Incompatible Browser
Looks like this browser isn't supported. We recommend you use Chrome, Firefox, or Safari instead.
X
  • Print
  • Email

Working Paper, No. 2021-11, August 2021 Crossref
Robust Bayesian Analysis for Econometrics

We review the literature on robust Bayesian analysis as a tool for global sensitivity analysis and for statistical decision-making under ambiguity. We discuss the methods proposed in the literature, including the different ways of constructing the set of priors that are the key input of the robust Bayesian analysis. We consider both a general set-up for Bayesian statistical decisions and inference and the special case of set-identified structural models. We provide new results that can be used to derive and compute the set of posterior moments for sensitivity analysis and to compute the optimal statistical decision under multiple priors. The paper ends with a self-contained discussion of three different approaches to robust Bayesian inference for set-identified structural vector autoregressions, including details about numerical implementation and an empirical illustration.


Working papers are not edited, and all opinions and errors are the responsibility of the author(s). The views expressed do not necessarily reflect the views of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Having trouble accessing something on this page? Please send us an email and we will get back to you as quickly as we can.

Federal Reserve Bank of Chicago, 230 South LaSalle Street, Chicago, Illinois 60604-1413, USA. Tel. (312) 322-5322

Copyright © 2021. All rights reserved.

Please review our Privacy Policy | Legal Notices