

Only 0.2% of counties (that is, 6 counties) have more hot days on average after climate change
than the county with the maximum average number of hot days currently experiences. In this
sense, we do not extrapolate dramatically, even for this fairly severe scenario. However, the
increase in the extensive margin is more striking if we compare to the current 99th percentile rather
than the max. The vertical red line shows the current 99th percentile. The number of counties with
average annual hot days above this level after climate change is 8.5%, which is more significant.
Table 8 reports this statistic for different scenarios and different percentiles.
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Figure 8: Histogram of the average number of hot days each year that a county experienced
historically (top panel) and the projected histogram under the RCP 6.0 warming scenario from
Rasmussen et al. (2016) (bottom panel). The red line shows the 99th percentile of the the historical
distribution.

Scenario
p95 p99 max

RCP 26 9.9 1.9 0.0
RCP 45 21.8 6.3 0.1
RCP 60 25.6 8.5 0.2
RCP 85 47.2 22.0 1.6

Table 8: The table reports, for each RCP scenario, the share of counties (in %) that have a number of
hot days (27◦C+) above the values observed in our data for the 95th percentile, the 99th percentile,
an the maximum (across counties).
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4 Additional structural model results

In this section we first present some additional results for the structural model of adaptation
estimated in the paper, and then some variants of the model or estimation method.

First, table 9 presents statistics about climate change losses predicted by various model, similar
to Table 3 in the paper, except that all statistics are now reported weighted (by the 2015 population)
rather than unweighed. This tends to increase slightly both the median and the dispersion of
losses.

Second, table 10 presents the correlation between the losses predicted by various models: the
“uniform sensitivity” (also called “no adaptation”, assumes the same adaptation for all counties,
pre and post climate change), the “fixed adaptation” (assumes different adaptation across counties,
but same pre and post climate change), and the “endogenous adaptation” model (for which we
distinguish output and consumption, i.e. output less adaptation costs). The most striking feature
from the table is the very weak (even negative) correlation between the losses predicted by the
uniform sensitivity (“no adaptation”) model and the other ones.

Population Weighted
Median Std.Dev. p10 p25 p75 p90

Panel A: RCP 2.6
Fixed adapt. C,Y -0.94 0.53 -1.67 -1.35 -0.62 -0.41
Endogenous adapt. C -0.84 0.40 -1.38 -1.09 -0.55 -0.38
Endogenous adapt. Y 0.13 1.49 -0.60 -0.42 2.23 3.26
Panel B: RCP 4.5
Fixed adapt. C,Y -2.32 1.21 -4.13 -3.30 -1.52 -1.16
Endogenous adapt. C -1.59 0.59 -2.25 -1.96 -1.08 -0.84
Endogenous adapt. Y 0.09 1.55 -0.81 -0.61 2.22 3.25
Panel C: RCP 6.0
Fixed adapt. C,Y -2.97 1.48 -5.10 -4.03 -1.94 -1.46
Endogenous adapt. C -1.89 0.66 -2.61 -2.29 -1.27 -1.01
Endogenous adapt. Y 0.08 1.58 -0.89 -0.65 2.21 3.25
Panel D: RCP 8.5
Fixed adapt. C,Y -6.46 2.85 -10.05 -8.67 -3.87 -2.72
Endogenous adapt. C -2.79 0.82 -3.55 -3.36 -1.89 -1.53
Endogenous adapt. Y 0.04 1.62 -1.05 -0.77 2.20 3.23

Table 9: Same as Table 3 in the paper, but outcomes are now weighed by county population.

NoAdaptC Fixed Adapt C Endogenous Adapt C Endogenous Adapt Y
NoAdaptC 1.000
Fixed Adapt C 0.092 1.000
Endogenous Adapt C -0.098 0.917 1.000
Endogenous Adapt Y -0.901 0.276 0.477 1.000

Table 10: Correlation of predicted outcomes for different RCP scenarios and different assumptions
about adaptation.
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Second, figure 9 depicts the adaptation spending k before and after climate change (left panel)
and the resulting sensitivity to climate (right panel) together with the 45 degree line (in red).3

Notably, all states are above the 45 degree line on the left panel, i.e. they all increase adaptation
after climate change, and consequently they have lower sensitivity to climate change.

Third, Figure 4 in the main text depicts the predicted losses by region in RCP 6.0 scenario.
Figures 10, 11 and 12 depict the predicted losses for the other three scenarios.
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Figure 9: State Averages Before and After Climate Change: Adaptation (left); Sensitivity (right)

3We present states here rather than counties for easy readability; the state value is the simple average of the counties.
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Figure 10: Predicted consumption losses for the RCP 2.6 scenario.

The figure displays the predicted decline in consumption (income net of adaptation costs) for each
U.S. county in the RCP 2.6 scenario, for three different models. Top panel: uniform sensitivity;
middle panel: fixed adaptation; bottom panel: endogenous adaptation.
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Figure 11: Predicted consumption losses for the RCP 4.5 scenario.

The figure displays the predicted decline in consumption (income net of adaptation costs) for each
U.S. county in the RCP 4.5 scenario, for three different models. Top panel: uniform sensitivity;
middle panel: fixed adaptation; bottom panel: endogenous adaptation.
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Figure 12: Predicted consumption losses for the RCP 8.5 scenario.

The figure displays the predicted decline in consumption (income net of adaptation costs) for each
U.S. county in the RCP 8.5 scenario, for three different models. Top panel: uniform sensitivity;
middle panel: fixed adaptation; bottom panel: endogenous adaptation.
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We now turn to some robustness analysis of the results of the structural model. In particular,
we consider alternative functional forms.

Table 11 lists the models we consider. Specification (A) is our baseline model, reported in the
main text, and copied here for convenience. Specification (B) is the same model, estimated using
the identity weighting matrix rather than the inverse-variance weighting matrix used in the paper.
Specifications (C) and (D) are the baseline model, except that we change the value of the parameter
T at which losses start; recall that the function f is given by, for Tit ≥ T:

log f (Tit, ki) = b0 − b1e−k/θ(Tit − T). (5)

Specifications (E)-(G) assume quadratic, rather than linear, losses, i.e.

log f (Tit, ki) = b0 − b2e−k/θ(Tit − T)2, (6)

with different values for T: 26◦C, 24◦C, 28◦C. Specifications (H) and (I) adjust the risk aversion
coefficient to either 0 or 4 (rather than 1 (log utility) in the baseline). Specifications (J)-(P) experiment
with the adaptation technology. First, instead of the exponential form, we try an inverse form:

log f (Tit, ki) = b0 −
b1

1 + k/θ
(Tit − T), (7)

or an inverse-squared root:

log f (Tit, ki) = b0 −
b1

1 +
√

k/θ
(Tit − T), (8)

or inverse-quadratic:

log f (Tit, ki) = b0 −
b1

1 + (k/θ)2 (Tit − T). (9)

Next, we also try an exponential-quadratic:

log f (Tit, ki) = b0 − b1e−(k/θ)2
(Tit − T), (10)

or exponential-squared root:

log f (Tit, ki) = b0 − b1e−
√

k/θ(Tit − T). (11)

Last and more ambitiously, we tried two models with 3-parameters, the curvature ω, either using
the inverse formulation:

log f (Tit, ki) = b0 −
b1

1 + (k/θ)ω (Tit − T), (12)
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or the exponential formulation:

log f (Tit, ki) = b0 − b1e−(k/θ)ω

(Tit − T). (13)

Table 12 shows parameter estimates and associated standard errors for each specification.
Table 13 shows how each specification fits the targeted moments. And table 14 calculates the
losses in the RCP 6.0 scenario for each estimated model.

The main lessons we draw are as follows. First, there is no specification that fits the data much
better than our simple baseline model, as measured by the J-stat for instance, except perhaps for
specification (M) - the exponential-quadratic specification or (O) - the inverse-power specification
(with a power exponent ω close to 5). These specifications do a slightly better job at matching the
very small (and fairly precisely measured) sensitivity of the hottest quintile. Some specifications
do poorly, such as the inverse, inverse quadratic or inverse square root. Apart from these extremes,
the other specifications fit the data about equally well.

Second, the implications of these different models for the median and standard deviation of
losses are fairly similar, with some easy-to-understand exceptions. Looking at table 14, losses are
higher for the quadratic loss model, and for models with T = 28◦C. This is expected, as the costs
of very high temperature are higher with these specifications - directly in the quadratic case, and
indirectly in the case of T = 28◦C because the model then estimates a steeper slope b1 to fit the
observed sensitivities to temperature. Recall, however, that there is no clear empirical support for
the quadratic form or the high T. More importantly, the main point of the paper - that adaptation
makes a meaningful difference to this calculation - remains true even in this case: the median and
SD of losses are much lower in the endogenous adaptation case.

Third, changing risk aversion or the weighting matrix makes little difference to our results.
Fourth, the adaptation technology does affect how much the median loss is reduced due

to adaptation. For our baseline model, the difference between the median loss with fixed and
endogenous adaptation is 1.13 point. Under some technologies with more steeply decreasing
returns to adaptation, such as the exponential-quadratic function, or the inverse-power function,
the difference is only 0.54 point (resp. 0.55). These functional forms, of course, are also those that
fit the data slightly better. One reason to stick with the current functional form is parsimony, but a
possible extension is to estimate the model using a wider set of moments to choose the best-fitting
adaptation technology.

24



Source Code
Baseline A
Identity Weighting matrix B
Tbar=24C C
Tbar=28C D
Quadratic E
Quad.:Tbar=24C F
Quad.:Tbar=28C G
risk aversion 0 H
risk aversion 4 I
Adapt. cost inverse J
Adapt. cost inverse-sqrt K
Adapt. cost inverse-quad L
Adapt. cost exp-quad M
Adapt. cost exp-sqrt N
Adapt. cost inverse-power O
Adapt. cost exp-power P

Table 11: This table lists the different specifications of the structural model and provides a
reference letter for each model for the other exhibits.
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Source Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 Jstat pval
Data -0.117 -0.091 -0.065 -0.042 -0.008 . .
SE 0.075 0.048 0.020 0.009 0.009 . .
A -0.088 -0.096 -0.072 -0.035 -0.017 1.881 0.598
B -0.099 -0.109 -0.066 -0.031 -0.015 2.200 0.532
C -0.097 -0.099 -0.064 -0.036 -0.019 2.125 0.547
D -0.085 -0.106 -0.068 -0.035 -0.017 1.951 0.583
E -0.082 -0.097 -0.072 -0.035 -0.017 1.874 0.599
F -0.090 -0.099 -0.068 -0.035 -0.018 1.875 0.599
G -0.075 -0.093 -0.062 -0.035 -0.019 2.393 0.495
H -0.087 -0.096 -0.071 -0.035 -0.017 1.734 0.629
I -0.089 -0.097 -0.070 -0.036 -0.017 1.688 0.639
J -0.119 -0.076 -0.049 -0.035 -0.025 4.737 0.192
K -0.074 -0.055 -0.041 -0.033 -0.028 7.954 0.047
L -0.057 -0.062 -0.066 -0.039 -0.019 2.455 0.483
M -0.066 -0.069 -0.072 -0.042 -0.008 0.821 0.663
N -0.143 -0.095 -0.057 -0.035 -0.021 2.830 0.419
O -0.062 -0.067 -0.072 -0.042 -0.008 0.908 0.823
P -0.091 -0.098 -0.071 -0.035 -0.017 1.768 0.413

Table 13: Targeted moments with estimated standard errors together with the model moments at
the estimated parameters for the various specifications detailed above.
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Fixed Adaptation Endogenous Adaptation
Median Std. Dev Median Std. Dev

Baseline -2.93 1.49 -1.80 0.65
Identity Weighting matrix -2.80 1.55 -1.64 0.62
Tbar=24C -2.86 1.21 -2.02 0.69
Tbar=28C -4.64 2.55 -2.83 1.26
Quadratic -4.14 2.04 -2.20 0.76
Quad.:Tbar=24C -3.49 1.51 -2.09 0.66
Quad.:Tbar=28C -5.81 3.17 -4.08 1.48
risk aversion 0 -2.94 1.48 -1.81 0.66
risk aversion 4 -2.95 1.50 -1.81 0.66
Adapt. cost inverse -2.88 1.06 -2.00 0.55
Adapt. cost inverse-sqrt -2.65 0.94 -1.98 0.73
Adapt. cost inverse-quad -2.47 1.37 -1.76 0.63
Adapt. cost exp-quad -2.15 1.77 -1.61 0.84
Adapt. cost exp-sqrt -3.09 1.34 -1.90 0.50
Adapt. cost inverse-power -2.18 1.87 -1.63 0.85
Adapt. cost exp-power -2.96 1.49 -1.81 0.65

Table 14: Cross-county statistics for different structural models in the RCP 6.0 scenario. (As in
Table 2 in the text.)
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