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Abstract

We study the role of firm heterogeneity in affecting business cycle dynamics and opti-
mal stabilization policy. Firms differ in their degree of cyclicality, and hence, exposure to
aggregate risk, leading to firm-specific risk premia that influence resource allocations. The
heterogeneous firm economy can be recast in a representative firm formulation, but where
total factor productivity (TFP) is endogenous and depends on the resource allocation. The
model uncovers a novel tradeoff between the long-run level and volatility of TFP. Ineffi-
ciencies distort this tradeoff and result in either excessive volatility or depressed output,
implying a role for corrective policy. Embedding this mechanism into a workhorse New
Keynesian model, we show that allocational considerations can strengthen the incentives
for leaning against the wind, i.e., optimal policy is more strongly countercyclical than in
an observationally equivalent economy that abstracts from heterogeneity. A quantitative
exercise suggests that the losses from ignoring heterogeneity can be substantial, which stem
largely from a less productive allocation of resources and so depressed TFP and output.
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“The level of consumption risk in a society is, in part, subject to choice. When in
an economy that is subject to larger shocks, people will live with more consumption
variability and the associated loss in welfare, but they may also substitute into
risk-avoiding technologies, accepting reduced average levels of production.”

— Robert E. Lucas, Jr. “Macroeconomic Priorities”
2003 Presidential Address to the American Economic Association

1 Introduction

This paper studies the role of firm heterogeneity in affecting business cycle dynamics and
the implications for the conduct of macroeconomic stabilization policies. We develop a general
equilibrium business cycle framework featuring a cross-section of firms that differ in their degree
of cyclicality, and hence, exposure to aggregate risk, which leads to firm-specific risk premia on
capital investments that influence the allocation of resources across firms. The heterogenous
firm economy can be recast in a representative firm formulation, but where aggregate total factor
productivity (TFP), usually taken as an exogenous driving force, becomes in part endogenous
and determined by the resource allocation. We theoretically explore the implications of this
insight for equilibrium cyclical dynamics and optimal fiscal and monetary policy and perform
a simple quantitative exercise to illustrate the potential magnitude of these allocational effects.

We augment a standard general equilibrium business cycle model featuring shocks to aggre-
gate technology with (i) a cross-section of heterogeneous firms that differ in their cyclicality,
i.e., exposure to those shocks, and (ii) cyclical “wedges” in labor supply and firm-level capital
choices. These wedges are sufficiently general to capture the real effects of the policies and dis-
tortions that we consider, e.g., fiscal policy in the form of labor income taxes or wage markups
(that are determined by the conduct of monetary policy) in a version with nominal rigidities in
the form of sticky nominal wages. Throughout the paper, we assume that the aggregate capital
stock is an exogenous fixed endowment, which is a standard approach in New Keynesian models
and allows us to hone in on the new allocational considerations in our framework. Under these
assumptions, we can aggregate the heterogeneous firm economy and derive a tractable log-linear
representation of the equilibrium system (the solution is exact in the flexible price case), en-
abling us to formally prove our main results. Conditional on the properties of aggregate TFP,
the flexible price version of the economy nests a simple representative firm real business cycle
model with labor as the only input in production and the economy with nominal rigidities nests
the standard representative firm New Keynesian model (e.g., Galí (2015)).

In the first part of the paper, we study a special case of the model – namely, where exogenous
aggregate shocks are i.i.d. – that yields particularly sharp analytical characterizations of the
equilibrium relationships and welfare criterion. The framework reveals a number of key theoret-
ical results: first, the economy faces a tradeoff between the long-run (average) level of economic
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activity, e.g., TFP and output, and the degree of macroeconomic volatility. First, the smoothing
effect: in the face of aggregate risk, agents shift resources from risky, highly procyclical firms
to safer, less cyclical ones. This risk-shifting behavior endogenously reduces the economy’s
responsiveness to exogenous shocks and so lowers cyclical volatility. Second, the level effect:
shifting capital across firms in response to aggregate risk introduces a wedge between firm-level
capital investment and expected profitability, which leads to dispersion in marginal (revenue)
products of capital (MRPK) – more procyclical firms with higher exposure to aggregate risk
offer a higher risk premium on investment, which translates into a higher MRPK. Dispersion in
the MRPK at the micro-level leads to a persistent reduction in the level of achieved aggregate
productivity, i.e., TFP. Thus, the economy faces a tradeoff between cyclical volatility and the
long-run level of economic activity. The result can be understood as a form of self-insurance
– although there is no aggregate savings in the economy, insurance against business cycle risk
is attained by shifting capital to less cyclical firms which, in aggregate, endogenously reduces
the degree of cyclicality. The cost of this insurance is the foregone output caused by lower
productivity due to the mis-alignment of capital and productivity. These findings provide a
formalization of the mechanism posited by Robert E. Lucas, Jr. in his 2003 AEA Presidential
Address quoted at the beginning of this paper.

Our second main result is that in an otherwise undistorted economy, the decentralized equi-
librium is efficient – aggregate risk is driven by technological shocks alone, which are properly
priced and responded to by agents. Thus, the economy attains the socially optimal tradeoff
between volatility and long-run effects. Importantly, this is an interior solution – although a
social planner could further reduce risk premia, incentivizing risk-taking and lowering marginal
product dispersion and increasing output, doing so would raise macroeconomic volatility. In
reverse, a planner could further reduce volatility by increasing risk premia and further shifting
resources towards less cyclical firms, but doing so would lead to more marginal product disper-
sion and persistently lower TFP/output. Thus, the efficient outcome features both marginal
product dispersion and macroeconomic volatility and the resource allocation reflects the opti-
mal balance between these two considerations. However, inefficiencies in the economy distort
this tradeoff and lead to suboptimal outcomes, in particular, either a depressed long-run level
of TFP or excessively high aggregate volatility.

In our main contribution, we study the implications of these insights for the conduct of
optimal monetary and fiscal stabilization policies. Cyclical policy affects the amount of con-
sumption risk and firm-level risk premia and thus, the resource allocation. We focus primarily
on a version with a distortion to the pricing of risk (e.g., a “risk wedge” in the stochastic dis-
count factor) that leads to inefficient investment choices at the micro level (in addition to the
standard distortion induced by nominal rigidities in a sticky price economy). Because the ag-
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gregate capital stock is in fixed supply, the distortion perturbs the distribution of capital across
firms and hence the dynamics of TFP, but has no other effects on the economy. Under the as-
sumption that the distortion is countercyclical, i.e., that agents are excessively averse to bearing
risk relative to what preferences and aggregate dynamics would dictate (which we confirm in
our quantitative work), it leads to an inefficiently large risk premium.1 As a result, the capital
allocation is too conservative, i.e., capital shifts more towards safer, less cyclical firms, which
drives a larger wedge between firm-level profitability and capital and generates more dispersion
in MRPK, and ultimately, lower TFP and output. On the flip side, the volatility of TFP is
inefficiently low, since too much capital is held by firms with low degrees of cyclicality. Thus,
there is scope for stabilization policy to improve equilibrium outcomes.

To make this logic transparent, we derive a representation of the welfare criterion that
can be decomposed into four terms – first, volatility in inflation and the output gap, as in
the standard representative firm setup. Second, the level and volatility of TFP enter directly.
Intuitively, these latter two forces determine the dynamics of the natural rate of output. In the
representative firm environment, monetary policy affects the output gap, but the natural rate
of output is beyond its influence. Here, in contrast, monetary policy affects both the output
gap and the natural rate of output through the dynamics of TFP and so both terms are relevant
for understanding the welfare implications of policy.

Our third key result is that in the presence of heterogeneity, the distortion provides stronger
incentives for countercyclical policy to lean against the wind – specifically, optimal policy entails
a countercyclical output gap that raises output relative to the laissez-faire level in downturns and
reduces it in expansions (and additionally accommodates some degree of inflation volatility).
In contrast, optimal policy in a version of our model without heterogeneity – the standard
representative firm New Keynesian model – entails complete stabilization of both the output
gap and inflation. The usual arguments for stabilization are present in our environment, but
there is an additional rationale for even more aggressive countercyclical policy – such a policy
can reduce the size of the risk adjustment in firm-level input choices, which incentivizes risk-
taking on the part of firms and results in a closer alignment of the capital allocation with
firm-level productivity. The resulting redistribution of resources across firms leads to a higher
long-run level of TFP and output (at the cost of a higher level of TFP volatility). One important
corollary of this result is that stabilization policies, i.e., cyclical monetary or fiscal policy,
have persistent effects – by influencing the degree of risk, the policy-maker can affect long-run
resource allocations and so push the economy closer to/further from its long-run production

1For our main analysis, we model the distortion directly as a cyclical shock to the discount factor. However,
we also provide two detailed examples showing that such a distortion arises naturally in recent models of financial
frictions, e.g., due to limited household participation in financial markets or frictional financial intermediation.
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possibilities frontier. A second corollary is that more aggressive policy is needed to achieve any
desired level of output smoothing – when the central bank sets a countercyclical output gap to
smooth cyclical fluctuations, the resource allocation responds by shifting capital to more cyclical
firms, which endogenously increases the cyclicality of TFP and the natural rate of output and
mitigates the direct effects of the policy action.

We show that similar results hold when fiscal policy is the tool of stabilization (i.e., through
cyclical labor market taxes) in both sticky and flexible price economies. We also study the
gains from monetary-fiscal coordination, i.e., when both policies are brought to bear in tan-
dem. We further consider extensions of the framework with cost-push shocks and additional
labor market distortions. Heterogeneity affects the standard tradeoff between output gap and
inflation volatility in the presence of cost-push shocks, even when nominal rigidities are the only
distortion in the economy. Specifically, the central bank is less responsive to the inflationary
pressures from these shocks, since acting to neutralize them is more costly – such actions not
only generate inefficient output gap fluctuations (in the standard way), but also distort the
resource allocation and dynamics of TFP and hence, the natural rate of output. Under plausi-
ble assumptions (i.e., a countercyclical labor “wedge”), labor market distortions also strengthen
the incentives for countercyclical policy. Further, these effects are increasing in the extent of
heterogeneity – the labor distortion leads to inefficient cyclical fluctuations in labor supply, but
also generates an additional, inefficient source of aggregate risk that influences the resource
allocation. Aggressive countercyclical policy works to bring the economy closer to the efficient
outcome.

In the second part of the paper, we provide a numerical illustration of these findings. The key
new parameters govern the extent of firm heterogeneity and the properties of the risk distortion.
We calibrate these parameters to respectively match the dispersion in cyclicality across firms
and the Sharpe Ratio, which represents a direct measure of the price of risk in financial markets.
Using these values, we calculate the welfare losses under a number of scenarios: (i) in a first-best
case when the economy is completely undistorted. Note that this outcome is not attainable by
any of the policies we consider, but serves as a useful benchmark; (ii) when monetary policy
follows a Taylor rule with standard values of the reaction coefficients; (iii) under the optimal
monetary policy; and (iv) under optimal monetary policy in a representative firm environment,
i.e., when the central bank sets policy ignoring heterogeneity and allocational considerations.

The results of this exercise show, first, that heterogeneity can have significant effects on TFP
dynamics and welfare. For example, under a standard Taylor rule, the long-run level of TFP is
lower by almost 1.4% and its unconditional volatility by almost 30% (relative to the case of a
representative firm facing the same shocks). In contrast, in the first-best, these values are only
0.003% and 9%, respectively. These findings imply that the equilibrium allocation is inefficiently
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conservative – there is an excessive shifting of capital to less cyclical firms, which reduces TFP
volatility but causes excessively high marginal product dispersion, with detrimental effects
on long-run TFP and output. In contrast, the first-best outcome features a more productive
resource allocation with higher long-run TFP, but also higher TFP volatility. In total, including
the losses from fluctuations in inflation and the output gap, equilibrium welfare is depressed
by about 1.6% (in terms of lifetime consumption in the steady state) relative to the first-best.
The majority of this loss (85%) stems from the reduction in long-run TFP due to the distorted
resource allocation.

Second, the results suggest an important role for policy to improve on equilibrium outcomes.
For example, relative to a standard Taylor rule, the optimal monetary policy increases long-
run TFP by 0.44%. The welfare costs of increased TFP volatility from this policy are small,
about 0.02%. The total gain from implementing the optimal policy is about 0.65%, of which
roughly two-thirds is due to the effects on long-run TFP via the resource allocation. Thus,
optimal policy is able to eliminate about 40% of the gap between equilibrium and first-best
welfare (0.65% out of 1.6%). In contrast, if the central bank were to set policy to the optimal
one ignoring heterogeneity – which, in our simple environment entails complete stabilization of
inflation and the output gap – the long-run TFP loss is close to (indeed, slightly larger than)
the equilibrium one, about 1.4%, as are the losses from TFP volatility. The total welfare gain
relative to the equilibrium is about 0.4% – thus, accounting for heterogenity and allocational
effects adds a significant contribution to the potential gains from policy, about 0.25% of steady
state consumption. We further find that the results are broadly similar under fiscal policy in
a flexible price economy and that the additional gains from monetary-fiscal coordination are
small, i.e., once monetary policy is set optimally, the potential further improvements from fiscal
policy (at least of the type we consider) are modest.

Related literature. Our paper relates, first, to a burgeoning literature exploring the implica-
tions of micro-level heterogeneity for business cycle dynamics and the transmission mechanism
of monetary policy, important examples of which include Kaplan et al. (2018), Auclert (2019)
and Bilbiie (2008), among others, and for the implementation of optimal policy, e.g., Challe
et al. (2017), Acharya, Challe, and Dogra (2020), Bhandari et al. (2018), Bilbiie and Ragot
(2020), Bilbiie (2018) and Nuño et al. (2017).2 The focus of this work has in large part been on
the role of household heterogeneity due to incomplete sharing of idiosyncratic risk in determin-
ing the consumption response to policy. Kekre and Lenel (2019) study the investment channel

2A large body of work studies optimal policy in a rich variety of representative agent business cycle settings.
A textbook treatment of optimal monetary policy is in Galí (2015) and a recent review of the literature is in
Woodford (2010). There is also a long tradition on the fiscal side, e.g., Lucas Jr and Stokey (1983), Chari et al.
(1994) and Chari and Kehoe (1999).

6



of monetary policy through changes in risk premia when households differ in their degree of
risk aversion. Ottonello and Winberry (2018) examine the investment response to policy shocks
across heterogeneous firms that face financial frictions. We contribute to this line of work by
exploring the implications of a different dimension of financial market heterogeneity, namely,
the risk-return tradeoff highlighted in the asset pricing literature. Our findings point to an
important role for this form of heterogeneity in determining the conduct and efficacy of policy
– when the capital allocation can react to the policy regime, the behavior of aggregate TFP
becomes endogenous to the policy. This insight influences both the conduct of optimal policy
and the mapping from policy to observed outcomes such as the degree of cyclical volatility.

Angeletos and La’O (2020) and La’O and Tahbaz-Salehi (2020) study optimal policy in the
presence of production-side heterogeneity in the form of dispersed private information held by
firms and through input-output linkages, respectively. Our analysis contributes to this literature
by introducing a new consideration into optimal policy – when firms differ in the riskiness of
their technologies, policy can directly impact the dynamics of TFP – both its level and volatility.
In a related point, we show that heterogeneity has indirect effects that change the slope of the
standard tradeoff between output gap and inflation stabilization. An important corollary of
these results is that stabilization policies, whether fiscal or monetary, can have long run effects
by improving cross-sectional resource allocations and so shifting the position of the economy
relative to its real production possibilities frontier.

Finally, a number of recent papers have investigated the link between business cycle volatil-
ity/policy and firm-level resource allocations. David et al. (2019) connect marginal product
dispersion to firm-specific risk in a partial equilibrium setting and calculate the implications
for measures of misallocation and productivity. Kurtzman and Zeke (2020) highlight the po-
tential mis-allocative effects of central bank large-scale asset purchases of corporate securities
though changes in firm-level credit spreads. Our study builds on these results by incorporating
heterogeneous risk premia into a workhorse general equilibrium business cycle environment.
Our model uncovers a key feedback loop between the capital allocation and macroeconomic
volatility that depends crucially on its general equilibrium nature, with potentially important
implications for optimal monetary and fiscal policies.

2 The Model

In this section, we introduce our model and use a number of special cases to provide sharp
intuition and formally prove our main results.3

3All derivations and proofs are in Appendix A.
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Preferences and technology. A continuum of households indexed by j ∈ [0, 1] seek to
maximize expected lifetime utility from consumption and leisure, given by

U = (1− ρ)E−1

[
∞∑
t=0

ρt

(
C1−γ
jt

1− γ
− χ

L1+ϕ
jt

1 + ϕ

)]
,

where ρ denotes the time discount factor and all other notation is standard. Because we are
studying the effects of risk, we assume throughout that households are sufficiently risk averse,
specifically, γ > 1. Households receive labor income, income from capital, which they rent to
firms, the return on holdings of risk-free bonds and any distributed profits from firms. The
aggregate labor supply of households satisfies

TltWt = χLϕt C
γ
t , (1)

where Wt is the real wage (relative to the price of the final consumption good), Lt is aggregate
labor supply and Tlt > 0 denotes a “wedge” in the form of an explicit or implicit tax/subsidy on
labor income. This formulation is sufficiently general to capture the real effects of the policies
and nominal rigidities that we study below, which show up in the wedge Tlt, for example,
fiscal policy in the form of labor income taxes or markups (of wages over the marginal rate of
substitution between consumption and labor) in an economy with sticky nominal wages. The
smaller is Tlt, the larger the “tax” on labor income. The wedge vanishes when Tlt = 1, values
below one represent a tax and values above one a subsidy. The household’s intertemporal
marginal rate of substitution, or stochastic discount factor (SDF), is given by

Λt = ρ

(
Ct
Ct−1

)−γ
.

The final consumption good is produced by a competitive representative firm, which bun-
dles a continuum of intermediate goods, indexed by i ∈ [0, 1], using a constant elasticity of
substitution (CES) aggregator:

Yt =

(∫
Y ν
it di

) 1
ν

, (2)

where ν ∈ (0, 1) and 1
1−ν is the elasticity of substitution between intermediate goods.

Intermediate goods are produced using capital and labor according to

Yit = AitK
α1
it L

α2
it , α1 + α2 ≤ 1 ,

where Ait denotes the productivity of firm i in period t.
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Throughout the paper, we abstract from accumulation considerations and assume the total
capital stock is an exogenous and fixed endowment, i.e., Kt = K ∀ t.4 This is a common
assumption in the New Keynesian literature and allows us to hone in on the new allocational
effects in our framework. With this assumption, the economy with nominal rigidities maps
directly to the standard New Keynesian model without capital (and the flexible price version
to a simple version of the RBC framework with labor as the only factor of production).

The resource constraints in the economy are then given by5

Ct = Yt,

∫
Kitdi = Kt = K,

∫
Litdi = Lt .

Demand and revenue. Profit maximization by the final good producer yields a standard
demand function for intermediate good i:

Pit =

(
Yit
Yt

)ν−1

,

where Pit denotes the relative price of good i in terms of the final good. Revenues for interme-
diate firm i at time t are

PitYit = Y 1−ν
t Y ν

it = Y 1−ν
t AνitK

α1ν
it Lα2ν

it .

Input choices. Intermediate firms hire labor period-by-period to maximize current period
profits. The optimal choice of labor satisfies

α2ν
Y 1−ν
t Y ν

it

Lit
= Wt , (3)

which shows that firms equalize the marginal revenue product of labor. Operating profits
(revenues less labor expenses) are proportional to revenues and are equal to

Πit = PitYit −WtLit = (1− α2ν)PitYit = GY
1−ν

1−α2ν

t A
ν

1−α2ν

it W
− α2ν

1−α2ν

t Kα
it ,

where α ≡ α1ν
1−α2ν

is the effective curvature of operating profits with respect to capital and

G ≡ (1− α2ν) (α2ν)
α2ν

1−α2ν .
At the end of period t−1, firms rent capital for use in period t at rate RK

t . The firm chooses

4The value of K plays no role in the analysis.
5In the version of the model with sticky wages, the goods market resource constraint only holds to a first-

order approximation due to the costs of adjusting wages.
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capital to maximize expected discounted profits, i.e., to solve

max
Kit

Et−1 [ΛtTΛtΠit]−RK
t Kit .

Firms discount the payoffs from capital using the household’s discount factor, Λt. The term TΛt

denotes a “capital wedge” that distorts the firm’s investment choice. We also refer to TΛt as a
discount rate or risk wedge since it enters the firm’s problem identically to the SDF and hence
captures inefficiencies in the pricing of risk (e.g., we can interpret ΛtTΛt as a distorted SDF).
However, as the expression makes clear, there are a number of alternative interpretations since
the wedge captures any factors that lead to an implicit/explicit tax/subsidy on firm profits.6

For the main analysis, we do not take a stand on the precise source of the wedge, but Appendix
B provides two detailed models of financial frictions that generate a wedge in the discount
factor of exactly this form: the first stems from incomplete financial markets due to limited
household participation as in the two agent model of Debortoli and Galí (2018) and the second
from frictional financial intermediation as in Gertler and Karadi (2011). The optimal choice of
capital satisfies

Et−1

[
ΛtTΛtα

Πit

Kit

]
= RK

t , (4)

which shows that firms equalize the expected discounted marginal revenue product of capital,
defined as

MRPKit = α
Πit

Kit

.

Substituting for the form of the profit function, the capital choice can be written as

Kit =

(
Et−1

[
αGΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

] (
RK
t

)−1
) 1

1−α

. (5)

The following result shows that from a macroeconomic perspective, the heterogeneous firm
economy is observationally equivalent to a representative firm economy with endogenous TFP:7

6Together, the labor and capital wedges span the range of possible distortions to the two inputs in the model,
i.e., although additional distortions could be added (e.g., a wedge in labor demand), they would be redundant.
Similar to Chari et al. (2007), the wedges here should be interpreted as the overall distortion to the relevant
equilibrium condition. Notice also that while the labor wedge is standard in the business cycle literature and the
capital wedge resembles the standard “investment” wedge, the latter is actually quite different in that it distorts
firm-level investment choices, but not aggregate capital. Indeed, as we detail below, this wedge only shows up in
the aggregate economy through TFP (hence, would be picked up as an “efficiency” wedge in a standard business
cycle accounting exercise). This result is reminiscent of the findings in Buera and Moll (2015), who show that
the mapping between primitives and aggregate wedges can be complicated in economies with heterogeneity.

7In the sticky price economy, additional conditions are necessary to characterize the nominal side of the
economy. But, given the behavior of the markup, which shows up in Tlt, the system laid out here is sufficient
to characterize the behavior of aggregate quantities.
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Proposition 1. The aggregate variables of the heterogenous firm economy behave identically
to a representative firm economy with the following equilibrium conditions:

TltWt = χLϕt C
γ
t

Wt = α2ν
Yt
Lt

Ct = Yt

Yt = ΨtK
α1
t Lα2

t

Ψt =

(∫
A

ν
1−α2ν

it

(
Kit

Kt

)α
di

) 1−α2ν
ν

Kit

Kt

=

(
Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]) 1
1−α

∫ (
Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]) 1
1−α

di

.

The first four equations are identical to a simple version of standard business cycle models
featuring a representative firm with TFP Ψt. The fifth equation shows the key result: though
the economy can be written as if there was a representative firm, TFP of that firm is endogenous
and depends on the efficiency of the capital allocation across the underlying set of heterogeneous
firms. Specifically, TFP is equal to an average of firm-level productivities, weighted by their
relative shares of aggregate capital. The last equation shows that these shares are determined
by firm-level expected discounted profits relative to an appropriate average.

Stochastic processes. Firm productivity (in logs, henceforth denoted with lowercase) is
given by8

ait = β̂iat, at = δat−1 + εt where εt ∼ N
(
0, σ2

ε

)
, β̂i ∼ N

(
β̂, σ2

β̂

)
. (6)

Here, at is a common aggregate shock to (log) technology that follows an AR(1) process with
persistence δ and variance of the innovations σ2

ε . Crucially, firms are heterogeneous in their
sensitivity, or exposure, to movements in at, and hence their degree of cyclicality, captured by
β̂i.9 The mean beta is unity, i.e., β̂ = 1. The cross-sectional variance in beta, σ2

β̂
, captures the

8More precisely, we also include adjustments to ait to offset Jensen’s inequality terms when taking expecta-
tions both over time and across firms and so to maintain log-linearity of the economy. These adjustments insure
that when κ = 0 (agents are risk-neutral with respect to all state prices) or firms are homogeneous, endogenous
TFP always coincides with the exogenous aggregate shock. Since these terms are independent of risk and policy,
they play no other role in the analysis and can safely be ignored for purposes of exposition. We provide the full
expression for ait in our derivations in Appendix A.1.

9For simplicity, we abstract from firm-level idiosyncratic shocks. Although important for matching micro-
level investment moments, with complete markets, agents can perfectly diversify these shocks, implying that
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extent of such heterogeneity across firms.
For simplicity, the remainder of this section considers the special case when the aggregate

shock is i.i.d over time, i.e., δ = 0. Under this special case, we obtain particularly sharp
expressions for our main theoretical results. We relax this assumption for our quantitative
exercise in Section 3, but show that the same intuition from this simpler case carries through.

We assume that the wedges are constant elasticity functions of the aggregate shock, at, with
elasticities τΛa and τla, respectively:10

τΛt ≡ log TΛt = −τΛaat (7)

τlt ≡ log Tlt = τlaat .

We refer to the wedges as countercyclical when τΛa > 0, which implies a discount factor that
is inefficiently countercyclical, i.e., the discount factor falls (rises) excessively in expansions
(downturns) relative to what preferences and the dynamics of aggregate consumption would
dictate, and when τla > 0, which implies a higher “tax” on labor in downturns and thus labor
supply that is inefficiently procyclical. A countercyclical risk wedge implies that agents act
excessively averse to bearing aggregate risk. The risk wedge exogenous. In contrast, the labor
wedge will be endogenous and a function of policy, but will take the form in expression (7). We
discuss the policy maker’s problem and the determination of τla in detail below.

2.1 Micro Allocations and Macro Dynamics

In this subsection, we use a special case of this framework to sharply illustrate the link be-
tween macroeconomic dynamics and micro-level resource allocations. We make the following
simplifications: we set α2 = 0, so that capital is the only factor of production, ν = 1, so that in-
termediate goods are perfect substitutes, and lastly, we abstract from labor and capital market
distortions, i.e., Tlt = TΛt = 1 ∀ t. Under these assumptions, there are no aggregate movements
in factors of production at all – the only decision in the economy is how to allocate the fixed
capital stock – yet the economy features rich dynamics arising from the resource allocation
alone.

First, Proposition 1 implies that the aggregates in the economy are fully determined by the

they bear no risk premium. Additionally, they are independent of policy. Thus, they would play no role in the
analysis (other than adding constant terms to a number of the equilibrium equations).

10We assume throughout that optimal time-invariant subsidies are in place to offset goods and labor market
monopoly distortions. This ensures an efficient steady-state and that only the time-varying distortions described
here play a role.
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following system:

Yt = ΨtK
α
t , Ψt =

∫
Ait

(
Kit

Kt

)α
di,

Kit

Kt

=
(Et−1 [ΛtAit])

1
1−α∫

(Et−1 [ΛtAit])
1

1−α di
. (8)

We can guess and verify that in equilibrium, (log) aggregate TFP is given by

ψt ≡ log Ψt = ψ + ψaat , (9)

where ψ denotes an endogenous mean (long-run) level of TFP and ψa an endogenous loading on
the aggregate shock, at, i.e., ψa is the elasticity of endogenous TFP to the exogenous shock. Note
that ψ and ψa are not in general equal to zero and one, respectively, showing that endogenous
TFP is not the same as exogenous technology.

Given the dynamics of TFP in expression (9), the SDF is an endogenous function of at. In
particular, the unexpected shock to the discount factor is

log Λt − Et−1 log Λt = −γyt = −γψaat = −κat , (10)

where κ ≡ γψa is the (negative) elasticity of the discount factor, Λt, to the aggregate shock
At. The term κ plays a crucial role throughout our analysis: it captures a risk adjustment in
the capital allocation and indeed, is a sufficient statistic to characterize the role of risk in the
cross-sectional allocation. Specifically, using (10), we can express firms’ relative capital stocks
from expression (8) as

Kit

Kt

=

(
Et−1

[
AitA

−κ
t

]) 1
1−α∫ (

Et−1

[
AitA

−κ
t

]) 1
1−α di

.

Micro allocations. To a second order approximation, we can derive the following expression
characterizing the firm’s optimal capital choice (in logs):

kit = const.− 1

1− α
βiκσ

2
ε . (11)

The expression shows that heterogeneity in beta induces dispersion in firm-level capital choices.
Specifically, the capital choice is made up of a component that is common across firms, less a
term that reflects a firm-specific risk premium. The risk premium is linear and increasing in
beta, scaled by the risk adjustment, κ (and by the volatility of the aggregate shock, σ2

ε).
Because κ > 0, the risk adjustment causes capital to shift towards less cyclical, lower beta

firms, independent of their expected productivity (in fact, in this i.i.d. case, all firms have
the same expected productivity, yet do not choose the same level of capital). By introducing
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a wedge between the choice of capital and expected productivity, the risk adjustment induces
dispersion in the (expected) marginal revenue product of capital, which (in logs) is given by:

Emrpk ≡ Et−1 [mrpkit] = const. + βiκσ
2
ε ⇒ σ2

Emrpk =
(
κσ2

ε

)2
σ2
β̂
. (12)

Without heterogeneity in β̂i, firms equalize expected mrpk. With heterogeneity, more procycli-
cal firms are riskier and must offer a higher rate of return on capital as compensation. The
strength of this effect is determined by the risk adjustment, κ, and the degree of aggregate
volatility, σ2

ε .
Expressions (11) and (12) illustrate the two key effects of macroeconomic risk on micro-level

resource allocations: first, there is a risk-shifting effect – aggregate risk causes capital to move
towards less cyclical, low beta firms. Second, there is a “misallocation” effect – because capital
is allocated based on risk characteristics rather than solely on expected productivity, aggregate
risk induces dispersion in the mrpk. These two effects are two sides of the same coin – to
attract capital, riskier firms must offer a higher expected return on capital in the form of a
higher mrpk. Due to diminishing marginal returns to capital in production, this necessarily
entails a lower capital stock.

Macro dynamics. Using (11), we can aggregate firm-level capital choices and derive the
following expression for aggregate TFP as a function of the risk adjustment, κ:

ψt = ψ + ψaat (13)

where

ψa = 1− α

1− α
κσ2

εσ
2
β̂
≤ 1

ψ = −1

2

α

1− α
(
κσ2

ε

)2
σ2
β̂
≤ 0 .

The expression verifies our conjecture of the form of ψt and reveals two key effects of the resource
allocation on macroeconomic dynamics that work through the risk adjustment, κ:

Risk-shifting and volatility – First, there is a smoothing effect of heterogeneity. In the absence
of heterogeneity, the term ψa, which captures the elasticity of TFP to the exogenous shock,
is equal to one – in this case, exogenous technology and endogenous TFP are the same. In
contrast, with heterogeneity, ψa is strictly less than one – in the face of exogenous shocks, the
endogenous reallocation of capital away from more procyclical firms to less cyclical ones reduces
the sensitivity of TFP to those shocks. From expression (8), TFP is an average of firm-level
productivities, weighted by shares of the aggregate capital stock. As capital shifts towards less
cyclical, low beta firms, the weight of those firms in that average is diminished and the cyclical
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volatility of TFP falls. Formally, taking the derivative of ψa with respect to κ,

∂ψa
∂κ

= − α

1− α
σ2
εσ

2
β̂
< 0 , (14)

which shows that the larger the risk adjustment, the lower the responsiveness of endogenous
TFP to exogenous shocks.

Long-run productivity – The second effect of heterogeneity on TFP comes through the constant
term in TFP, ψ. By inducing dispersion in mrpk, the risk adjustment lowers the long-run, or
average, level of aggregate productivity. Indeed, comparing expressions (12) and (13) shows
that (up to a second order approximation), TFP losses due to the risk adjustment are exactly
proportional to the Emrpk dispersion it generates, with a scaling factor that depends on the
production function parameter, α (which, in this simple example, is just α1, the capital share
in production). Formally, taking the derivative of ψ with respect to κ,

∂ψ

∂κ
= − α

1− α
κ
(
σ2
ε

)2
σ2
β̂
< 0 , (15)

i.e., the larger the risk adjustment, the greater the dispersion in Emrpk and thus, the lower is
long-run productivity.

Expressions (14) and (15) reveal the key insight of this example – heterogeneity in risk
implies a tradeoff between the long-run level and cyclical volatility of aggregate TFP. A smaller
risk adjustment leads to a more productive allocation of resources, but more volatile TFP. A
larger risk adjustment leads to the opposite. The result relies on three key ingredients: the
presence of macroeconomic risk, σ2

ε > 0, the presence of heterogeneity with respect to that
risk, σ2

β̂
> 0, and that agents are averse to bearing that risk, γ > 0. The result can also be

understood as a form of self-insurance. There are no savings in the economy (bonds are in
zero net supply). Yet agents can insure against cyclical fluctuations by shifting capital to less
cyclical firms, which endogenously reduces the extent of aggregate risk. However, there is a cost
of doing so in the form of higher marginal product dispersion, which reduces the productivity
of the resource allocation and hence the long-run level of output/consumption.

Characterizing the risk adjustment. The economy features a fixed point linking the aggre-
gate dynamics to the micro allocation: from expression (11), the risk adjustment, κ, determines
micro-level allocations and by its definition in (10) is a function of ψa, the endogenous loading
of TFP on the exogenous shock – the larger is ψa, the greater the extent of aggregate risk and
hence the larger is the risk adjustment. However, from expression (13), through the resource
allocation, ψa is, in turn, a function of κ – the larger is κ, the more that capital shifts to less
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cyclical, low beta firms and the lower is the responsiveness of TFP to shocks. Solving for κ in
terms of the primitives yields:

κ =
γ

1 + γ α
1−ασ

2
εσ

2
β̂

.

The interpretation of the expression is straightforward. The numerator captures the direct
(partial equilibrium) effect of risk, which is simply the coefficient of relative risk aversion.
The denominator captures the general equilibrium effects that feed back from the resource
allocation, which smooth TFP and hence lower the extent of aggregate risk. The equilibrium
risk adjustment reflects both of these forces.

Policy. The environment reveals a tradeoff between the long-run level of TFP and its volatil-
ity. In this simple version, it is straightforward to verify that the tradeoff is efficient. The
economy exhibits both TFP volatility and marginal product dispersion, but there is no scope
for policy to improve on equilibrium outcomes. Policies that reduce the risk adjustment may be
effective in raising long-run TFP/output, but cause a shift in the allocation of capital towards
more procyclical firms, which inefficiently increases the volatility of TFP. Policies increasing
the risk adjustment have the opposite effects, smoothing aggregate TFP but reducing its long-
run level. In the absence of any inefficiencies, policies of either type distort the tradeoff and
result in sub-optimal outcomes. In the next sections, we augment this simplified setting with a
number of elements that introduce inefficiencies and study the implications for the conduct of
macroeconomic stabilization policy.

2.2 TFP and Risk in the General Setting

Proposition 2 extends the results from the previous section to the more general environment
featuring endogenous labor supply, imperfect substitutability across intermediate goods and
labor and capital market wedges (we continue to assume aggregate shocks are i.i.d.). To keep
the expressions as simple as possible, Proposition 2 works with a second order approximation,
but we provide exact expressions in Appendix A.1 (all of our welfare results use the exact
solution):

Proposition 2. To a second order approximation, the optimal choice of capital is given by11

kit = const.− 1

1− α
βiκσ

2
ε . (16)

11More precisely, there are also terms that reflect differences in the variance of shocks. Because these terms
are small and are independent of risk/policy, we suppress them here. The full approximate expression and the
exact analogs are in Appendix A.1.
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Aggregate TFP is equal to

ψt = ψ + ψaat (17)

where

ψa = 1− ωκσ2
εσ

2
β (18)

ψ = −1

2
ω
(
κσ2

ε

)2
σ2
β . (19)

The equilibrium risk adjustment is

κ ≡ κψψa + τΛa + κlτla (20)

where

κψ = (γ − 1)φψ +
ν

1− α2ν
> 0

κl = (γ − 1)φl > 0
with

φψ =
1

1− α2
1−γ
1+ϕ

φl =
α2

1 + ϕ

1

1− α2
1−γ
1+ϕ

and ω ≡ α1

1−α = α1(1−α2ν)
1−(α1+α2)ν

, βi ≡ ν
1−α2ν

β̂i, σ
2
β ≡

(
ν

1−α2ν

)2

σ2
β̂
.

Conditional on the risk adjustment, κ, expression (16) is the clear analog to (11) with
modified versions of α and β, which now reflect the presence of labor in production (α2 > 0)
and imperfect substitutability across intermediate goods (ν < 1). Similarly, equations (17)
to (19) are analogous to (13), with ω representing a composite parameter that captures both
capital and labor elasticities in production and curvature in demand.

The key difference between this more general version and the simpler one in the last sub-
section is in the definition of the risk adjustment itself. Here, the adjustment term, κ, is a
composite that measures the (negative of the) elasticity of the discounted profitability of capi-
tal to movements in at operating through discount factor effects (as was the case in the simpler
example) but now additionally through equilibrium effects on the wage, Wt, and aggregate
demand, Yt. Thus, κ captures the aggregate risk facing the firm through the joint movement
of all of these variables.

First, κψ captures the effects of at through changes in endogenous aggregate TFP, ψt. To
see this more clearly, we can write

κψ =

(
γ − 1− ν

1− α2ν
+

α2ν

1− α2ν

(
1− 1− γ

1 + ϕ

))
φψ . (21)

The term in parentheses measures the (negative) elasticity of discounted profitability to move-
ments in aggregate output, Yt. These come through movements in the (undistorted) SDF (γ),
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changes in aggregate demand and so firm-level prices (the term 1−ν
1−α2ν

), and lastly through

wages, ( α2ν
1−α2ν

(
1− 1−γ

1+ϕ

)
). Multiplying by φψ translates this elasticity with respect to output

into the elasticity with respect to TFP, ψt, and multiplying through by ψa translates the entire
term into the elasticity with respect to the exogenous shock, at.

Second, movements in at affect the discount rate wedge with elasticity τΛa, which directly
enters the risk adjustment. Finally, at moves the labor wedge with elasticity τla and the coef-
ficient κl measures the (negative) elasticity of discounted profits with respect to this wedge.12

Analogous to expression (21), Appendix A.1 provides a decomposition of κl into a component
coming via the direct effect of wages on profitability and a component coming indirectly via
changes in labor supply. In that appendix we also provide full solutions for κ, ψa and ψ as
functions of model primitives.

Optimal risk adjustment. Before turning to our analysis of monetary and fiscal policies,
we study the allocation chosen by a planner who faces – but takes as given – the distortions
τlt and τΛt. From the definitions of ψ and ψa in Proposition 2, we can see that the allocation
of capital is summarized by κ. This implies that the optimal allocation can be characterized
by allowing the planner to directly choose κ to maximize household welfare, subject to the
definitions of ψ and ψa in (18) and (19). The planner chooses the risk adjustment subject to
the responses of the private sector to its choice. The optimal κ satisfies13

∂ψ

∂κ
= (γ − 1)φψψaσ

2
ε

∂ψa
∂κ

. (22)

The optimal risk adjustment weighs the productivity gain from reducing κ against the losses
from additional TFP volatility. Substituting for the derivatives (the expressions are in Appendix
A.2) and rearranging yields the following result:

Proposition 3. The optimal risk adjustment satisfies κ∗ = κψψ
∗
a where κψ is defined in Propo-

sition 2 and ψ∗a is the value of ψa without distortions.

The proposition has two key implications. First, in the absence of distortions, i.e., τla =

τΛa = 0, the equilibrium risk adjustment corresponds to the optimal one. Thus, the equilibrium
of the undistorted economy achieves the first-best outcome. The result replicates our finding
from the simpler version in the previous subsection, and follows from the fact that in the undis-
torted economy there is no scope for policy to improve allocations – macroeconomic volatility

12Expressions (30) and (31) in Appendix A.1 show that φψ and φl are the elasticities of output with respect
to TFP and the labor wedge, respectively, and make explicit all the relevant elasticities.

13The exact form of the objective function depends on whether prices are sticky or flexible, but the result
holds in both cases.
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and marginal product dispersion co-exist and both are symptoms of the economy’s efficient
response to fundamental shocks.14

Second, the proposition shows that even in the distorted economy, the constrained optimal
risk adjustment is independent of those distortions. In other words, even though the economy
may exhibit inefficiencies on other other margins (e.g., labor supply), the optimal κ does not
further distort the allocation of capital across firms. Thus, the optimal and constrained optimal
risk adjustments are the same. In contrast, the distorted equilibrium does not achieve either the
optimal or constrained optimal allocation – from the definition of κ in Proposition 2, if the labor
and risk wedges are countercyclical, they increase the risk adjustment, causing a reallocation of
capital to less cyclical, lower beta firms. In this case, the allocation of capital is too conservative,
leading to inefficiently high marginal product dispersion and low macroeconomic volatility (the
effects are reversed if the wedges are procyclical). In the next sections, we show that in the
presence of distortions, there is a role for monetary and/or labor market fiscal policies to improve
on equilibrium outcomes, but neither is able to attain the optimal κ – intuitively, neither policy
can fully correct the allocation without further distorting the economy on other margins.

2.3 Monetary Policy

We now study the positive and normative implications of heterogeneity for macroeconomic
policy. First, we turn to our main results on monetary policy, perhaps the most standard tool
of stabilization policy. To do so, we first flesh out some necessary details regarding the nature
of nominal rigidities and the behavior of aggregate prices. In Section 2.4, we show that similar
insights go through when fiscal policy is the instrument of stabilization, even when prices are
perfectly flexible. We also study a version with monetary-fiscal coordination, i.e., where policy
makers optimally employ both tools simultaneously.

New Keynesian system. We assume nominal rigidities in the form of sticky wages. The
setup is standard and we provide only a broad overview. Households monopolistically supply
differentiated labor services, which are then bundled into the final labor input using a CES
aggregator with elasticity of substitution νw. Wage changes are subject to quadratic adjust-
ment costs a la Rotemberg (1982), given by θw

2
(Πw

t − 1)2 Yt, where Πw
t denotes gross nominal

wage inflation.15 In deviations from the steady state, the log-linearized equilibrium system is
14Taking κ directly as the policy instrument implies that we are restricting our attention to linear policies.

However, we can show that the optimal linear policy corresponds exactly to the optimal global policy (including
non-linear ones) in the undistorted economy. With distortions, the optimal policy is not exactly linear, but the
linear policy can be shown to approximate the global one.

15In the standard way, the framework also accommodates Calvo pricing frictions with a modified definition
of the slope of the Phillips Curve.
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characterized by:

wt = yt − lt (23)

wt + µt = γyt + ϕlt

yt = ψt + α2lt

πwt = ρEt
[
πwt+1

]
+ λwµt

yt = Et [yt+1]− 1

γ

(
it − Et

[
πpt+1

])
,

where ψt is as defined in Proposition 2. The first equation is the labor demand condition (3),
which relates the real wage, wt, to the marginal product of labor. The second defines (the
inverse of) the wage markup, µt, which comes from the wage-setting problem of households,
as the (negative of the) difference between the real wage and the marginal rate of substitution
between consumption and labor. A comparison to (1) shows that the labor wedge defined
earlier, τlt, now stems explicitly from the nominal wage rigidity: specifically, τlt defined above
is exactly equal to the (inverse) wage markup µt. The third equation defines the aggregate
production function, which, crucially, depends on endogenous aggregate TFP, ψt, which is a
function of the micro-level resource allocation, rather than only on the exogenous aggregate
shock. The fourth equation is the New Keynesian Wage Phillips Curve, which relates wage
inflation, πwt , to expected wage inflation and the markup. The slope of the Phillips Curve
is determined by the composite parameter λw ≡ α2νw

θw
. The last equation is the standard

consumption Euler equation, relating expected output/consumption growth to the nominal
interest rate, it, and expected price inflation, πpt+1. Note that the distortion τΛt does not show
up in any of the equilibrium equations in (23) – the only effect of the distortion comes via the
resource allocation and dynamics of TFP as shown in Proposition 2. In other words, conditional
on TFP, the macroeconomy appears efficient (though in reality, it may not be).

The conduct of policy. The wage markup is the only nominal variable that enters the
real side of the equilibrium system in (23) and so determines the impact of monetary policy
on quantity variables. Further, as we show next, the (inverse) markup, µt, is proportional
to the output gap (the difference between realized output and the “natural” level of output
in the absence of nominal rigidities, appropriately defined). Thus, it proves convenient to
abstract from an explicit representation of the transmission mechanism of monetary policy and
characterize policy in terms of the output gap/markup, µt, directly, i.e., to assume the central
bank directly controls the output gap. This is the main path that we take.16 In particular,

16This is a common approach to characterizing optimal policy, for example, Galí (2015) .
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we assume the central bank chooses a value µa that determines the cyclicality of the output
gap/markup, defined by µt = µaat.17 More aggressive countercyclical policy entails a more
negative µa, i.e., a more countercyclical output gap.

The Euler equation implies a relationship between the output gap and the nominal interest
rate. In particular, given the behavior of the output gap, µa, we can derive an associated value,
ia, that determines the cyclicality of the nominal rate, defined by it = iaat.18 Put another
way, any desired behavior of the output gap can be implemented through the central bank’s
choice of the nominal rate. We use this fact to also characterize optimal policy in terms of the
cyclicality of the nominal rate, in particular, the optimal response of the nominal rate to the
aggregate shock. More aggressive countercyclical policy entails a more positive ia, i.e., a more
procyclical nominal rate. We can also relate µa to other standard representations of monetary
policy, e.g., the coefficients in a Taylor Rule. We discuss this mapping in more detail below.

Monetary policy and TFP. The system in (23) is identical to the textbook representative
firm New Keynesian model (e.g., Galí (2015)), the only difference being the endogeneity of
TFP. However, this difference is crucial for our study and can have dramatic implications for
the conduct and effects of monetary policy. To see this, recall the results from Proposition 2, in
particular, expression (20): the output gap, which, as just discussed, is directly determined by
monetary policy and hence a choice variable for the central bank, influences the risk adjustment,
κ, with a more procyclical output gap (higher µa) increasing the risk adjustment (simply replace
τla in that expression by µa, since we have τla = µa). Intuitively, the cyclicality of the economy
– the source of aggregate risk – depends on both the cyclicality of the natural rate of output and
the cyclicality of the output gap. A procyclical output gap increases the cyclicality of realized
output and thus the amount of aggregate risk; a countercyclical output gap has the opposite
effects. Expressions (16), (18) and (19) show that these effects feed through to the resource
allocation and via this channel, to the behavior of TFP, determined by ψa and ψ.

Thus, through the risk adjustment κ, monetary policy determines the allocation of capital
and the dynamics of TFP. As an example, consider the case of more aggressive stabilization,
i.e., a lower value of µa and hence, κ. As shown in (16), there is a reallocation of capital towards
more cyclical, higher beta firms. From (18) and (19), this leads to (i) a higher value of ψa –
TFP becomes more volatile – and (ii) a higher value of ψ – the long-run level of TFP increases.
Intuitively, more aggressive stabilization by the central bank mitigates the extent of aggregate
risk by reducing the cyclicality of output. This incentivizes further risk-taking on the part of
the private sector, i.e., capital shifts toward more cyclical firms, leading to more volatile TFP,

17We abstract from issues of commitment and assume the central bank can commit to this simple rule.
18Specifically, ia = −i0 − iµµa where i0 and iµ are positive constants.

21



but also a more productive resource allocation, i.e., one that more closely aligns capital with
expected productivity at the firm-level and thus features less marginal product dispersion.

There are two key implications: first, monetary policy has permanent effects – the level of
long-run TFP (and hence output/consumption) is in part determined by the extent of stabiliza-
tion, which, by influencing the capital allocation and dispersion in mrpk, moves the economy
closer to/further from its real production possibilities frontier. This results holds despite our
use of a standard form of nominal rigidities.

Second, for any desired degree of output smoothing, more aggressive policy is needed than
implied by a representative firm model. In particular, the deviations of output from its long-run
mean (which is endogenous and depends on ψ) can be written as

yt = φψψaat + φlµt = (φψψa + φlµa) at .

Define the output gap as ỹt ≡ yt− ynt , where ynt denotes the natural level of output in a flexible
price economy (e.g., a notion of potential output). Holding the capital allocation fixed across
actual and potential output, since upon realization of the shock, capital is quasi-fixed, we can
decompose output into its natural rate and the output gap, i.e.,

yt = ynt + ỹt

where

ynt = φψψaat

ỹt = φlµaat ,

where we have used the fact that ψa is fully determined by the capital allocation and thus does
not affect the gap between yt and ynt . In a representative firm environment, ψa is simply equal
to one and outside the influence of policy. Thus, the central bank can act to smooth the output
gap through its choice of µa leaving the dynamics of the natural rate of output unchanged.
This stems directly from the fact that TFP in the representative firm setup is exogenous. Here,
in contrast, TFP, and so the natural rate of output, also depend on the actions of the central
bank. In particular, as the central bank acts to smooth the output gap though a lower µa,
it reduces the risk adjustment in the capital allocation, κ, which leads to a shifting of capital
towards more cyclical firms, increasing ψa and so the volatility of TFP and the natural rate of
output. In other words, increased risk-taking on the part of the private sector in response to the
attempted stabilization partially offsets the effects of the policy – as the central bank smooths
the output gap, the natural rate of output itself becomes more volatile. Thus, if the central
bank is targeting the overall volatility of output, a more aggressive smoothing policy is required.
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This is a form of the Lucas Critique at work – in the representative firm setup, the dynamics
of TFP are assumed to be exogenous and hence invariant to policy; in the heterogenous firm
economy, this is no longer the case and the central bank must take into account the effects of
its actions on TFP and the natural rate of output.

Optimal monetary policy. Appendix A.2 derives the following second order approximation
to the welfare loss function, expressed in terms of the equivalent consumption decline measured
as a fraction of consumption in the non-stochastic steady state:

W = −ψ +
var (ψt)

2
(γ − 1)φψ +

var (ỹt)

2

1

φl
+

var (πwt )

2

α2νw
λw

,

which expresses the loss as a function of (i) the level of TFP, (ii) the volatility of TFP, (iii)
the volatility of the output gap, and (iv) the volatility of wage inflation, all with appropriate
weights. It is straightforward to verify that the last two terms correspond exactly to the welfare
function in the textbook New Keynesian model and capture the standard losses from output
gap and inflation fluctuations, respectively, conditional on the dynamics of TFP.19 The effects
of heterogeneity enter the loss function through the first two terms, which are new to our
setting – welfare is increasing in the long-run level of TFP (the first term), and decreasing in
its volatility (the second term).20 The first term reflects the long-run productivity losses due
to marginal product dispersion. The second term reflects the negative effects of TFP volatility,
both through fluctuations in consumption/output and labor supply. Due to the presence of
heterogeneity, these two effects are endogenous, dependent on the conduct of monetary policy
and are not independent – indeed, they are both determined by the risk adjustment, κ.

Substituting for the variances,

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+ µ2

aφl
σ2
ε

2
+
α2νw
λw

(λwµa)
2 σ

2
ε

2
, (24)

which makes explicit the new role of monetary policy in the presence of heterogeneity: through
ψ and ψa, both the level and volatility of TFP are functions of policy (they both depend on κ,
which, in turn, depends on µa). In contrast, in the absence of heterogeneity, ψ = 0 and ψa = 1,
i.e., both terms are exogenous and invariant to policy and hence can be ignored for the purposes
of determining optimal policy. As above, the last two terms capture the standard losses from
output gap and inflation volatility in terms of monetary policy and model primitives.

19For example, compare these terms to the welfare function in Galí (2015), equation (26) of Chapter 6, and
note that 1

φl
= γ + ϕ+1−α2

α2
.

20We can also interpret the first two terms as capturing the level and volatility of the natural rate of output,
ynt : multiply and divide to obtain − 1

φψ
yn +

var(ynt )
2

γ−1
φψ

, where yn is the long-run mean of the natural rate.
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We first characterize optimal policy in terms of the µa that minimizes (24). Next, we show
that this policy can be implemented with a nominal interest rate rule. The optimal choice of
µa satisfies

∂ψ

∂µa
= (γ − 1)φψσ

2
εψa

∂ψa
∂µa

+ φlσ
2
εµa + α2νwσ

2
ελwµa . (25)

The central bank chooses µa so that the productivity gain from a marginal increase in stabi-
lization (decrease in µa, left-hand side) equals the marginal welfare costs from changes in (i)
the volatility of TFP, (ii) the volatility of the output gap and (iii) the volatility of inflation.
Optimal policy balances all of these considerations. Substituting for the derivatives in (25)
yields the following result:

Proposition 4. Optimal monetary policy satisfies

µ∗a = −τΛaΦΛ

where

ΦΛ =
κlΩ

φl + κ2
l Ω + α2νwλw

> 0,
∂ΦΛ

∂σ2
β

> 0

and Ω =
ωΥ(σ2

βσ
2
ε)

1+κψωΥ(σ2
βσ

2
ε)
, Υ

(
σ2
βσ

2
ε

)
=

σ2
βσ

2
ε

1+σ2
βσ

2
ε
.

To build intuition, consider first the representative firm New Keynesian model, where σ2
β = 0.

Clearly, we have µ∗a = 0: TFP is exogenous and thus outside the control of policy, optimal policy
completely stabilizes both inflation and the output gap, and the economy is at first-best. Thus,
in the standard way, the “divine coincidence” holds and the central bank faces no tradeoff in
setting policy. Note that this result holds independently of whether the risk wedge is active
or not – as noted above, this distortion only affects aggregate variables through the resource
allocation. In the absence of allocational considerations in the representative firm version, the
wedge does not change optimal policy. The result also holds in the presence of heterogeneity,
but when the risk wedge is absent (i.e., τΛa = 0), but for a different reason – in this case,
TFP is in fact endogenous, but it is efficient, and again the central bank is able to achieve the
first-best by completely stabilizing inflation and the output gap. In other words, when firms
are heterogeneous but the resource allocation is undistorted, TFP is endogenous, but there is
no role for policy in correcting the allocation or dynamics of TFP and optimal policy coincides
with the representative firm economy.

In contrast, this logic breaks down when firms are heterogeneous (σ2
β > 0) and the alloca-

tion is distorted (τΛa 6= 0). If the distortion is countercyclical, i.e., τΛa > 0 (the empirically
relevant case), it strengthens the incentives for countercyclical policy. From expression (20),
the wedge generates an inefficiently high risk adjustment, which, from (16)-(19), leads to an
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overly conservative capital allocation, an inefficiently low cyclicality of TFP and excessively high
marginal product dispersion, which ultimately, depresses the level of productivity. Thus, the
optimal response entails more aggressive countercyclical policy – specifically, a negative value
for µ∗a (countercyclical output gap) – that leans against cyclical fluctuations in labor supply to
partially offset these effects.

As we have seen, the optimal value for µ∗a is zero if the wedge is zero and there is complete
stabilization of inflation and the output gap. Thus, correcting the wedge requires the central
bank to allow some fluctuations in these latter two variables. However, the policy response to
the wedge is tempered by the presence of wage-setting frictions, which show up through νw and
λw in the denominator – the central bank accounts for the fact that using countercyclical policy
to counteract the risk distortion generates volatility in inflation and the output gap and so does
not act to fully offset the distortion (doing so would increase the losses from inflation/output
gap fluctuations).

Finally, the positive derivative of ΦΛ with respect to σ2
β shows that the optimal policy

responds to the real friction more aggressively when there is more heterogeneity – with larger
differences across firms, the distortionary effects of the wedge on the capital allocation and the
resulting impacts on the level and volatility of TFP are more costly relative to output gap and
inflation volatility. In contrast, as just discussed, in the extreme case of no heterogeneity, the
risk wedge has no effects at all and optimal policy can safely ignore it. Thus, a coherent message
emerges from these results – the presence of firm-level risk in conjunction with a countercyclical
distortion in the pricing of risk leads monetary policy to be more countercyclical and strengthens
incentives for leaning against the wind, specifically, countercyclical movements in the output
gap. The opposite holds if the distortion is procyclical.

Optimal nominal interest rate. We can use the Euler equation to derive the nominal
interest rate that implements the desired behavior of the output gap/markup, which takes the
form it = i∗aat, where

i∗a = Φi + τΛaΦ
i
Λ

where

Φi < 0,
∂Φi

∂σ2
β

> 0

Φi
Λ > 0,

∂Φi
Λ

∂σ2
β

> 0 ,

and Φi and Φi
Λ are constants defined in Appendix A.2. The result aligns closely with Proposition

4: (i) the cyclicality of the optimal nominal rate is a linear and increasing function of the risk
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wedge, so that a countercyclical wedge (τΛa > 0) leads to a more aggressive rise in the nominal
rate in response to positive technology shocks and (ii) the strength of this effect is increasing in
heterogeneity, i.e., for a given value of the wedge, more heterogeneity leads the optimal nominal
rate to be more procyclical. Indeed, from the definition of Φi

Λ in Appendix A.2, Φi
Λ is zero in

the absence of heterogeneity, in which case i∗a = Φi, which sets the nominal rate such that the
real interest rate always equals the natural interest rate. The same result clearly holds in an
economy with nominal rigidities but no additional distortion.

In Appendix A.2, we also show that µ∗a can also be implemented using standard formulations
of a Taylor Rule. In particular, we specify the rule in terms of the output gap and expected
inflation, which, in deviations takes the form21

it = φyỹt + φπEt
[
πpt+1

]
,

and derive a mapping between the policy coefficients, φy and φπ, and the markup, µa.

Additional distortions. We have also studied the effects of two additional distortions: first,
a cost-push shock, which generates further cyclical inflation dynamics and a trade-off for the
central bank even in the absence of heterogeneity. We specify this shock as a constant elasticity
function of at, i.e., ηt = ηaat, where ηa > 0 represents a procyclical shock to (wage) inflation and
ηa < 0 the opposite. Second, we add a non-policy based labor market distortion that generates
inefficient cyclicality in labor supply. In some abuse of notation, following expression (7), we
specify this distortion as τlt = τlaat, where τla > 0 represents a countercyclical distortion to
labor supply (i.e., the distortion leads labor supply to be inefficiently procyclical). We continue
to denote with µa the cyclicality of the (inverse) markup induced by the nominal rigidity.22

With these distortions, the welfare loss function is given by

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+ (τla + µa)

2 φτl
σ2
ε

2
+
α2νw
λw

(λwµa + ηa)
2 σ

2
ε

2
,

21See, e.g., Clarida et al. (2000) for empirical support for this specification. Similar results hold for other
common formulations of the rule, i.e., in terms of wage inflation, etc.

22The cost-push shock enters as an additional term in the Phillips curve. The labor distortion enters the
aggregate labor supply condition. The derivations of the welfare criterion and optimal policy follow closely those
in the baseline model in Appendix A.2.
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and optimal policy takes the form

µ∗a = −τΛaΦΛ − ηaΦη − τlaΦl (26)

where

Φl =
φτl + κ2

τl
Ω

φτl + κ2
τl

Ω + α2νwλw
> 0,

∂Φl

∂σ2
β

> 0

Φη =
α2νw

φτl + κ2
τl

Ω + α2νwλw
> 0,

∂Φη

∂σ2
β

< 0 ,

where ΦΛ and Ω are the same as in Proposition 4. Since ΦΛ is unchanged from that proposition,
we do not discuss it further here.

Because of the cost-push shock, in the standard way, the central bank faces a tradeoff
and cannot simultaneously stabilize inflation and the output gap. Stabilizing the output gap
requires setting µ∗a = 0, but this implies complete accommodation of the cost-push shock. In
reverse, stabilizing inflation requires setting µ∗a = − ηa

λw
6= 0, so cyclical policy that induces

a negative output gap in the face of inflationary pressure (e.g., when productivity is high if
ηa > 0 or when productivity is low if ηa < 0), but clearly allows for fluctuations in the output
gap. How do heterogeneity and allocational considerations change this tradeoff? Expression
(26) shows that Φη is strictly decreasing in σ2

β – in the presence of greater heterogeneity, the
central bank responds less aggressively to the inflationary pressure from the cost-push shock.
The typical cost of offsetting this shock is output gap volatility; here, there is an additional cost
– allowing µa to depart from zero to lean against the shock affects the risk adjustment, κ, and
distorts the capital allocation. For example, consider the case where τΛt = 0. Then, the capital
allocation and dynamics of TFP are efficient without the effects of policy and the impact of the
policy response to the cost-push shock on these margins is unambiguously distortionary. Thus,
heterogeneity reduces the magnitude of the optimal response to the cost-push shock and affects
the tradeoff between inflation and output gap volatility (even with no additional distortions).
The central bank must account for the fact that responding to this shock induces an inefficient
reallocation of capital across firms.

The effect of the labor distortion, captured by τla, is similar to the risk wedge: if the
distortion is countercyclical (τla > 0), it further strengthens the incentives for countercyclical
policy.23 For example, consider the extreme case with no other distortions and flexible prices,
i.e., τΛa = ηa = λw = 0. Optimal policy entails completely neutralizing the labor distortion,
i.e., µ∗a = −τla.24 The distortion generates a procyclical output gap; with no other inefficiencies,

23A large body of work dating back at least to Chari et al. (2007) documents a countercyclical labor wedge.
24Of course, with flexible prices, monetary policy cannot achieve this outcome. However, cyclical fiscal policy

can.
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optimal policy works to exactly undo it. With nominal rigidities, the optimal response is less
than one-for-one: countercyclical policy aimed to stabilize the labor distortion generates costly
inflation volatility. How does heterogeneity change this tradeoff? The positive derivative of
Φl with respect to σ2

β shows that greater heterogeneity strengthens the response of policy to
the labor distortion and allows for more inflation volatility. Intuitively, the cost of the labor
distortion is increasing in heterogeneity: with heterogeneity, the distortion not only has a direct
effect on the cyclicality of labor supply, but also leads the risk adjustment, κ, to be inefficiently
large (when the distortion is countercyclical), which distorts the allocation of capital and the
dynamics of TFP. This latter effect is larger when there are more opportunities for reallocation,
i.e., σ2

β is large. Thus, optimal policy responds more aggressively to the distortion than in the
case of a representative firm.

2.4 Fiscal Policy

Before turning to the numerical exercise, we show that the main insights go through when
cyclical fiscal policy is the tool of the policy maker, both in sticky and flexible price economies.
Although we view our main contribution as characterizing optimal monetary policy in the
presence of heterogeneity, it is important to note that the main results do not hinge on the
presence of nominal rigidities or the use of monetary policy as the instrument of stabilization.

Flexible prices. With flexible prices, the nominal side of the economy is completely disen-
tangled from real quantities and the first three equations in (23) along with the definition of
TFP in Proposition 2 fully characterize the aggregate dynamics. Here, we revert to the notation
τlt for the labor wedge, which now represents a cyclical labor income tax that is chosen by the
fiscal authority (rather than µt in (23) which denoted the labor wedge from sticky wages). The
welfare loss function takes the form25

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+ τ 2

laφl
σ2
ε

2
, (27)

which is clearly a special case of (24) when there are no nominal rigidities.
Optimal fiscal policy sets the cyclicality of the tax, τla, to minimize (27), which yields the

first order condition:
∂ψ

∂τla
= (γ − 1)φψσ

2
εψa

∂ψa
∂τla

+ φlσ
2
ετla .

Comparing to expression (25) shows that, again, the expression is a special case when there
are no nominal rigidities. The policy-maker chooses τla to optimally weigh the level of TFP

25In this flexible price, i.i.d. case, expression (27) is exact.
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(left-hand side) against its volatility and inefficient volatility in labor supply (the output gap)
induced by the tax. Similar to monetary policy, fiscal policy of this form cannot fully correct
inefficiencies in the risk adjustment – and hence, capital allocation – without distorting the
labor supply margin, and the optimal τla takes this into account. We can prove the following
result:

Proposition 5. The optimal labor market fiscal policy satisfies26

τ ∗la = −τΛaΦΛ

where

ΦΛ = (γ − 1)
ωΥ
(
σ2
βσ

2
ε

)
1 +

(
(γ − 1) + ν

1−α2ν

)
ωΥ
(
σ2
βσ

2
ε

) > 0,
∂ΦΛ

∂σ2
β

> 0 .

In the absence of distortions, the optimal policy is a laissez-faire one – the policy-maker sets
the tax to zero. This replicates the result above that the undistorted economy is efficient and
optimally weighs the level of productivity against its volatility. The capital market imperfection
distorts this tradeoff and the tax is set to partially offset this distortion. If the risk wedge is
countercyclical, i.e., τΛa > 0, it provides incentives for countercyclical tax policy (a procyclical
labor tax) – because such a wedge generates inefficient cyclical volatility, optimality entails
a procyclical labor tax that induces lower (higher) labor supply in expansions (downturns).
Notice, however, that even with flexible prices, the policy-maker cannot replicate the first-best
capital allocation – although within the set of attainable allocations, doing so would necessarily
further distort the labor supply margin.27

As was the case for monetary policy, Proposition 5 also reveals a key role for heterogeneity
in changing the incentives for stabilization – the optimal fiscal policy response to the risk wedge
is zero if there is no heterogeneity and is strictly increasing in the extent of heterogeneity. As
above, if firms are homogeneous, the distortion has no effect on the economy. As heterogeneity
increases, the distortionary impact of the wedge on the allocation grows, necessitating a more
aggressive policy response. Thus, the more heterogeneous are firms, the more policy should
lean against the wind through a procyclical tax regime.

Fiscal-monetary coordination. A last case we consider is when fiscal and monetary policy
are set optimally in tandem, i.e., there is coordination between the fiscal and monetary author-
ities. In this case, we can prove that (i) optimal monetary policy sets µa = 0, i.e., monetary

26The expression for ΦΛ here can be shown to be a special case of the one in Proposition 4 when prices are
perfectly flexible.

27Replicating the first-best capital allocation would entail setting τla such that τΛa+κlτla = 0 or τla = − 1
κl
τΛa.
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policy is the same as in the representative firm economy and completely stabilizes the markup
(and hence, the portion of the output gap that stems from wage stickiness) and inflation, and
(ii) optimal fiscal policy satisfies Proposition 5. Thus, when both fiscal and monetary policy
are jointly put to work, a natural ordering emerges: first, monetary policy is set so that the
economy replicates the flexible price outcome. Then, fiscal policy is set as it would be if prices
were indeed truly flexible. We also study this case and calculate the potential gains from such
coordination in our quantitative exercise in the next section.

3 Quantitative Exercise

In this section, we provide a numerical evaluation of the policy impacts studied in the last
section.

First, we return to the more general case of persistent aggregate shocks, i.e., we allow δ

in equation (6) to be non-zero. With this modification, the system in (23) exactly nests the
textbook New Keynesian model in, e.g., Galí (2015). All of the equilibrium equations remain
unchanged from above, with the exception of aggregate TFP. With persistence, TFP takes the
form

ψt = ψ + δat−1 + ψaεt , (28)

which is easily shown to be an ARMA(1,1). In other words, although the exogenous shock
follows an AR(1), due to heterogeneity and risk-shifting, endogenous TFP follows an altered
dynamic process. The other macroeconomic variables, such as output and labor, follow a similar
process. Because of this, optimal policy takes the form of a rule for the markup/output gap
that responds to the lagged value of aggregate technology and the current realization of the
shock to technology with different coefficients, i.e.,

µt = µa−1at−1 + µaεt

The welfare loss function is given by

W = −ψ + (γ − 1)φψψ
2
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2
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,

which is an extended version of (24) that reflects the effects of persistence. The interpretation
of each of the terms is the same as in that equation: the expression captures the losses from
(i) the level of TFP, (ii) the volatility of TFP, (iii) the volatility of the output gap and (iv) the
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volatility of inflation. Minimizing this expression with respect to µa and µa−1 yields a pair of
first order conditions that characterize optimal policy.

3.1 Calibration

We begin by assigning values to the more standard preference and production function param-
eters of our model. We assume a period length of one year and set the annual discount factor,
ρ, to 0.96 and the inverse Frisch elasticity of labor supply, ϕ, to 1. We set risk aversion, γ, to
10. Although this is somewhat high for the macro literature (and at the upper bound of what is
typically deemed the “reasonable” range, e.g., Mehra and Prescott (1985)), it is a standard value
(indeed, at the lower end) in the finance literature studying issues of premia, e.g., Bansal and
Yaron (2004), as do we. We assume constant returns to scale in production and set α1 and α2

to standard values of one-third and two-thirds, respectively. We set the substitution parameter
across intermediate goods (corresponding to firm revenue returns to scale) to ν = 0.8, which is
a common value in the literature, e.g., Atkeson and Burstein (2010).

The parameters governing the aggregate shock process are chosen to match moments in
measured aggregate TFP. Estimates of the TFP process in expression (28) imply a persistence
parameter of δ = 0.7. We calibrate the standard deviation of the shocks, σε, so that the model
replicates the standard deviation of annual TFP growth rates (approximately 0.03), which
results in a value of σε = 0.05.28 The cross-sectional standard deviation of firm exposures
to the aggregate shock, σβ̂, is chosen to match the observed dispersion in cyclicality among
Compustat firms. Specifically, we estimate time-series regressions of firm-level productivity
growth on aggregate TFP growth. We can then use the coefficient estimates and the equilibrium
processes on firm and aggregate productivity to recover measures of firm-level betas (up to an
additive constant). The cross-sectional dispersion in the estimates yields a value of σβ̂ = 3.2.29

Following, e.g., Broer et al. (2020) and Galí (2015), we set the elasticity of substitution
across labor types, νw, to 6. We then pin down the adjustment cost parameter, θw, using an
indirect inference procedure on the slope of the wage Phillips curve. Specifically, we regress
wage inflation on measures of the output gap both in the model and data, and set θw so that

28The persistence estimate is calculated using HP-filtered annual TFP constructed from data on real GDP
and aggregate capital and labor from the Bureau of Economic Analysis. Estimates of the standard deviation
differ across TFP series, e.g., the annual BEA data give about 0.025, where the series calculated by John Fernald
gives about 0.036. 0.03 is roughly the midpoint.

29Firm-level data are obtained from Compustat. We include firms with at least 40 observations (the data are
at the annual frequency) and trim the 0.5% tails of the estimates and additionally adjust for sampling error. The
estimated dispersion is somewhat smaller than that in David et al. (2019) (4.8), which is estimated using stock
market returns in conjunction with a structural model, and so is likely conservative (there are other differences
in the estimates as well, e.g., assumptions on curvature, the sample of firms studied and the frequency of the
data, among others).
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Table 1: Calibration – Summary

Parameter Description Value
Preferences
ρ Discount factor 0.96
ϕ Inverse Frisch elasticity 1
γ Risk aversion 10

Production
α1 Capital share 1/3
α2 Labor share 2/3
ν Intermediate good substitutability 0.8
δ Persistence of agg. shock 0.7
σε Std. dev. of agg. shock 0.05
σβ̂ Std. dev. of risk exposures 3.2

Wage-setting & distortions
νw Labor elasticity of substitution 6
θw Wage adjustment cost 866
τΛa Risk wedge -14.7

the estimated slope coefficients are identical.30 The procedure yields a value of θw = 866.
This implies a relatively high level of these costs, which is needed to match the flat slope of
the empirical wage Phillips curve. We assume that monetary policy in the baseline equilibrium
follows a standard Taylor rule in expected (price) inflation and the output gap (see, e.g., Clarida
et al. (2000)), given by it = 1.5Et

[
πpt+1

]
+ 0.5ỹt. Lastly, we calibrate the risk wedge, τΛa, so

that the model generates a maximum annual Sharpe Ratio equal to 0.75, which is roughly
the annualized value calculated for the S&P 500 Index in, e.g., Lo (2002) (and indeed, may
be a conservative value, since achieved Sharpe ratios on other investment strategies have been
shown to be even higher). This approach yields a significantly countercyclical wedge, τΛa =

−14.7, implying that the wedge amplifies the degree of aggregate risk. Table 1 summarizes the
parameter values.

30We use the difference between potential real GDP as computed by the BEA and realized real GDP as a
measure of the output gap. Using various (annual, HP-filtered) measures of wages from the Bureau of Labor
Statistics yields slope coefficients ranging from about 0.1 (using, e.g., average hourly earnings of production and
nonsupervisory employees) to 0.3 (using, e.g., business sector compensation per hour). We target a slope of
0.2, approximately the midpoint of this range. Note that the coefficient from this regression does not directly
map into a structural parameter, since from equation (23), inflation expectations, which are correlated with
the output gap, are in the error term. Rather, the identification is indirect and follows from matching a salient
moment from the model and data.

32



Table 2: Heterogeneity and Monetary Policy

Baseline First-Best Optimal Policy Ignoring Hetero.
(1) (2) (3) (4)

Welfare loss (%)
Total 1.796 0.193 1.155 1.403
TFP level 1.370 0.003 0.932 1.396
TFP volatility 0.008 0.190 0.025 0.008
Output gap volatility 0.100 0.000 0.172 0.000
Inflation volatility 0.318 0.000 0.026 0.000

Equilibrium statistics
∆σ(ψt) (%) -28.92 -8.59 -26.77 -29.00
σ(ỹt) 1.34 0.00 1.69 0.00
σ(πwt ) 0.28 0.00 0.08 0.00
εit,ψt 0.24 - 0.83 -0.22

3.2 Optimal Monetary Policy

Table 2 presents the equilibrium and counterfactual policy exercises. Each column displays
welfare losses (top panel) and a number of equilibrium statistics (bottom panel) under alterna-
tive policy regimes. We report the total welfare loss as well as a decomposition of the loss into
its four components: the level of TFP and the volatilities of TFP, the output gap and (wage)
inflation. We report four salient statistics of the equilibrium under each policy: the reduction
in TFP volatility relative to the case of a representative firm facing the same shocks (denoted
∆σ (ψt)), the volatilities of the output gap and inflation, and lastly, a measure of the cyclicality
of monetary policy, namely, the elasticity of the nominal interest rate to the realization of TFP
(denoted εit,ψt). Column (1) (“Baseline”) corresponds to the equilibrium in the baseline cali-
brated model; column (2) (“First-Best”) reports results from the first-best allocation; column
(3) (”Optimal Policy”) does so under the optimal monetary policy and column (4) (“Ignoring
Hetero.”) when monetary policy is set to the optimal one in the representative firm case, i.e.,
ignoring micro-level heterogeneity and allocational concerns.

The results suggest (i) firm-level heterogeneity can have sizable effects on TFP dynamics
and welfare, and (ii) accounting for this heterogeneity can have important implications for the
conduct of monetary policy through its effects on the resource allocation.

First, column (1) implies that in the baseline equilibrium – which assumes a standard for-
mulation of the Taylor rule – long-run TFP is lower by almost 1.4% (relative to a representative
firm economy facing the same exogenous shocks). At the same time, the volatility of TFP is
also lower, by about 29%. The welfare costs of depressed TFP are directly equal to the TFP
loss itself. The welfare costs of TFP volatility turn out to be relatively small. Column (2), the
first-best allocation, provides a natural benchmark for these values. In this case, TFP losses
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are extremely small, only about 0.003%. TFP is more volatile, only about 9% less so than
with a representative firm facing the same shocks. These findings imply that due to the risk
distortion, the equilibrium allocation is inefficiently conservative – there is an excessive shifting
of capital towards less cyclical firms, which reduces TFP volatility relative to the first-best,
but also causes excessively high marginal product dispersion, which depresses long-run TFP. In
contrast, the first-best allocation features a more productive allocation of capital with higher
long-run TFP, but also higher TFP volatility. In total, welfare in the baseline equilibrium is
about 1.6% lower than in the first-best. Decomposing this loss shows that the large majority
stems from the reduction in long-run TFP due to the distorted resource allocation. Of the total
1.6 percentage point loss relative to first-best(1.80% − 0.19%), about 1.37 percentage points
(1.37%-0.00%), or roughly 85%, is due to the losses in long-run TFP. Indeed, since the first-
best allocation features higher TFP volatility than the baseline equilibrium, equilibrium welfare
losses from this source are smaller than in the first-best. The remaining welfare difference is
due to changes in inflation and output gap volatility – these are modest, but non-negligible,
in the equilibrium outcome and are zero in the first-best, which by construction, is completely
undistorted.

Second, the results suggest an important role for policy to improve on equilibrium outcomes
and further, highlight the importance of accounting for heterogeneity when determining optimal
policy. Column (3) shows that relative to the Taylor rule in column (1), the optimal monetary
policy increases long-run TFP by 0.44 percentage points (1.37% − 0.93%). The central bank
achieves these gains by setting a more countercyclical policy, which reduces the risk extent of
aggregate risk and induces the private sector to take on a riskier allocation that more closely
aligns firm-level capital and productivity – for example, the elasticity of the nominal interest
rate to the realization of TFP is roughly four times larger under optimal policy than under
the Taylor rule, i.e., the optimal nominal rate is significantly more procyclical. At the same
time, there is a costly increase in TFP volatility, but this offsetting effect turns out to be small
(the standard deviation is of TFP is about 2 percentage points higher than under the Taylor
rule), as are the resulting welfare losses, which are about 0.02% higher. The total gain from
implementing the optimal policy relative to the Taylor rule is about 0.65%, of which about
two-thirds is due to the effects on long-run TFP via the resource allocation. Thus, optimal
policy eliminates about 40% of the gap between equilibrium and first-best welfare (1.80%−1.15%

1.80%−0.19%
).

However, even the optimal policy cannot achieve the first-best, since using (counter)cyclical
policy to influence the resource allocation also affects the output gap and inflation (under this
calibration, optimal policy reduces inflation volatility but increases output gap volatility relative
to the Taylor rule).

Finally, how does the presence of heterogeneity change the conduct of optimal policy? Com-
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paring columns (3) and (4) shows that if the central bank were to set policy to the optimal
one ignoring heterogeneity – which, in this simple environment entails complete stabilization
of inflation and the output gap – the gain relative to the baseline is about 0.4%, essentially
entirely due to the elimination of fluctuations in these variables. The properties of TFP change
only minimally, so that the central bank is almost entirely missing out on the gains from im-
proving the resource allocation (indeed the level of TFP under this policy is even lower than
the baseline). Thus, accounting for micro-level heterogeneity makes a significant contribution
to the potential gains from policy, about 0.25 percentage points (1.40%−1.15%) of steady state
consumption. These gains come wholly from an improved allocation and higher long-run TFP
– TFP under optimal policy is almost 0.5% higher than under the policy ignoring heterogeneity.
In reverse, the cost of this gain is somewhat higher volatility on all dimensions, with inflation
volatility being the costliest form. Again, the central bank achieves this gains through a more
aggressively countercyclical policy – the interest rate elasticity to TFP is not procyclical enough
when not accounting for heterogeneity (indeed, in this framework, since the the output gap and
inflation respond inversely to TFP, optimal policy ignoring heterogeneity entails reducing the
interest rate when TFP is high in order to stabilize these variables).

3.3 Optimal Fiscal Policy

Table 3 displays analogous results under optimal fiscal policy, in the form of a cyclical labor
market tax/subsidy captured by τla and perfectly flexible wages. Column (1) (“Baseline”)
reports results from a baseline equilibrium where we assume that there are no cyclical labor
income taxes, i.e,. τla = 0. In column (2), we show outcomes under the optimal fiscal policy
and in column (3) under the optimal policy ignoring heterogeneity.31 In this case, since the risk
wedge is the only distortion (in contrast to the environment above with the pricing friction), the
optimal fiscal policy when not accounting for heterogeneity is a laissez-faire one, i.e., τla = 0.
Thus, columns (1) and (3) coincide. The first-best allocation is the same as in Table 2 so we
do not repeat it here.

The results are qualitatively similar to those in Table 2. In the baseline equilibrium, long-
run TFP is 1.4% lower than in an equivalent representative firm economy and TFP is 29% less
volatile. Notice that these outcomes are identical to column (4) in Table 2 – the flexible price
economy with laissez-faire fiscal policy is the same as the sticky price economy with complete
stabilization of inflation and the output gap (and inactive fiscal policy). Optimal fiscal policy
works to reduce both of these effects: long run TFP increases by over 0.5% and TFP volatility
also rises, though quite modestly (to 26% less volatile than the representative firm economy).

31For purposes of comparison, we do not recalibrate the value of τΛa in Table 3 versus Table 2. However,
doing so leads to only small changes in the results.
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Table 3: Heterogeneity and Fiscal Policy

Baseline Optimal Policy Ignoring Hetero.
(1) (2) (3)

Welfare loss (%)
Total 1.403 1.123 1.403
TFP level 1.396 0.879 1.396
TFP volatility 0.008 0.028 0.008
Output gap volatility 0.000 0.215 0.000

Equilibrium statistics
∆σ(ψt) (%) -29.00 -26.40 -29.00
σ (ỹt) 0.00 1.90 0.00
τla 0.00 -4.54 0.00

In total, welfare under the optimal policy is 0.28% higher than in the baseline equilibrium. The
value of τla shows that these gains are achieved through aggressive countercyclical tax policy
(i.e., a procyclical tax): the elasticity of the tax with respect to TFP shocks is large and positive
(the negative of τla). Further, the flexible price economy gives a particularly sharp illustration
of the importance of accounting for heterogeneity when setting policy – optimal policy when
ignoring heterogeneity corresponds to the policy in the baseline equilibrium and thus, the
entirety of the welfare gains from the true optimal policy stem from addressing allocational
considerations.

Finally, we can use the results in Table 3 to gauge the benefits from monetary-fiscal coordi-
nation. Recall that in this case, monetary policy completely stabilizes the markup and thus the
portion of the output gap that stems from price stickiness and optimal fiscal policy is then set
as it would be in a flexible price economy. This is exactly the scenario in column (2) in Table
3. Thus, comparing the results in that column to column (3) in Table 2 gives the incremental
gains of monetary-fiscal coordination over monetary policy alone. It turns out that these gains
are modest, about 0.03% of steady state consumption. In other words, once monetary policy is
optimally determined accounting for heterogeneity, the scope for additional improvements from
labor market fiscal policies is small.32

32In the simple environment here, the result largely follows from our focus on labor income taxes. If the
fiscal authority had access to two distinct cyclical taxes that did not have exactly proportional effects on labor
supply and the capital allocation (e.g., a cyclical tax on firm profits), the first-best allocation could be achieved.
However, this would not be the case in a richer environment with additional distortions, such as the labor
market distortions and cost-push shocks we study in Section 2.3.
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4 Conclusion

In this paper, we have studied the implications of firm heterogeneity – specifically, differences
in cyclicality – for business cycle dynamics and optimal stabilization policy. The heterogeneous
firm economy can be recast in a representative firm formulation but where the resource alloca-
tion and hence aggregate TFP are endogenous and depend on the conduct of policy. We show
that (i) the economy faces a tradeoff between the long-run level of TFP and TFP volatility,
(ii) the tradeoff is efficient in an otherwise undistorted economy and (iii) empirically founded
assumptions on distortions in capital or labor markets lead optimal policy to be more aggres-
sively countercyclical than in an observationally equivalent representative firm model. Thus,
firm heterogeneity tends to strengthen the incentives for lean against the wind policies. A
quantitative exercise suggests that the welfare gains from implementing policies that account
for these allocational considerations can be significant.

We have deliberately kept our framework simple in order to highlight the new insights
while taking only small departures from textbook business cycle models. A fruitful, though
challenging next step would be to add additional ingredients that enable the model to match a
wider set of business cycle and micro-level moments, e.g., adjustment costs, financial frictions,
more complicated preferences, etc., and evaluate the effects of heterogeneity in a state-of-the-
art quantitative DSGE model. Of particular interest would be the implications for capital
accumulation and the dynamics of aggregate investment, as well as the inclusion of additional
distortions/shocks that have been highlighted in the literature (for example, such as those
studied qualitatively in Section 2.3). One broader lesson of our paper is that understanding
the properties of inefficiencies – and their heterogeneous effects – is crucial to reaching accurate
conclusions regarding effective macroeconomic policies.
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Appendix

A Derivations and Proofs

This appendix provides detailed derivations and proofs for the results in the body of the paper.

A.1 Equilibrium Dynamics

Proof of Proposition 1. The labor supply condition and resource constraint are directly stated
in the text. Aggregating the labor demand condition is straightforward and simply involves
rearranging and using the fact that

∫
Y ν
it di = Y ν

t .
To derive the aggregate production function and TFP, note that the labor demand condition

implies Lit
Lt

=
(
Yit
Yt

)ν
and substituting into the firm-level production function,

Yit = AitK
α1
it

((
Yit
Yt

)ν
Lt

)α2

so that
Y ν
it =

(
AitK

α1
it

(
Y −νt Lt

)α2
) ν

1−α2ν

Substituting into the final good production function (2) and rearranging yields

Yt = ΨtK
α1
t Lα2

t

where

Ψt =

(∫ (
A

ν
1−α2ν

it

(
Kit

Kt

)α)
di

) 1
1−α

To solve for relative capital, integrate firm-level capital choices in (5), impose capital market
clearing and rearrange.

Proof of Proposition 2. First, we derive expressions for Lt and Wt as a function of Yt and
distortions. We can combine the labor supply and labor demand conditions from Proposition
1 along with the final good resource constraint to obtain

Lt =

(
α2ν

χ

) 1
1+ϕ

T
1

1+ϕ

lt Y
1−γ
1+ϕ

t (29)

Wt = (α2ν)1− 1
1+ϕ χ

1
1+ϕT

− 1
1+ϕ

lt Y
1− 1−γ

1+ϕ

t
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and substituting into the production function from Proposition 1 and rearranging yields an
expression for Yt as a function of distortions and TFP only:

Yt =

((
α2ν

χ

) α2
1+ϕ

Kα1
t

) 1

1−α2
1−γ
1+ϕ

Ψ
φψ
t T φllt (30)

where φψ and φl are as defined in the text.
Using this result along with the expressions forWt in (29), and for Yt in (30) and rearranging,

we can write the expectation of the stochastic terms in the capital choice in (5) as

Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]
= ((α2ν)ϕ χ)

− 1
1+ϕ

α2ν
1−α2ν ρY γ

t−1Et−1

[
TΛtA

ν
1−α2ν

it T
1

1+ϕ
α2ν

1−α2ν

lt Y
1−ν

1−α2ν
−γ− α2ν

1−α2ν
(1− 1−γ

1+ϕ)
t

]
(31)

= ((α2ν)ϕ χ)
− 1

1+ϕ
α2ν

1−α2ν

((
α2ν

χ

) α2
1+ϕ

Kα1
t

) 1−ν
1−α2ν

−γ− α2ν
1−α2ν

(1− 1−γ
1+ϕ)

1−α2
1−γ
1+ϕ

ρY γ
t−1

× Et−1

TΛtA
ν

1−α2ν

it T

1
1+ϕ

α2ν
1−α2ν

+
α2

1+ϕ

1−ν
1−α2ν

−γ− α2ν
1−α2ν

(1− 1−γ
1+ϕ)

1−α2
1−γ
1+ϕ

lt Ψ

1−ν
1−α2ν

−γ− α2ν
1−α2ν

(1− 1−γ
1+ϕ)

1−α2
1−γ
1+ϕ

t


= ((α2ν)ϕ χ)

− 1
1+ϕ

α2ν
1−α2ν

((
α2ν

χ

) α2
1+ϕ

Kα1
t

) 1−γ
1−α2

1−γ
1+ϕ

− ν
1−α2ν

ρY γ
t−1

× Et−1

[
TΛtA

ν
1−α2ν

it T

α2
1+ϕ

1−γ
1−α2

1−γ
1+ϕ

lt Ψ

1−γ
1−α2

1−γ
1+ϕ

− ν
1−α2ν

t

]
= Const.× Et−1

[
TΛtA

ν
1−α2ν

it T−κllt Ψ
−κψ
t

]
where κψ and κl are as defined in the text and the constant term varies through time, but not
across firms.

We conjecture (and later verify) a log-linear form for aggregate productivity as a function
of the exogenous shock, i.e.,

ψt ≡ log Ψt = ψ + ψaat

and use this, along with the functional forms of the distortions, to write the capital choice in
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logs as

kit =
1

1− α
log

(
Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

])
+ const. (32)

=
1

1− α
log
(
Et−1

[
TΛtA

ν
1−α2ν

it T−κllt Ψ
−κψ
t

])
+ const.

=
1

1− α
log
(
Et−1

[
e

ν
1−α2ν

ait−(κψψa+τΛa+κlτla)at
])

+ const.

=
1

1− α
log
(
Et−1

[
e

ν
1−α2ν

ait−κat
])

+ const.

where κ is as defined in equation (20) and, again, the constant picks up terms that may vary
through time (it is constant in the i.i.d. case), but not across firms.

The text discusses the intuition behind the first two terms in κ. To gain intuition for the
third, κlτla, write

−κl =
1

1 + ϕ

α2ν

1− α2ν
+

α2

1 + ϕ

1

1− α2
1−γ
1+ϕ

(
1− ν

1− α2ν
− γ − α2ν

1− α2ν

(
1− 1− γ

1 + ϕ

))
The first term in the expression captures the direct effect of τlt on profitability through changes
in the wage, which is the product of the elasticity of profits with respect to the wage, − α2ν

1−α2ν

and the elasticity of the wage with respect to the wedge, − 1
1+ϕ

. The second term captures the
effect of the wedge on profitability through changes in output due to labor supply, which equals
the elasticity of profits to output, which is the term in parentheses, multiplied by the elasticity
of output with respect to the wedge. Multiplying through by τla translates the term into the
elasticity with respect to at.

Next, we derive the approximate solution outlined in the Proposition and then the exact
solution. First, we provide an exact expression for firm productivity.

Firm productivity. The exact expression for firm productivity is

ait = β̂iat − ξ0 − ξββ̂2
i − ξa−1δat−1 − ξa2

−1
(δat−1)2 − ξaε2

t − ξa−1,aδat−1εt (33)

We define the adjustment terms below to ensure that when κ = 0 or σ2
β̂

= 0, TFP satisfies
ψt = at. All of the adjustment terms are independent of risk and policy and so do not affect
the main results.
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Approximate solution. Following a standard aggregation approach (see, e.g. David and
Venkateswaran (2019)), we can derive aggregate output as

Yt =

(∫
A

ν
1−(α1+α2)ν

it MRPK
− α1ν

1−(α1+α2)ν

it di

) 1−α2ν
ν

(∫
A

ν
1−(α1+α2)ν

it MRPK
− 1−α2ν

1−(α1+α2)ν

it di

)α1
Kα1
t Lα2

t

= ΨtK
α1
t Lα2

t

and taking logs,

ψt =
1− α2ν

ν
log

(∫
A

ν
1−(α1+α2)ν

it MRPK
− α1ν

1−(α1+α2)ν

it di

)
− α1 log

(∫
A

ν
1−(α1+α2)ν

it MRPK
− 1−α2ν

1−(α1+α2)ν

it di

)
A second order approximation yields

ψt = at +
ν

1− (α1 + α2) ν

σ2
at

2
− α1 (1− α2ν)

1− (α1 + α2) ν

σ2
mrpkt

2
(34)

where at and σ2
at are the mean and cross-sectional variance of of ait, respectively, and σ2

mrpkt
is

the cross-sectional variance of mrpkit.
Next, to derive expressions for kit and σ2

mrpkt
, we take a second order approximation to the

expectational term in (32) around the means of ait and at, which yields

Et−1

[
A

ν
1−α2ν

it A−κt

]
≈ e

ν
1−α2ν

ai−κa+
(

ν
1−α2ν

)2 vart−1(ait)
2

+κ2 vart−1(at)

2
−κ ν

1−α2ν
cov(ait,at)

= e

(
ν

1−α2ν

)2 β̂2
i σ

2
ε+ξ2avar(ε2t)

2
+κ2 σ

2
ε
2
−κ ν

1−α2ν
β̂iσ

2
ε

where the second line uses the functional form in (33) (here, we set ξ0 = ξβ = 0) and the special
case in Proposition 2 of i.i.d. shocks. Substituting,

kit =
1− α2ν

1− (α1 + α2) ν

(
β̂2
i

(
ν

1− α2ν

)2
σ2
ε

2
− κ ν

1− α2ν
β̂iσ

2
ε

)
+ const.

≈ const.− 1− α2ν

1− (α1 + α2) ν
κ

ν

1− α2ν
β̂iσ

2
ε

= const.− 1

1− α
βiκσ

2
ε
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where the second line suppresses the β̂2
i terms that stem from differences in the variance of

shocks. This is expression (16).
Next,

mrpkit ≈
ν

1− α2ν
ait −

1− (α1 + α2) ν

1− α2ν
kit + const.

= β̂i

(
ν

1− α2ν
at + κ

ν

1− α2ν
σ2
ε

)
+ const.

and the cross-sectional variance is

σ2
mrpkt =

(
ν

1− α2ν
at + κ

ν

1− α2ν
σ2
ε

)2

σ2
β̂

=

(
ν

1− α2ν
at

)2

σ2
β̂

+ 2

(
ν

1− α2ν

)2

κσ2
εσ

2
β̂
at +

(
ν

1− α2ν
κσ2

ε

)2

σ2
β̂

and letting ξa = ν
1−α2ν

σ2
β̂

2
and substituting into (34), we obtain

ψt = at

(
1− α1 (1− α2ν)

1− (α1 + α2) ν

(
ν

1− α2ν

)2

κσ2
εσ

2
β̂

)
− α1 (1− α2ν)

1− (α1 + α2) ν

(
ν

1− α2ν

)2 (
κσ2

ε

)2
σ2
β̂

2

or
ψt = ψ + ψaat

where, using the definitions of β, σ2
β, α, ω and κ,

ψa = 1− ωκσ2
εσ

2
β

= 1− ω (κψψa + τΛa + κlτla)σ
2
εσ

2
β

=
1− (τΛa + κlτla)ωσ

2
εσ

2
β

1 + κψωσ2
εσ

2
β

and

ψ = −ω
(
κσ2

ε

)2 σ
2
β

2

= −ω
(
(κψψa + τΛa + κlτla)σ

2
ε

)2 σ
2
β

2

= −ω
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κψ + τΛa + κlτla

1 + κψωσ2
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2
β
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σ2
ε

)2
σ2
β

2
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and
κ =

κψ + τΛa + κlτla
1 + κψωσ2

εσ
2
β

which are equations (17)-(19) in Proposition 2 and the full solutions.

Exact solution. For our welfare results, we work with an exact solution rather than the
more transparent approximation. We also generalize the result to the non-i.i.d. case, which
applies to the quantitative analysis in Section 3. The i.i.d. case is nested when δ = 0. With
appropriate assumptions on the correction terms in (33) we can obtain just such a solution.

Substituting (32) into the expression for relative capital in Proposition 1 and then into the
expression for TFP, we obtain:

Ψt =

∫ (Ait (Et−1

[
A

ν
1−α2ν

it A−κt

])α1
1−α2ν

1−(α1+α2)ν

) ν
1−α2ν

di


1−α2ν
ν

(∫ (
Et−1

[
A

ν
1−α2ν

it A−κt

]) 1−α2ν
1−(α1+α2)ν

di

)α1

To explicitly evaluate the time-series expectation and the cross-sectional integrals, we make
use of the fact that for a normal random variable x ∼ N (x̄, σ2

x) where 1 − 2bσ2
x > 0, the

properties of Gaussian integrals imply

E
[
eax+bx2

]
=

1√
1− 2bσ2

x

e
ax̄+a2

2 σ2
x+bx̄2

1−2bσ2
x (35)
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Defining the terms in equation (33) as

ξ0 = −α1

2
log
(
1 + σ2

βσ
2
ε

)
− α1

(
ν

1− α2ν

)2
σ2
ε

2

ξβ = α1

(
ν

1−α2ν

)2
σ2
ε

2

1 + σ2
βσ

2
ε

ξa−1 = −
ασ2

βσ
2
ε

1− α + σ2
βσ

2
ε

ξa2
−1

=
ν

1− α2ν
(1− α)

(
1 + σ2

βσ
2
ε

1− α + σ2
βσ

2
ε

)2
σ2
β̂

2

ξa =
ν

1− α2ν

σ2
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2

ξa−1,a =
ν

1− α2ν

1 + σ2
βσ

2
ε

1− α + σ2
βσ

2
ε

σ2
β̂

and repeatedly applying result (35), some lengthy but relatively straightforward algebra yields

ψt = ψ + δat−1 + ψaεt

where

ψa = 1− ωκΥ
(
σ2
βσ

2
ε

)
(36)

ψ = ω
ν

1− α2ν
κσ2

εΥ
(
σ2
βσ

2
ε

)
− α1

(
1

1−ακσ
2
ε

1 + σ2
βσ

2
ε

)2 (
1− α + σ2

βσ
2
ε

) σ2
β

2
(37)

and Υ
(
σ2
βσ

2
ε

)
=

σ2
βσ

2
ε

1+σ2
βσ

2
ε
. Finally, substitute for κ into the expression for ψa to obtain:

ψa =
1− (τΛa + κlτla)ωΥ

(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

)
and

κ =
κψ + τΛa + κlτla

1 + κψωΥ
(
σ2
βσ

2
ε

)
which are the exact analogs to the approximate solution.
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A.2 Welfare and Optimal Policy

Welfare criterion. A second order approximation to the utility function yields

W ≡ U− U
UCC

= (1− ρ)E−1

∞∑
t=0

(
ct − α2lt + (1− γ)

c2
t

2
− α2 (1 + ϕ)

l2t
2

)

where we have also assumed the optimal time-invariant production subsidy, 1
ν
, is in place.

To evaluate the square terms, we use the following first order expressions:

ct = φψψt + φlµt

=
(
φψδ + φlµa−1

)
at−1 + (φψψa + φlµa) εt

lt =
1− γ
1 + ϕ

ct +
1

1 + ϕ
µt

=

(
1− γ
1 + ϕ

φψδ +
1

1 + ϕ
φψµa−1

)
at−1 +

(
1− γ
1 + ϕ

φψψa +
1

1 + ϕ
φψµa

)
εt

from which we can solve

E−1

[∑
ρtc2

t

]
=

(φψψa + φlµa)
2 σ2

ε

1− ρ
+
ρ
(
φψδ + φlµa−1
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σ2
ε
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E−1

[∑
ρtl2t

]
=

(
1−γ
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)2
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ε
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+
ρ
(

1−γ
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1+ϕ
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)2

σ2
ε

(1− ρ) (1− ρδ2)

To evaluate the linear terms, we use the following second order approximation to the resource
constraint

ct = yt −
θw
2

(πwt )2

where the second term captures the losses from wage adjustment costs. Substituting,

ct = ψt + α2lt −
θw
2

(πwt )2

so that

ct − α2lt = ψt −
θw
2

(πwt )2

= ψt −
1

2

α2νw
λw

(πwt )2

and

E−1 [ct − α2lt] = ψ − α2νw
λw

E−1

[
(πwt )2]
2
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To solve for πwt , we use the Phillips Curve. Conjecture that

πwt = ζwa−1
at−1 + ζwa εt

Then,
ζwa−1

at−1 + ζwa εt = ρζwa−1
(δat−1 + εt) + λw

(
µa−1at−1 + µaεt

)
and the method of undetermined coefficients yields

ζwa−1
=

λwµa−1

1− ρδ

ζwa =
ρλwµa−1

1− ρδ
+ λwµa

Thus,

πwt =
λwµa−1

1− ρδ
at−1 +

(
ρλwµa−1

1− ρδ
+ λwµa

)
εt

and

E−1

[∑
ρt (πwt )2

]
=

(
ρλwµa−1

1−ρδ + λwµa

)2

σ2
ε

1− ρ
+

ρ
(
λwµa−1

1−ρδ

)2

σ2
ε

(1− ρ) (1− ρδ2)

Finally, substituting back into welfare function and suppressing terms that are independent
of policy:

W = ψ − (γ − 1)φψψ
2
a

σ2
ε

2
−
(
µ2
a +

ρ

1− ρδ2
µ2
a−1

)
φl
σ2
ε

2
(38)

− α2νw
λw

((
ρλwµa−1

1− ρδ
+ λwµa

)2

− ρ

1− ρδ2

(
λwµa−1

1− ρδ

)2
)
σ2
ε

2

The negative of the expression is the welfare loss function in Section 3 and in the i.i.d. case
where δ = µa−1 = 0 in expression (24).

Proof of Proposition 3. To derive (22) the planner chooses κ to maximize (38), taking all else
as given. To derive the optimal κ, note that from (36) and (37), the derivatives of ψt with
respect to κ are

∂ψa
∂κ

= −ωΥ
(
σ2
βσ

2
ε

)
∂ψ

∂κ
= ω

ν

1− α2ν
σ2
εΥ
(
σ2
βσ

2
ε

)
− α1κ

(
1

1−ασ
2
ε

1 + σ2
βσ

2
ε

)2 (
1− α + σ2

βσ
2
ε

)
σ2
β
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Substituting these expressions and equation (36) into the first order condition (22) and simpli-
fying yields the optimal κ:

κ∗ =
κψ

1 + κψωΥ
(
σ2
βσ

2
ε

)
which satisfies

κ∗ = ψ∗aκψ

where ψ∗a denotes the value of ψa at κ∗.

Proof of Proposition 4. The optimal policy in the general model is a pair µa−1 , µa that maxi-
mizes (38), accounting for the effects on ψ and ψa. The first order conditions give

0 =
∂ψ

∂µa
− α2νw

(
ρλwµa−1

1− ρδ
+ λwµa

)
σ2
ε + (1− γ)φψσ

2
εψa

∂ψa
∂µa
− φlµaσ2

ε

0 = −α2νw

((
ρλwµa−1

1− ρδ
+ λwµa

)
ρ

1− ρδ
+

ρ

1− ρδ2

λwµa−1

1− ρδ
1

1− ρδ

)
σ2
ε −

ρ

1− ρδ2
φlµa−1σ

2
ε

Substituting for the derivatives and rearranging, we can obtain the following matrix equation
representation:

Aµ = B

where
µ =

[
µa−1 µa

]′
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and the elements of A and B are:

A11 =
ρ

1− ρδ2
φl +

α2νwρλw

(1− ρδ)2

(
ρ+

1

1− ρδ2

)
A12 =

α2νwρλw
1− ρδ

B11 = 0

A21 =
α2νwρλwσ

2
ε

1− ρδ

A22 = α1

(
κl

1 + κψωΥ
(
σ2
βσ

2
ε

))2( 1
1−ασ

2
ε

1 + σ2
βσ

2
ε

)2 (
1− α + σ2

βσ
2
ε

)
σ2
β

+ α2νwλwσ
2
ε + φlσ

2
ε − (1− γ)φψσ

2
ε

(
κlωΥ

(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

))2

B21 = κl
ω ν

1−α2ν
σ2
εΥ
(
σ2
βσ

2
ε

)
− α1

κψ+τΛa
1−κψωΥ

( 1
1−ασ

2
ε

1+σ2
βσ

2
ε

)2 (
1− α + σ2

βσ
2
ε

)
σ2
β

1 + κψωΥ
(
σ2
βσ

2
ε

)
− (1− γ)φψσ

2
ε

(
1− ωΥ

(
σ2
βσ

2
ε

) κψ + τΛa

1 + κψωΥ

)
κlωΥ

(
σ2
βσ

2
ε

)
1 + κψωΥ

The first order condition in the i.i.d. case where δ = µa−1 = 0 yields expression (25) and
rearranging yields the result in the proposition.

Optimal nominal interest rate. The Euler equation is

yt = −1

γ

(
it − Et

[
πpt+1

])
+ Et [yt+1]

In the i.i.d. case, we have

πwt = λwµaεt

= ζwwεt

yt = (φψψa + φlµa) εt

= yaεt

wt =

(
1− 1− γ

1 + ϕ

)
yt −

1

1 + ϕ
µt
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and by definition,

πpt+1 = wt − wt+1 + πwt+1

=

((
1− 1− γ

1 + ϕ

)
ya −

1

1 + ϕ
µa

)
εt +

(
−
(

1− 1− γ
1 + ϕ

)
+

1

1 + ϕ
µa + ζwa

)
εt+1

so
Et
[
πpt+1

]
=

((
1− 1− γ

1 + ϕ

)
ya −

1

1 + ϕ
µa

)
εt

and substituting into the Euler equation:

it =

((
1− 1− γ

1 + ϕ

)
ya −

1

1 + ϕ
µa − γya

)
εt

=

(
(1− γ)ϕ

1 + ϕ
φψψa −

1− α2 (1− γ)

1 + ϕ
φψµa

)
εt

= iaεt

where

ia =
(1− γ)ϕ

1 + ϕ
φψ

1− τΛaωΥ
(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

) +

(
(1− γ)ϕ

1 + ϕ

κlωΥ
(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

) − 1− α2 (1− γ)

1 + ϕ

)
φψµa

Substituting for the optimal µa, we obtain an expression

ia = Φi + τΛaΦ
i
Λ

as in the main text, where the constants satisfy the properties discussed there.

Taylor Rule. The optimal policy can also be implemented with standard formulations of a
Taylor Rule. We specify the rule as

it = φyỹt + φπEt
[
πpt+1

]
In the general (non-i.i.d. case) we have

yt =
(
δφψ + φlµa−1

)
at−1 + (φψψa + φlµa) εt

= ya−1at−1 + yaεt

ỹt = φlµt

= φl
(
µa−1at−1 + µaεt

)
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Following similar steps as above, we can solve for expected price inflation as

Et
[
πpt+1

]
= ζpa−1

at−1 + ζpaεt

where

ζpa−1
=

(
1− 1− γ

1 + ϕ

)
(1− δ) ya−1 −

1− δ
1 + ϕ

µa−1 + δζwa−1

ζpa =

(
1− 1− γ

1 + ϕ

)(
ya − ya−1

)
− 1

1 + ϕ

(
µa − µa−1

)
+ ζwa−1

and so

Et
[
πpt+1

]
=

{(
1− 1− γ

1 + ϕ

)
(1− δ)

(
φψδ + φlµa−1

)
− 1− δ

1 + ϕ
µa−1 + δ

λwµa−1

1− ρδ

}
at−1

+

{(
1− 1− γ

1 + ϕ

)(
φψ (ψa − δ) + φl

(
µa − µa−1

))
− 1

1 + ϕ

(
µa − µa−1

)
+
λwµa−1

1− ρδ

}
εt

Substituting into the Taylor Rule, along with the definition of ψa:

it =

{
φπ

(
1− 1− γ

1 + ϕ

)
(1− δ) δφψ

+ µa

(((
1− 1− γ

1 + ϕ

)
φl −

1

1 + ϕ

)
(1− δ)φπ +

δλw
1− ρδ

φπ + φlφy

)}
at−1

+

{
φπ

(
1− 1− γ

1 + ϕ

)
φψ

1− τΛaωΥ
(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

) − φπ (1− 1− γ
1 + ϕ

)
φψδ

− µa−1

(((
1− 1− γ

1 + ϕ

)
φl −

1

1 + ϕ

)
φπ −

λw
1− ρδ

φπ

)
+ µa

(((
1− 1− γ

1 + ϕ

)
φl −

1

1 + ϕ

)
φπ +

(
1− 1− γ

1 + ϕ

)
φψ

κlωΥ
(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

)φπ + φlφy

)}
εt

Following a similar approach as above, the Euler equation gives a second representation of
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the nominal rate:

it =

{
(1− γ)ϕ

1 + ϕ
(1− δ) δφψ +

(
δλw

1− ρδ
− (1− α2 (1− γ))φψ

1− δ
1 + ϕ

)
µa−1

}
at−1

+

{
(1− γ)ϕ

1 + ϕ
φψ

(
1− τΛaωΥ

(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

) − δ)

+

(
(1− γ)ϕ

1 + ϕ

κlωΥ
(
σ2
βσ

2
ε

)
1 + κψωΥ

(
σ2
βσ

2
ε

) − 1− α2 (1− γ)

1 + ϕ

)
φψµa

+

(
1− α2 (1− γ)

1 + ϕ
φψ +

λw
1− ρδ

)
µa−1

}
εt

Equating coefficients, we obtain an equation of the form

A

[
µa−1

µa

]
= B

where the elements of the matrices A and B are function of the Taylor Rule coefficients. Thus,
there is a one-to-one mapping between the pairs φy, φπ and µa−1 , µa so that optimal policy can
be implemented with an appropriate Taylor Rule of this form. To see this another way, note
that the mapping can be inverted to derive an equation of the form

C

[
φπ

φy

]
= D

which shows explicitly that any pair µa−1 , µa can be implemented with the appropriate choice
of φy, φπ. Note that in the i.i.d. case, µa−1 = 0 and so there are two Taylor Rule coefficients
to set one policy parameter. Thus, the mapping from a particular policy to these coefficients
is not unique, i.e., there are many combinations of the coefficients that implement the same
policy.

B Discount Rate Wedges and Financial Frictions

This appendix provides two detailed examples of financial frictions that lead to a discount rate,
or risk wedge as described in the main analysis. The first is based on a simplified version of the
framework in Debortoli and Galí (2018), which features limited asset market participation in
conjunction with shocks to goods price markups. The second shows that such a wedge arises
naturally in recent models of frictional financial intermediation a la Gertler and Karadi (2011).
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B.1 Limited Asset Market Participation

The setup follows closely the two agent New Keynesian (TANK) model developed in Debortoli
and Galí (2018). There are two types of households of time invariant measures θ and 1 − θ,
respectively. The first type – “constrained” households – do not participate in financial markets
and simply consume their labor income in each period. The second type – “unconstrained”
– hold all capital and equity shares in firms. Under Rotemberg wage setting frictions, wages
are common across households. We assume that employment is uniformly distributed across
households.

Because only unconstrained households own capital, the relevant SDF for pricing capital
returns is given by ΛU

t = ρ
(

CUt
CUt−1

)−γ
, where CU

t denotes the average consumption of an uncon-
strained household. By definition, aggregate consumption is the sum of consumption across
constrained and unconstrained households:

Ct = θCK
T + (1− θ)CU

T

Define Gt =
CUt −CKt
CUt

as the gap between the average consumption of unconstrained and con-
strained households. We can rewrite this as

Ct = CU
t (1− θGt)

and log-linearizing and rearranging yields an expression for unconstrained consumption as a
function of aggregate consumption and the consumption gap

cUt = ct +
θ

1− θG
gt (39)

where G denotes the consumption gap in the non-stochastic steady state.
Next, we can also write the gap as a function of the ratio of profits to labor income:

Gt = 1− CK
t

CU
t

=
Πt
WtLt

1− θ + Πt
WtLt

Firms face a common, but time-varying shock to their price markup, T pt , when making labor
decisions.33 Though not necessary, it simplifies the algebra slightly to assume that the markup
follows a random walk (in logs), where the innovation is a linear function of the exogenous

33More generally, the results go through when T pt captures any wedge that leads to a time-varying labor
share. For concreteness, we use the example of a time-varying price markup.
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aggregate shock, i.e.,
τ pt ≡ log T pt = τ pt−1 + τ paεt

Firm choose labor to satisfy
max
Lit

PitYit − T pt WtLit

and first-order conditions, aggregating and rearranging yields

Πt

WtLt
=

Yt
WtLt

− 1 =
1

α2ν
T pt − 1

Use this expression to rewrite the consumption gap as

Gt =
1
α2ν

T pt − 1
1
α2ν

T pt − θ

and log-linearizing,

gt = Θτ pt

where

Θ =
1
α2ν

(1− θ)(
1
α2ν
− θ
)(

1
α2ν
− 1
) > 0

Substituting into (39) gives an expression for unconstrained consumption as a function of ag-
gregate consumption and the markup shock:

cUt = ct +
θ

1− θG
Θτ pt

From here, we obtain an expression for the relevant SDF

λUt ≡ log ΛU
t = λt + τΛt

where

λt = −γ (yt − yt−1)

τΛt = −τΛaεt

τΛa =
θ

1− θG
γΘτ pa

It is straightforward to see that the “undistorted” SDF, λt, takes exactly the same form as in
the main text, and τΛt takes exactly the form of the risk wedge. Thus, incomplete markets in
the form of limited participation in conjunction with cyclical price markup shocks lead to a risk
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wedge and distorted SDF precisely of the forms assumed in the text. Note that τΛa > 0 so long
as τ pa > 0, which is the case when the price markup shock is procyclical, i.e., when the profit
share increases in expansions.

B.2 Frictional Financial Intermediation

The setup is a simplified version of that in, e.g., Gertler and Karadi (2011). A continuum of
identical financial intermediaries own the equity shares of firms. Intermediaries borrow from
households at the risk-free rate in order to provide this funding to firms. The balance sheet of
the representative intermediary is given by∫

QitSitdi = Nt +Dt (40)

Intermediary assets consist of the total market value of its ownership claims on firms, where
Qit and Sit denote the price and quantity of claims on firm i. Intermediary liabilities consist of
deposits, Dt, and equity, or net worth, Nt. Net worth is equal to the gross return on assets less
costs of borrowing:

Nt =

∫
Rs
itQit−1Sit−1di−RtDt−1 (41)

The intermediary has an exogenous net dividend payout rate of 1− σ. It acts to maximize the
expected discounted stream of dividends payed out to households,

Vt = Et [Λt+1 ((1− σ)Nt+1 + σVt+1)] (42)

Due to a moral hazard/costly enforcement problem, intermediaries face collateral constraints
that limit their ability to obtain deposits. Specifically, the intermediary can divert a fraction θ
of its assets, which leads to the the following incentive constraint that limits the intermediary’s
collateral:

Vt ≥ θ

∫
QitSitdi (43)

The intermediary chooses its holdings of firms’ securities, Sit, to maximize (42) subject to (40),
(41) and (43).

Assume that the collateral constraint binds. We can use the first order conditions of the
intermediary’s problem and the form of the value function to obtain

Et
[
Λt+1TΛt+1

(
Rs
it+1 −Rt+1

)]
= θ

λt
1 + λt

, ∀ i, t
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where λt is the Lagrange multiplier on the collateral constraint and

TΛt = 1− σ + σ
∂Vt
∂Nt

= 1− σ + σ
Vt
Nt

Thus, the relevant SDF for pricing assets takes exactly the form as in the main text and is
equal to the household SDF, Λt, multiplied by a term, TΛt, that captures the shadow marginal
value of net worth to financial intermediaries, which, in this simple setup, is the intermediary
leverage ratio. Log-linearizing this latter term gives a functional form for the wedge analogous
to the one assumed in the text.34

34More precisely, there will also be terms that depend on lagged state variables in addition to εt. Because
these terms are known at time t− 1 and are common across firms, they do not affect the capital allocation and
hence play no role in the main analysis.
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