• Print
  • Email

Working Paper, No. 2023-32, August 2023 Crossref
Forecasted Treatment Effects

We consider estimation and inference about the effects of a policy in the absence of a control group. We obtain unbiased estimators of individual (heterogeneous) treatment effects and a consistent and asymptotically normal estimator of the average treatment effects, based on forecasting counterfactuals using a short time series of pre-treatment data. We show that the focus should be on forecast unbiasedness rather than accuracy. Correct specification of the forecasting model is not necessary to obtain unbiased estimates of the individual treatment effects. Instead, simple basis function (e.g., polynomial time trends) regressions deliver unbiasedness under a broad class of data-generating processes for the individual counterfactuals. Basing the forecasts on a model can introduce misspecification bias and does not necessarily improve performance even under correct specification. Consistency and asymptotic normality of the Forecasted Average Treatment effects (FAT) estimator attains under an additional assumption that rules out common and unforecastable shocks occurring between the treatment date and the date at which the effect is calculated.


Working papers are not edited, and all opinions and errors are the responsibility of the author(s). The views expressed do not necessarily reflect the views of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Having trouble accessing something on this page? Please send us an email and we will get back to you as quickly as we can.

Federal Reserve Bank of Chicago, 230 South LaSalle Street, Chicago, Illinois 60604-1413, USA. Tel. (312) 322-5322

Copyright © 2023. All rights reserved.

Please review our Privacy Policy | Legal Notices